
Lateral stability and control

In this chapter, we will examine lateral stability and control. How should we control an aircraft in a
non-symmetrical steady flight?

1 The equations of motion

1.1 Derivation of the equations of motion for asymmetric flight

Let’s examine an aircraft in a steady asymmetric flight. It has a roll angle ϕ and a sideslip angle β. By
examining equilibrium, we can find that

W sinϕ + Y = mV r, L = 0 and N = 0. (1.1)

Non-dimensionalizing these equations gives

CLϕ− 4µb
rb

2V
+ CY = 0, Cl = 0 and Cn = 0, (1.2)

where we have µb = m
ρSb . We can also apply linearization to the above equations. This will then give us

CLϕ + CYβ
β + (CYr

− 4µb)
rb

2V
+ CYδa

δa + CYδr
δr = 0, (1.3)

Clβ β + Clr

rb

2V
+ Clδa

δa + Clδr
δr = 0, (1.4)

Cnβ
β + Cnr

rb

2V
+ Cnδa

δa + Cnδr
δr = 0. (1.5)

1.2 Simplifying the equations of motion

Let’s examine the equations of the previous paragraph. There are quite some terms in these equations
that are negligible. They are CYδa

, Clδr
, CYr , Cnδa

and CYδr
. By using these neglections, and by putting

the above equations into matrix form, we will get

CL CYβ
−4µb 0 0

0 Clβ Clr Clδa
0

0 Cnβ
Cnr

0 Cnδr




ϕ

β
rb
2V

δa

δr

 =

0
0
0

 . (1.6)

Let’s assume that the velocity V is already set. We then still have five unknowns and three equations.
That means that there are infinitely many solutions. This makes sense: You can make a turn in infinitely
many ways. How do we deal with this? We simply set one of the parameters. We then express three of
the remaining parameters as a function of the last parameter. (This fifth parameter is usually rb

2V .) So
let’s do that.

2 Steady horizontal turns

2.1 Turns using ailerons only

Let’s try to turn the aircraft, by only using ailerons. We do not use the rudder and thus have δr = 0.
We can insert this into the equations of motion. We then solve for the parameters β, ϕ and δa. This will
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give us
dβ

d rb
2V

= −Cnr

Cnβ

> 0 (since Cnr < 0 and Cnβ
> 0), (2.1)

dϕ

d rb
2V

=
4µb + CYβ

Cnr

Cnβ

CL
> 0, (2.2)

dδa

d rb
2V

=
1

Clδa

Clβ Cnr
− ClrCnβ

Cnβ

. (2.3)

The sign of the last equation is still a point of discussion. We would like to have dδa/d rb
2V . If this is the

case, then we have so-called spiral stability. We know that Clδa
< 0 and Cnβ

> 0. So spiral stability
is achieved if

Clβ Cnr
− ClrCnβ

> 0. (2.4)

We will find out in the next chapter why they call this the spiral stability condition.

2.2 Turns using the rudder only

We can also make a turn using only the rudder. So we have δa = 0. This again gives us three equations,
being

dβ

d rb
2V

= −Clr

Clβ

> 0 (since Clr > 0 and Clβ < 0), (2.5)

dϕ

d rb
2V

=
4µb + CYβ

Clr

Clβ

CL
> 0, (2.6)

dδr

d rb
2V

= − 1
Cnδr

Clβ Cnr
− ClrCnβ

Clβ

. (2.7)

In the last equation, we have Cnδr
< 0 and Clβ < 0. If there is also spiral stability, then we have

dδr/d rb
2V < 0.

2.3 Coordinated turns

In a coordinated turn, we have β = 0. This means that there is no sideward component of the force
acting on the aircraft. This is an important factor for passenger comfort. For the coordinated turn, we
again have three equations. They are

dϕ

d rb
2V

=
4µb

CL
> 0, (2.8)

dδa

d rb
2V

= − Clr

Clδa

> 0 (since Clr > 0 and Clδa
< 0), (2.9)

dδr

d rb
2V

= − Cnr

Cnδr

< 0 (since Cnr
< 0 and Cnδr

< 0). (2.10)
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2.4 Flat turns

If we want the aircraft to stay flat during the turns, then we have ϕ = 0. It then follows that

dβ

d rb
2V

=
4µb

CYβ

< 0. (2.11)

From this, we can also derive that

dδa

d rb
2V

> 0 and
dδr

d rb
2V

< 0. (2.12)

3 Other flight types

3.1 Steady straight sideslipping flight

Let’s examine a steady straight sideslipping flight. This type of flight is usually only used during landings
with strong sidewinds. However, sometimes the aircraft is brought into a steady straight sideslipping flight
involuntarily. It is therefore important to know how the aircraft behaves.

In a straight flight, we have rb
2V = 0. We can now derive that

dϕ

dβ
= −

CYβ

CL
> 0,

dδa

dβ
= −

Clβ

Clδa

and
dδr

dβ
= −

Cnβ

Cnδr

. (3.1)

We generally want to have dδa/dβ < 0 and dδr/dβ > 0. We also always have Clδa
< 0 and Cnδr

< 0.
This implies that we should have Clβ < 0 and Cnβ

> 0.

3.2 Stationary flight with asymmetric power

Let’s suppose one of the engines of the aircraft doesn’t work anymore. In this case, a yawing moment
will be present. This moment has magnitude

Cne
= k

∆Tpye
1
2ρV 2Sb

. (3.2)

The variable ∆Tp consists of two parts. First there is the reduction in thrust. Then there is also the
increase in drag of the malfunctioning engine. ye is the Y coordinate of the malfunctioning engine.
Finally, k is an additional parameter, taking into account other effects. Its value is usually between 1.5
and 2.

Now let’s try to find a way in which we can still perform a steady straight flight. (We should thus have
r = 0.) We now have four unknowns and three equations. So we can still set one parameter. Usually,
we would like to have ϕ = 0 as well. In this case, a sideslip angle β is unavoidable. If the right engine is
inoperable, then a positive rudder deflection and sideslip angle will be present.

We could also choose to have β = 0. In this case, we will constantly fly with a roll angle ϕ. The wing
with the inoperable engine then has to be lower than the other wing. So if the right wing malfunctions,
then we have a positive roll angle.
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