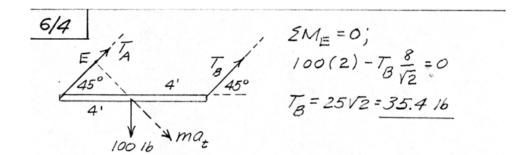
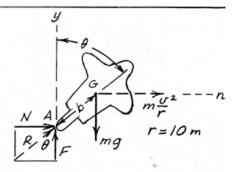


6/2 A 5m 5m 8 $8>A since <math>EM_C$ must be CCW. 3.5m G must be CCW. $EM_D=0$; 5mg + 0.258(3.5) - 108 = 0 E=5mg/9.125 = 0.548mg EF=ma; 0.258=ma, $a=\frac{0.25(0.548)mg}{m}$ $a=0.25(0.548)(9.81)=\frac{1.344}{m/5^2}$



6/5

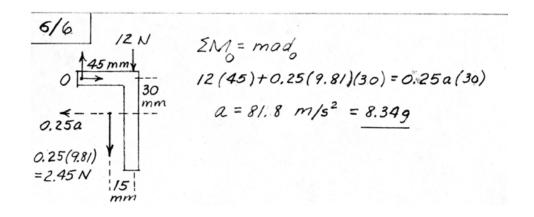


$$\sum_{A} = m\bar{a}d : mgb \sin\theta = m \frac{\sigma^2}{r} b \cos\theta, \quad \sigma^2 = gr \tan\theta$$
But $\tan\theta = N/F = 1/\mu so \quad \sigma^2 = \frac{gr}{\mu}, \quad \sigma = \sqrt{\frac{9.81 \times 10}{0.70}}$

$$= 11.84 \text{ m/s}$$

$$\theta = tan^{-1} \frac{\sigma^2}{gr} = tan^{-1} \frac{11.84^2}{9.81 \times 10} = \frac{55.0^{\circ}}{9.81 \times 10^{\circ}}$$

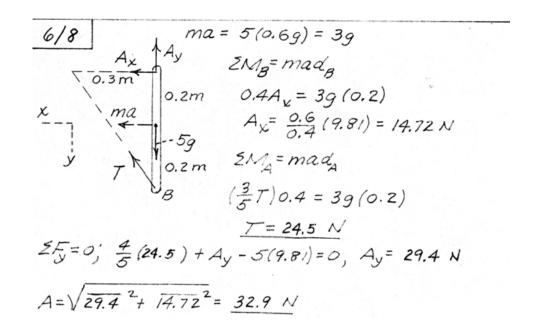
Note: The fact that in reality this is a rigid body rotating about the central axis does not invalidate the plane-motion analysis as a translating body so long as $\theta = 0$.

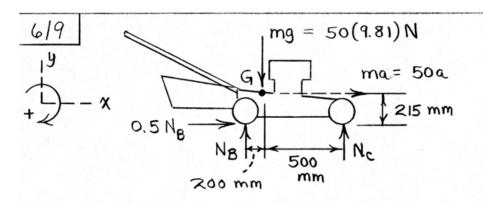


Tipping impends when $N_A \rightarrow 0$.

The ping impends when $N_A \rightarrow 0$.

The pi

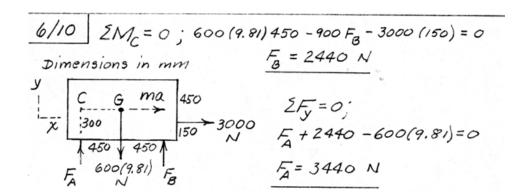


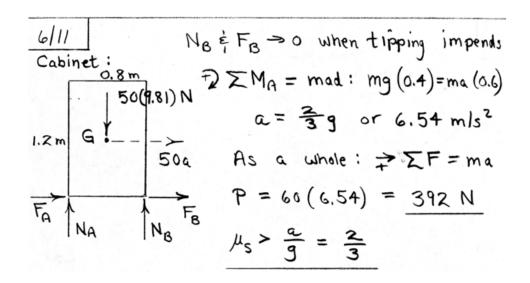


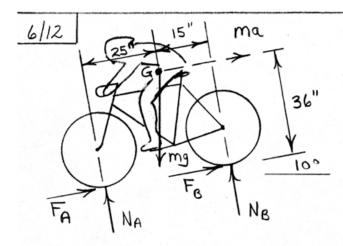
$$\Sigma Fy = 0$$
: $N_B + N_c - 50 (9.81) = 0$

