
Introduction

In this summary we examine the flight dynamics of aircraft. But before we do that, we must examine
some basic ideas necessary to explore the secrets of flight dynamics.

1 Basic concepts

1.1 Controlling an airplane

To control an aircraft, control surfaces are generally used. Examples are elevators, flaps and spoilers.
When dealing with control surfaces, we can make a distinction between primary and secondary flight
control surfaces. When primary control surfaces fail, the whole aircraft becomes uncontrollable.
(Examples are elevators, ailerons and rudders.) However, when secondary control surfaces fail, the
aircraft is just a bit harder to control. (Examples are flaps and trim tabs.)

The whole system that is necessary to control the aircraft is called the control system. When a control
system provides direct feedback to the pilot, it is called a reversible system. (For example, when using
a mechanical control system, the pilot feels forces on his stick.) If there is no direct feedback, then we
have an irreversible system. (An example is a fly-by-wire system.)

1.2 Making assumptions

In this summary, we want to describe the flight dynamics with equations. This is, however, very difficult.
To simplify it a bit, we have to make some simplifying assumptions. We assume that . . .

• There is a flat Earth. (The Earth’s curvature is zero.)

• There is a non-rotating Earth. (No Coriolis accelerations and such are present.)

• The aircraft has constant mass.

• The aircraft is a rigid body.

• The aircraft is symmetric.

• There are no rotating masses, like turbines. (Gyroscopic effects can be ignored.)

• There is constant wind. (So we ignore turbulence and gusts.)

2 Reference frames

2.1 Reference frame types

To describe the position and behavior of an aircraft, we need a reference frame (RF). There are several
reference frames. Which one is most convenient to use depends on the circumstances. We will examine
a few.

• First let’s examine the inertial reference frame FI . It is a right-handed orthogonal system. Its
origin A is the center of the Earth. The ZI axis points North. The XI axis points towards the
vernal equinox. The YI axis is perpendicular to both the axes. Its direction can be determined
using the right-hand rule.
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• In the (normal) Earth-fixed reference frame FE , the origin O is at an arbitrary location on
the ground. The ZE axis points towards the ground. (It is perpendicular to it.) The XE axis is
directed North. The YE axis can again be determined using the right-hand rule.

• The body-fixed reference frame Fb is often used when dealing with aircraft. The origin of the
reference frame is the center of gravity (CG) of the aircraft. The Xb axis lies in the symmetry
plane of the aircraft and points forward. The Zb axis also lies in the symmetry plane, but points
downwards. (It is perpendicular to the Xb axis.) The Yb axis can again be determined using the
right-hand rule.

• The stability reference frame FS is similar to the body-fixed reference frame Fb. It is rotated
by an angle αa about the Yb axis. To find this αa, we must examine the relative wind vector
Va. We can project this vector onto the plane of symmetry of the aircraft. This projection is then
the direction of the XS axis. (The ZS axis still lies in the plane of symmetry. Also, the YS axis is
still equal to the Yb axis.) So, the relative wind vector lies in the XSYS plane. This reference frame
is particularly useful when analyzing flight dynamics.

• The aerodynamic (air-path) reference frame Fa is similar to the stability reference frame FS .
It is rotated by an angle βa about the ZS axis. This is done, such that the Xa axis points in the
direction of the relative wind vector Va. (So the Xa axis generally does not lie in the symmetry
plane anymore.) The Za axis is still equation to the ZS axis. The Ya axis can now be found using
the right-hand rule.

• Finally, there is the vehicle reference frame Fr. Contrary to the other systems, this is a left-
handed system. Its origin is a fixed point on the aircraft. The Xr axis points to the rear of the
aircraft. The Yr axis points to the left. Finally, the Zr axis can be found using the left-hand rule.
(It points upward.) This system is often used by the aircraft manufacturer, to denote the position
of parts within the aircraft.

2.2 Changing between reference frames

We’ve got a lot of reference frames. It would be convenient if we could switch from one coordinate system
to another. To do this, we need to rotate reference frame 1, until we wind up with reference frame 2. (We
don’t consider the translation of reference frames here.) When rotating reference frames, Euler angles
φ come in handy. The Euler angles φx, φy and φz denote rotations about the X axis, Y axis and Z axis,
respectively.

