
Aircraft modes of vibration

It is finally time to look at the dynamics of an aircraft. How will an aircraft behave, when given elevator,
rudder and aileron deflections? What are its modes of vibration? That’s what we will look at in this
chapter.

1 Eigenvalue theory

1.1 Solving the system of equations

To examine the dynamic stability of the aircraft, we examine the full longitudinal equations of motion.
The symmetric part of these equations were
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 . (1.1)

In this system of equations, we have assumed stick-fixed conditions. All inputs are zero. We could try
to find solutions for the above system of equations. A common way to do this, is to assume a solution of
the form

x(t) = Aeλcsc . (1.2)

In this equation, x(t) is our solution. sc = V
c̄ t is the dimensionless time. From this form follows that

Dcx = λcx. If we insert this into the equations of motion, we find
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 . (1.3)

We can write this matrix equation as [∆]Aeλcsc = 0. The exponential in this equation can’t be zero, so
we can get rid of it. We thus need to solve [∆]A = 0. One solution of this equation is A = 0. However,
this is a rather trivial solution, in which we are not interested. So we need to find non-trivial solutions.
This is where our knowledge on linear algebra comes in. There can only be non-trivial solutions, if
det [∆] = 0. Applying this will give us an equation of the form

Aλ4
c + Bλ3

c + Cλ2
c + Dλc + E = 0. (1.4)

This equation is called the characteristic polynomial. Solving it will give four eigenvalues λc1 , λc2 ,
λc3 and λc4 . Corresponding to these four eigenvalues are four eigenvectors A1, A2, A3 and A4. The
final solution of the system of equations now is

x = c1A1eλc1sc + c2A2eλc2sc + c3A3eλc3sc + c4A4eλc4sc . (1.5)

The constants c1, c2, c3 and c4 depend on the four initial conditions.

1.2 The eigenvalues

Let’s examine the eigenvalues of the system of equations. Each eigenvalue can be either real and complex.
If one of the eigenvalues is complex, then its complex conjugate is also an eigenvalue. Complex eigenvalues
therefore always come in pairs.
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A mode of vibration is a characteristic way in which an object (our aircraft) can vibrate. The number
of modes depends on the eigenvalues. In fact, it is equal to the number of different eigenvalues. (When
performing the counting, a pair of complex conjugate eigenvalues is counted as one.) For example, an
aircraft with two real eigenvalues and two complex eigenvalues has three modes of vibration.

The eigenvalues λc are very important for the stability of the system. To examine stability, we look at
the limit

lim
sc→∞

c1A1eλc1sc + c2A2eλc2sc + c3A3eλc3sc + c4A4eλc4sc . (1.6)

If only one of the eigenvalues has a positive real part, then this limit will diverge. This means that our
aircraft is unstable. If, however, all eigenvalues have negative real parts, then the system is stable.

1.3 Real eigenvalue properties

We can derive some interesting properties from the eigenvalues. First, let’s examine a real eigenvalue
λc. This eigenvalue has its own mode of vibration x = Aeλcsc . The half time T 1

2
is defined as the

time it takes to reduce the amplitude of the motion to half of its former magnitude. In other words,
x(t + T 1

2
) = 1

2x(t). Solving this equation will give

T 1
2

=
ln 1

2

λc

c̄

V
. (1.7)

Similarly, we define the time constant τ as the time it takes for the amplitude to become 1/e of its former
magnitude. Solving x(t + τ) = 1

ex(t) gives

τ = − 1
λc

c̄

V
. (1.8)

These two parameters of course only exist if λc is negative. If it is positive, then the magnitude will only
grow. In this case, the doubling time T2 is an important parameter. It is given by T2 = −T 1

2
.