$$\Sigma Fy = 0$$
: $N_B + N_C - 50 (9.81) = 0$
 $\Sigma M_B = \text{mad}$: $50(9.81)(0.2) - N_C(0.7) = 50a(0.215)$

Simultaneous solution :
$$\begin{cases} N_B = 414 N \\ N_C = 76.6 N \\ \alpha = 4.14 \text{ m/s}^2 \end{cases}$$

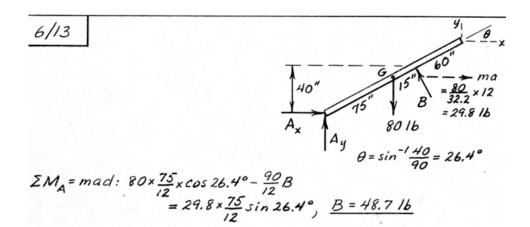


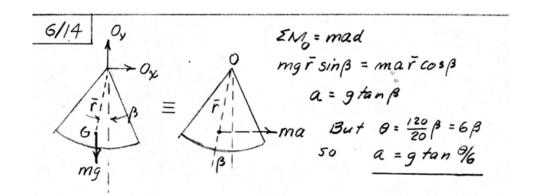


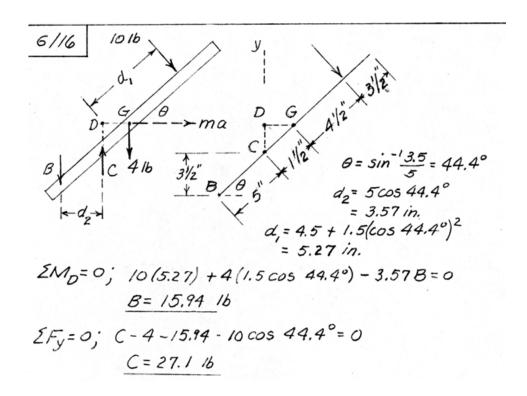


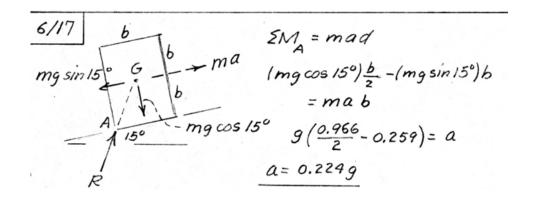
Tipping at front wheel: NB, $F_B \rightarrow 0$ +2 $\sum M_A = \text{mad}$: mg (25 cos 10° - 36 sin 10°) = ma (36)

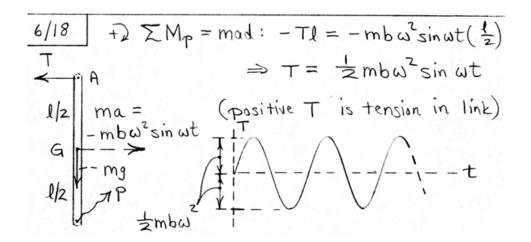
Solve to obtain a = 0.510g (16.43 ft/sec2)

