
Examining an entire aircraft

In the previous chapter, we’ve only considered the wing of an aircraft. Now we’re going to add the rest
of the aircraft too. How do the various components of the aircraft influence each other?

1 Adding a fuselage

1.1 Changes in moment coefficient

Previously, we have only considered a wing. This wing had a moment coefficient Cmw
. Now let’s add a

fuselage. The combination of wing and fuselage has a moment coefficient Cmwf
. The change in moment

coefficient ∆Cm is now defined such that

Cmwf
= Cmw + ∆Cm. (1.1)

Let’s take a closer look at this change ∆Cm. What does it consist of? We know that a fuselage in a flow
usually has a moment coefficient Cmf

. However, the wing causes the flow around the fuselage to change.
This also causes a moment coefficient induced on the fuselage, denoted by ∆Cmfi

. Finally, the fuselage
effects the flow around the wing. There is thus also a factor ∆Cmwi

. We thus have

∆Cm = Cmf
+ ∆Cmfi

+ ∆Cmwi . (1.2)

In this equation, the coefficients Cmf
and ∆Cmfi

are usually considered together as Cmfi
.

1.2 Effects of the fuselage

We can use inviscid incompressible flow theory to examine the fuselage. We then find that the moment
coefficient of the fuselage, in the induced velocity field, is

Cmfi
= Cmf

+ ∆Cmfi
=

π

2Sc̄

∫ lf

0

bf (x)2 αf (x) dx. (1.3)

Here, bf (x) is the fuselage width and αf (x) is the (effective) fuselage angle of attack. We also
integrate over the entire length lf of the fuselage.

If there was only a fuselage (and no wing), then the fuselage would have a constant angle of attack.
However, the wing causes the angle of attack to vary. In front of the wing, the flow goes up a bit. Behind
the wing, there is a downwash. To deal with these complicated effects, we apply linearization. We thus
approximate αf (x) as

αf (x) = αf0 +
dαf (x)

dα
(α− α0). (1.4)

Here, α0 is the zero normal force angle of attack αCN=0. αf0 is the corresponding fuselage angle of
attack. By using the above equation, we can find a relation for Cmfi

. We get

Cmfi
=

παf0

2Sc̄

∫ lf

0

bf (x)2 dx +
π(α− α0)

2Sc̄

∫ lf

0

bf (x)2
dαf (x)

dα
dx. (1.5)

1.3 The shift of the aerodynamic center

Adding the fuselage causes the aerodynamic center to shift. We know that

Cmw = Cmacw
+ CNw

x− xacw

c̄
and Cmwf

= Cmacwf
+ CNwf

x− xacwf

c̄
. (1.6)
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Let’s assume that adding the fuselage doesn’t effect the normal force. Thus CNw
= CNwf

= CN . In this
case, we have

∆Cm = Cmwf
− Cmw

= ∆Cmac
− CN

xacwf
− xacw

c̄
. (1.7)

We can differentiate this equation with respect to α. From the definition of the AC follows that
d(∆Cmac)/dα = 0. If we then also use the fact that dCN/dα = CNα , we find that

xacwf
− xacw

c̄
=

∆xac

c̄
= − 1

CNα

d(∆Cm)
dα

. (1.8)

Part of this shift is caused by the fuselage, while the other part is caused by the new flow on the wing.
The shift in angle of attack, due to the fuselage, is(

∆xac

c̄

)
fi

= − 1
CNα

dCmfi

dα
= − 1

CNα

π

2Sc̄

∫ lf

0

bf (x)2
dαf (x)

dα
dx. (1.9)

The shift due to the flow induced on the wing is denoted by
(

∆xac

c̄

)
wi

. We don’t have a clear equation for
this part of the shift. However, it is important to remember that this shift is only significant for swept
wings. If there is a positive sweep angle, then the AC moves backward.

2 Adding the rest of the aircraft

2.1 The three parts

It is now time to examine an entire aircraft. The CG of this aircraft is positioned at (xcg, zcg). We split
this aircraft up into three parts.

• First, there is the wing, with attached fuselage and nacelles. The position of the AC of this part is
(xw, zw). Two forces and one moment are acting in this AC. There are a normal force Nw (directed
upward), a tangential force Tw (directed to the rear) and a moment Macw .

• Second, we have a horizontal tailplane. The AC of this part is at (xh, zh). In it are acting a normal
force Nh, a tangential force Th and a moment Mach

.

• Third, there is the propulsion unit. Contrary to the other two parts, this part has no moment. It
does have a normal force Np and a tangential force Tp. However, these forces are all tilted upward
by the thrust inclination ip. (So they have different directions then the force Tw, Th, Nw and
Nh.) Also, the tangential force Tp is defined to be positive when directed forward. (This is contrary
to the forces Th and Tw, which are positive when directed backward.)

2.2 The equations of motion

We will now derive the equations of motion for this simplified aircraft. We assume that the aircraft is in
a fully symmetric flight. We then only need to consider three equations of motion. Taking the sum of
forces in X direction gives

T = Tw + Th − Tp cos ip + Np sin ip = −W sin θ. (2.1)

Similarly, we can take the sum of forces in Z direction, and the sum of moments about the CG. (This is
done about the Y axis.) We then get

N = Nw + Nh + Np cos ip + Tp sin ip = W cos θ, (2.2)
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M =Macw
+ Nw(xcg − xw)− Tw(zcg − zw) + Mach

+ Nh(xcg − xh)− Th(zcg − zh) + . . .