1.4 Complex eigenvalue properties

Now let’s examine a complex eigenvalue pair. We can write it as λc1,2 = ξc ± ηci, where i =
√
−1 is the

complex number. This eigenvalue will cause an oscillation. The period and frequency of the oscillation
only depend on ηc. In fact, the period P , the frequency f and the angular frequency ωn are given
by

P =
2π

ηc

c̄

V
, f =

1
P

=
ηc

2π

V

c̄
and ωn =

2π

P
= ηc

V

c̄
. (1.9)

The damping of this oscillation is caused by the real part ξc. Again, the half time T 1
2

is defined as the
time it takes for the amplitude to reduce to half its size. It is still given by

T 1
2

=
ln 1

2

ξc

c̄

V
. (1.10)

Another important parameter is the logarithmic decrement δ. It is defined as the natural logarithm
of the ratio of the magnitude of two successive peaks. In other words, it is defined as

δ = ln

(
eξc

V
c̄ (t+P )

eξc
V
c̄ t

)
= ξc

V

c̄
P. (1.11)

Finally, there are the damping ratio ζ and the undamped angular frequency ω0. They are defined
such that

λc1,2 =
(
−ζω0 ± iω0

√
1− ζ2

) c̄

V
. (1.12)

2



Solving for ζ and ω0 will give

ζ =
−ξc√
ξ2
c + η2

c

and ω0 =
√

ξ2
c + η2

c

V

c̄
. (1.13)

1.5 Getting stable eigenvalues

Let’s take a look at the characteristic equation (equation (1.4)). We usually set up the equation, such
that A > 0. To obtain four eigenvalues with negative real parts, we must have

B > 0, C > 0, D > 0 and E > 0. (1.14)

But these aren’t the only conditions to ensure that we have stable eigenvalues. We must also have

R = BCD −AD2 −B2E > 0. (1.15)

These criteria are known as the Routh-Hurwitz Stability Criteria. The coefficient R is called
Routh’s discriminant. These criteria hold for both the symmetric and the asymmetric modes of
vibration.

2 The symmetric modes of vibration

2.1 Example eigenvalues

Let’s suppose we know all the parameters in the matrix equation that was described earlier. In this case,
we can find the four eigenvalues. An example solution of these eigenvalues is given by

λc1,2 = −0.04± 0.04i and λc3,4 = −0.0003± 0.006i. (2.1)

Of course these values will be different for different aircraft. But most types of aircraft, having the
standard wing-fuselage-tailplane set-up, will have similar eigenvalues.

Let’s study these eigenvalues. There are two pairs of complex conjugate eigenvalues. Both pairs of
eigenvalues have negative real parts. This means that the aircraft is stable. Since there are only two
pairs of complex conjugate eigenvalues, there are two modes of vibration. We will now examine these
modes.

2.2 The short period oscillation

Let’s look at the first pair of eigenvalues. It has a relatively big real part ξc The damping is therefore
big. The complex part ηc is relatively big as well. So the frequency is high. In other words, we have a
highly damped high-frequency oscillation. This motion is known as the short period oscillation.

Let’s take a look at what actually happens in the aircraft. We start the short period oscillation by
applying a step input to the elevator deflection. (We deflect it, and keep that deflection.) We can, for
example, deflect it upward. This causes the lift on the horizontal tailplane to decrease. This, in turn,
causes the pitch rate to increase. An increase in pitch rate will, however, increase the effective angle of
attack of the horizontal tailplane. This then reduces the pitch rate. And the whole cycle starts over again.
However, the oscillation is highly damped. After less than one period, the effects are hardly noticable
anymore.

Now let’s try to derive some equations for the short period motion. The short period motion is rather
fast. So we assume the aircraft hasn’t had time yet to change its velocity in X or Z direction. This
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means that û = 0 and γ = 0. Therefore α = θ. This reduces the equations of motion to[
CZα

+ (CZα̇
− 2µc)λc 2µc + CZq

Cmα
+ Cmα̇

λc Cmq
− 2µcK

2
Y λc

][
α
qc̄
V

]
=

[
0
0

]
. (2.2)

We can now find the eigenvalues for this matrix. This will still give us a rather complicated equation. If
we neglect CZα̇ and CZq , then this complicated equation reduces to

λc1,2 =
−B ± i

√
4AC −B2

2A
. (2.3)

In this equation, the coefficients A, B and C are given by

A = 4µ2
cK

2
Y , B = −2µc(K2

Y CZα
+ Cmα̇

+ Cmq
) and C = CZα

Cmq
− 2µcCmα

. (2.4)

To have stability, we should have − B
2A negative. We know that A is positive. This means that B has to

be positive as well.