We can go from one reference frame to any other reference frame, using at most three Euler angles. An
example transformation is φx → φy → φz. In this transformation, we first rotate about the X axis,
followed by a transformation about the Y axis and the Z axis, respectively. The order of these rotations
is very important. Changing the order will give an entirely different final result.

2.3 Transformation matrices

An Euler angle can be represented by a transformation matrix T. To see how this works, we consider
a vector x1 in reference frame 1. The matrix T21 now calculates the coordinates of the same vector x2

in reference frame 2, according to x2 = T21x1.

Let’s suppose we’re only rotating about the X axis. In this case, the transformation matrix T21 is quite
simple. In fact, it is

T21 =

1 0 0
0 cosφx sinφx

0 − sinφx cosφx

 . (2.1)
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Similarly, we can rotate about the Y axis and the Z axis. In this case, the transformation matrices are,
respectively,

T21 =

cosφy 0 − sinφy

0 1 0
sinφy 0 cosφy

 and T21 =

 cosφz sinφz 0
− sinφz cosφz 0

0 0 1

 . (2.2)

A sequence of rotations (like φx → φy → φz) is now denoted by a sequence of matrix multiplications
T41 = T43T32T21. In this way, a single transformation matrix for the whole sequence can be obtained.

Transformation matrices have interesting properties. They only rotate points. They don’t deform them.
For this reason, the matrix columns are orthogonal. And, because the space is not stretched out either,
these columns must also have length 1. A transformation matrix is thus orthogonal. This implies that

T−1
21 = TT

21 = T12. (2.3)

2.4 Transformation examples

Now let’s consider some actual transformations. Let’s start at the body-fixed reference frame Fb. If we
rotate this frame by an angle αa about the Y axis, we find the stability reference frame FS . If we then
rotate it by an angle βa about the Z axis, we get the aerodynamic reference frame Fa. So we can find
that

xa =

 cosβa sinβa 0
− sinβa cosβa 0

0 0 1

xS =

 cosβa sinβa 0
− sinβa cosβa 0

0 0 1


 cosαa 0 sinαa

0 1 0
− sinαa 0 cosαa

xb. (2.4)

By working things out, we can thus find that

Tab =

 cosβa cosαa sinβa cosβa sinαa

− sinβa cosαa cosβa − sinβa sinαa

− sinαa 0 cosαa

 . (2.5)

We can make a similar transformation between the Earth-fixed reference frame FE and the body-fixed
reference frame Fb. To do this, we first have to rotate over the yaw angle ψ about the Z axis. We then
rotate over the pitch angle θ about the Y axis. Finally, we rotate over the roll angle ϕ about the X
axis. If we work things out, we can find that

TbE =

 cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 . (2.6)

Now that’s one hell of a matrix . . .

2.5 Moving reference frames

Let’s examine some point P . This point is described by vector rE in reference frame FE and by rb in
reference frame Fb. Also, the origin of Fb (with respect to FE) is described by the vector rEb. So we
have rE = rEb + rb.

Now let’s examine the time derivative of rE in FE . We denote this by drE

dt

∣∣∣
E

. It is given by

drE

dt

∣∣∣∣
E

=
drEb

dt

∣∣∣∣
E

+
drb

dt

∣∣∣∣
E

. (2.7)
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Let’s examine the terms in this equation. The middle term of the above equation simply indicates the
movement of Fb, with respect to FE . The right term is, however, a bit more complicated. It indicates
the change of rb with respect to FE . But we usually don’t know this. We only know the change of rb

in Fb. So we need to transform this term from FE to Fb. Using a slightly difficult derivation, it can be
shown that

drb

dt

∣∣∣∣
E

=
drb

dt

∣∣∣∣
b

+ ΩbE × rb. (2.8)

The vector ΩbE denotes the rotation vector of Fb with respect to FE . Inserting this relation into the
earlier equation gives us

drE

dt

∣∣∣∣
E

=
drEb

dt

∣∣∣∣
E

+
drb

dt

∣∣∣∣
b

+ ΩbE × rb. (2.9)

This is quite an important relation, so remember it well. By the way, it holds for every vector. So instead
of the position vector r, we could also take the velocity vector V.

Finally, we note some interesting properties of the rotation vector. Given reference frames 1, 2 and 3, we
have

Ω12 = −Ω21 and Ω31 = Ω32 + Ω21. (2.10)
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