. . . + (Np cos ip + Tp sin ip)(xcg − xp) + (Tp cos ip −Np sin ip)(zcg − zp) = 0. (2.3)

We can simplify these equations, by making a couple of assumptions. We want to examine the stability of
the aircraft. The propulsion doesn’t influence the stability of the aircraft much. So we neglect propulsion
effects. We also neglect Th, since it is very small compared to Tw. We assume that (zcg − zw) ≈ 0. And
finally, we neglect Mach

. This gives us

T = Tw = −W sin θ, (2.4)

N = Nw + Nh = W cos θ, (2.5)

M = Macw
+ Nw(xcg − xw) + Nh(xcg − xh) = 0. (2.6)

That simplifies matters greatly.

2.3 Non-dimensionalizing the equations of motion

Let’s non-dimensionalize the equations of motion of the previous paragraph. For that, we divide the force
equations by 1

2ρV 2S and the moment equation by 1
2ρV 2Sc̄. This then gives us

CT = CTw
= − W

1
2ρV 2S

sin θ, (2.7)

CN = CNw + CNh

(
Vh

V

)2
Sh

S
=

W
1
2ρV 2S

cos θ, (2.8)

Cm = Cmacw
+ CNw

xcg − xw

c̄
− CNh

(
Vh

V

)2
Shlh
Sc̄

= 0. (2.9)

A lot of new coefficients have suddenly disappeared. These coefficients are defined, such that

N = CN
1
2
ρV 2S, T = CT

1
2
ρV 2S, M = Cm

1
2
ρV 2Sc̄, (2.10)

Nw = CNw

1
2
ρV 2S, Tw = CTw

1
2
ρV 2S, Macw

= Cmacw

1
2
ρV 2Sc̄, (2.11)

Nh = CNh

1
2
ρV 2

h Sh, Th = CTh

1
2
ρV 2

h Sh, Mach
= Cmach

1
2
ρV 2

h Shc̄h. (2.12)

Here, 1
2ρV 2

h is the average local dynamic pressure on the horizontal tail plain. Also, Sh is the tailplane
surface area and c̄h is the MAC of the tailplane. The quantity Shlh

Sc̄ is known as the tailplane volume.
And finally, we have defined the tail length lh = xh − xw ≈ xh − xcg.

3 The horizontal tailplane

3.1 Important angles

We will now take a closer look at the horizontal tailplane. There are three parameters that describe
the configuration of the horizontal tailplane. These parameters are the effective horizontal tailplane
angle of attack αh, the elevator deflection δe and the elevator trim tab deflection δte . The three
angles are visualized in figure 1.

There is one angle which we will examine more closely now. And that is the effective angle of attack αh.
It is different from the angle of attack of the aircraft α. There are two important causes for this. First,
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Figure 1: The angles of the horizontal tailplane.

the horizontal tail plane has an incidence angle ih, relative to the MAC of the wing. And second, the
tailplane experiences downwash, caused by the wing of the aircraft. The average downwash angle is
denoted by ε. By putting this all together, we find that

αh = α + ih − ε. (3.1)

We can elaborate a bit further on this. The downwash ε mainly depends on α. Linearization thus gives
ε ≈ dε

dα (α− α0). It follows that

αh =
(

1− dε

dα

)
(α− α0) + (α0 + ih). (3.2)

From this follows that the derivate dαh/dα is given by

dαh

dα
= 1− dε

dα
. (3.3)

This derivative is thus generally smaller than 1.

3.2 The horizontal tailplane normal force

Let’s examine the normal force CNh
of the horizontal tailplane. This is a function of the three angles αh,

δe and δte . Applying linearization gives

CNh
= CNh0

+
∂CNh

∂αh
αh +

∂CNh

∂δe
δe +

∂CNh

∂δet

δet
. (3.4)

The effect of the trim tab to the normal force is usually negligible. So, ∂CNh
/∂δet ≈ 0. Also, since most

horizontal tailplanes are (nearly) symmetric, we have CNh0
≈ 0. This simplifies the above equation to

CNh
=

∂CNh

∂αh
αh +

∂CNh

∂δe
δe = CNhα

αh + CNhδ
δe. (3.5)

Note that we have used a shorter notation in the right part of the above equation. The variables CNhα

and CNhδ
are quite important for the balance of the control surface. If they are both negative, then the

control surface is called aerodynamically underbalanced. If, however, they are both positive, then
the control surface is called aerodynamically overbalanced.

3.3 The elevator deflection necessary for equilibrium

We can ask ourselves, what elevator deflection δe should we have, to make sure our aircraft is in equilib-
rium? For that, we examine the moment equation (2.9). In this equation are the coefficients CNw

and
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CNh
. We can replace these by the linearizations

CNw = CNwα
(α− α0) and CNh

= CNhα
αh + CNhδ

δe. (3.6)

If we do this, we find that

Cm = Cmacw
+ CNwα

(α− α0)
xcg − xw

c̄
−

(
CNhα

αh + CNhδ
δe

) (
Vh

V

)2
Shlh
Sc̄

= 0. (3.7)

We can now also substitute the relation (3.2) for αh. Doing this, and working the whole equation out,
gives

Cm = Cm0 + Cmα(α− α0) + Cmδe
δe = 0, (3.8)

where Cmα
is known as the static longitudinal stability and Cmδe

is the elevator effectivity. To-
gether with the constant Cm0 , they are defined as

Cm0 = Cmacw
− CNhα

(α0 + ih)
(

Vh

V

)2
Shlh
Sc̄

, (3.9)

Cmα
= CNwα

xcg − xw

c̄
− CNhα

(
1− dε

dα

) (
Vh

V

)2
Shlh
Sc̄

, (3.10)

Cmδe
= −CNhδ

(
Vh

V

)2
Shlh
Sc̄

. (3.11)

We can now solve for δe. It is simply given by

δe = −Cm0 + Cmα
(α− α0)

Cmδe

. (3.12)

This is a nice expression. But do remember that we have made several linearizations to derive this
equation. The above equation is thus only valid, when all the linearizations are allowed.
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