2.3 The phugoid

Now we look at the second pair of eigenvalues. It has a small real part ξc, and therefore a small damping.
The complex part ηc is small as well, so the frequency is low. In other words, we have a lightly damped
low-frequency oscillation. This motion is known as the phugoid.

Again, we look at what happens with the aircraft. This time, we apply an impulse deflection on the
elevator. (We only deflect it briefly.) This will cause our pitch angle to increase. (That is, after the short
period motion has more or less damped out.) We will therefore go upward. This causes our velocity to
decrease. Because of this, the lift is reduced. Slowly, the pitch angle will decrease again, and we will go
downward. This causes the velocity to increase. This, in turn, increases the lift. The pitch angle will
again increase, and we will again go upward.

Again, we will try to derive some relations for the phugoid. In the phugoid, the angle of attack α is
approximately constant. (γ and θ do vary a lot though.) So we have α = 0 and α̇ = 0. (Remember that
we’re discussing deviations from the initial position.) Since the oscillation is very slow, we also assume
that q̇ = 0. If we also neglect the terms CZq

and CX0 , we will find that we again have

λc3,4 =
−B ± i

√
4AC −B2

2A
. (2.5)

However, now the coefficients are given by

A = −4µ2
c , B = 2µcCXu

and C = −CZu
CZ0 . (2.6)

We can apply the approximations CXu
= −2CD, CZ0 = −CL and CZu

= −2CL. This would then give
us the three parameters

ω0 =
V

c̄

√
C2

L

2µ2
c

=
g

V

√
2, ζ =

√
2

2
CD

CL
and P =

2π

ω0

√
1− ζ2

≈ 2π

ω0
=
√

2π
V

g
. (2.7)

Note that, in the above equation for P , we have used the fact that the damping ζ is small. Although the
above equations are only approximations, they can serve as quite handy tools in verifying your results.
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3 The asymmetric modes of vibration

3.1 Example eigenvalues

We have just examined the symmetric equations of motion. Of course, we can do the same for the
asymmetric equations of motion. These equations of motion are

CYβ
+ (CYβ̇

− 2µb)Db CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ
+ Cnβ̇

Db 0 Cnp + 4µbKXZDb Cnr − 4µbK
2
ZDb




β

ϕ
pb
2V
rb
2V

 =


0
0
0
0

 . (3.1)

Examining them goes in more or less the same way as for the symmetric case. There is, however, one
important difference. Since we are examining the asymmetric case, we don’t use the chord c̄ but we use
the wing span b. The eigenvalues are thus also denoted as λb. Example eigenvalues for an aircraft are

λb1 = −0.4, λb2 = 0.01 and λb3,4 = −0.04± 0.4i. (3.2)

You might be surprised that these eigenvalues are a lot bigger than the symmetric eigenvalues. This is
not very important. It’s only the case, because they are based on b, instead of on c̄. And naturally, b is
a lot bigger than c̄.

Let’s examine the eigenvalues. There are two real eigenvalues and one pair of complex conjugate eigenval-
ues. The aircraft thus has three modes of vibration. You might also have noticed that there is a positive
eigenvalue. The aircraft is thus unstable. The eigenvalue is, however, very small. This means that the
aircraft state will only diverge very slowly. The pilot will have plenty of time to do something about it.
So you don’t have to worry: flying is still safe.

3.2 The aperiodic roll

The motion corresponding to λb1 is called the aperiodic roll. The eigenvalue is very negative. This
motion is therefore highly damped.

The aperiodic roll is induced by applying a step input to the aileron. When this happens, the aircraft
will start rolling. Let’s suppose it rolls to the right. The right wing then goes down. This means that the
right wing will get a higher effective angle of attack. The lift of this wing thus increases. The opposite
happens for the left wing: its lift decreases. This lift difference causes a moment opposite to the rolling
motion. In other words, the motion is damped out. The roll rate p will converge rather quickly to a
constant value.

The aperiodic roll is a very fast motion. So there is no time for sideslip or yaw effects to appear. So
we can assume that, during an aperiodic roll motion, we have β = r = 0. This reduces the equations of
motion to just one equation, being (

Clp − 4µbK
2
XDb

) pb

2V
= 0. (3.3)

It directly follows that the corresponding eigenvalue is given by

λb1 =
Clp

4µbK2
X

. (3.4)

3.3 The spiral motion

The motion corresponding to λb2 is called the spiral motion. The eigenvalue is positive. So the motion
is unstable. However, the eigenvalue is very small. This means that divergence will occur only very
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slowly. We thus say that the motion is marginally unstable. (For some aircraft, this value is slightly
negative. Such aircraft are marginally stable.)

The spiral motion is induced by an initial roll angle. (An angle of 10◦ is sufficient.) This causes the lift
vector to be tilted. The horizontal component of the lift will cause the aircraft to make a turn. In the
meanwhile, the vertical component of the lift vector has slightly decreased. This causes the aircraft to
lose altitude. Combining these two facts will mean that the aircraft will perform a spiral motion.

If the eigenvalue λb2 is positive, then the roll angle of the aircraft will slowly increase. The spiral motion
will therefore get worse. After a couple of minutes, the roll angle might have increased to 50◦. This
phenomenon is, however, not dangerous. The pilot will have plenty of time to react. It is also very easy
to pull the aircraft out of a spiral motion.

Let’s try to derive an equation for λb2 . The spiral motion is a very slow motion. We thus neglect the
derivatives of β, p and r. Also, the coefficients CYr

and CYp
are neglected. After working out some

equations, we can eventually find that

λb2 =
2CL

(
Clβ Cnr

− Cnβ
Clr

)
Clp

(
CYβ

Cnr + 4µbCnβ

)
− Cnp

(
CYβ

Clr + 4µbClβ

) . (3.5)

The denominator of this relation is usually negative. We say we have spiral stability if λb2 < 0. This
is thus the case if

Clβ Cnr
− Cnβ

Clr > 0. (3.6)

You might remember that we’ve seen this equation before.

3.4 The Dutch roll

The pair of eigenvalues λb3,4 has a slightly low damping and a slightly high frequency. In the mode of
vibration corresponding to these eigenvalues, the aircraft alternately performs a yawing and a rolling
motion. The mode of vibration is called the Dutch roll.

Let’s take a look at what actually happens with the aircraft. To initiate the Dutch roll, an impulse input
is applied to the rudder. This causes the aircraft to yaw. Let’s suppose the aircraft yaws to the right.
The lift on the left wing then increases, while the lift on the right wing decreases. This moment causes
the aircraft to roll to the right.

When the aircraft is rolling to the right, then the lift vector of the right wing is tilted forward. Similarly,
the left wing will have a lift vector that is tilted backward. This causes the aircraft to yaw to the left.
(This effect is still called adverse yaw.) In this way, roll and yaw alternate each other. It is important to
remember that roll and yaw are alternately present. When the roll rate is at a maximum, the yaw rate
is approximately zero, and vice verse.

The Dutch roll is not very comfortable for passenger. To increase passenger comfort, a yaw damper is
used. This is an automatic system, which uses rudder/aileron deflections to reduce the effects of the
Dutch roll.

Let’s try to find a relation for λb3,4 . This is rather hard, since both roll and yaw are present. However,
experience has shown that we still get slightly accurate results, if we neglect the rolling part of the motion.
We thus assume that ϕ = p = 0. This reduces the system of equations to a 2 × 2 matrix. From it, we
can again find that

λb3,4 =
−B ± i

√
4AC −B2

2A
. (3.7)

However, this time the coefficients A, B and C are given by

A = 8µ2
bK

2
Z , B = −2µb

(
Cnr

+ 2K2
ZCYβ

)
and C = 4µbCnβ

+ CYβ
Cnr

. (3.8)

And that concludes our discussion on the modes of vibration.
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3.5 Stability criteria

From the characteristic equation (equarion (1.4)) we can see which eigenmotions are stable. We have
seen earlier that, if A, B, C, D, E and R are all positive, then all eigenmotions are stable. In other
words, we have spiral stability and a convergent Dutch roll.

However, if some of the coefficients become negative, then there will be unstable eigenmotions. If E < 0,
then we have spiral instability. Similarly, if R < 0, then we will have a divergent Dutch roll. So, to ensure
stability, we’d best keep the coefficient of the characteristic equation positive.
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