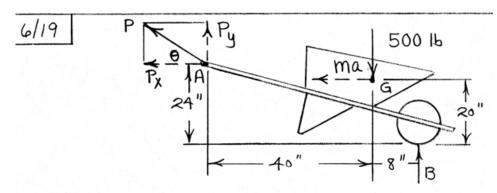








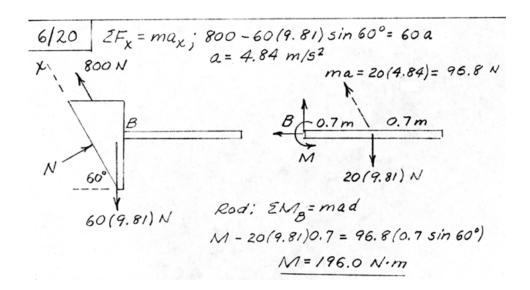


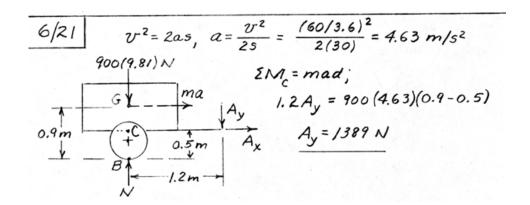


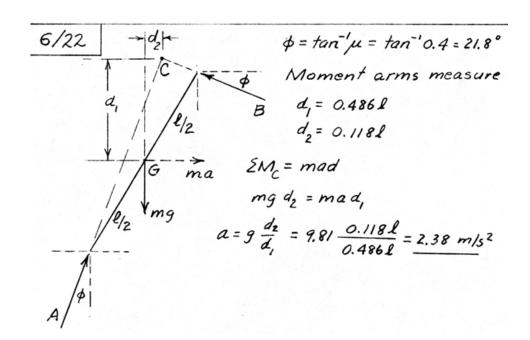
Static equilibrium : Px = ma = 0

$$\Re \sum M_{A} = 0$$
: 500(40) - B(48) = 0, $\frac{B = 417 \text{ lb}}{\text{st}}$
Dynamic: $\Re \sum M_{A} = \text{mad}$:

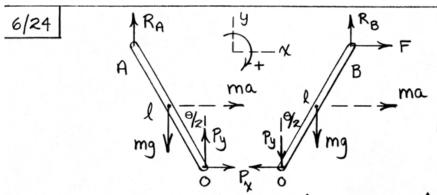
$$500(40) - B(48) = \frac{500}{32.2}(5)(4)$$
, $B = 410 1b$
 $+ \Sigma F_{\chi} = ma : P_{\chi} = \frac{500}{32.2}(5) = 77.6 lb$.: $P = 118.7 lb$
 $+ \uparrow \Sigma F_{y} = 0 : B - 500 + P_{y} = 0$, $P_{y} = 89.8 lb$. $\Theta = 49.2^{\circ}$







 $7 \sum_{mad} \sum_{mad} \left(\frac{1}{2} \sin \theta\right) = \sum_{mad} \left(\frac{1}{2} \cos \theta\right)$ $-mg \left(l \sin \theta\right) = \sum_{mad} \left(\frac{1}{2} \cos \theta\right)$ $+ mq \left(l \cos \theta\right)$ Simplify + o $K\theta - \sum_{mad} mgl \sin \theta = \sum_{mad} mal \cos \theta$ V(2) With m = 0.5 kg, l = 0.6 m, $a = 2g, and \theta = 200, K$ is found to be $K = 46.8 \frac{N \cdot m}{rad}$



A ∑Mo= mad: Ralsin =-mg 是sin == ma 是cos =

B ZMo= mad: Flcos 皇 + mg 之 sin 是 - Rg l sin 皇 = ma 是 cos 皇

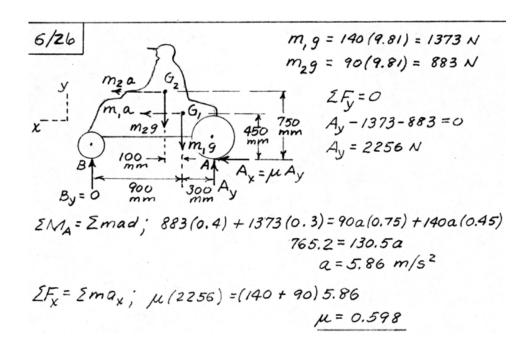
Two bars together:

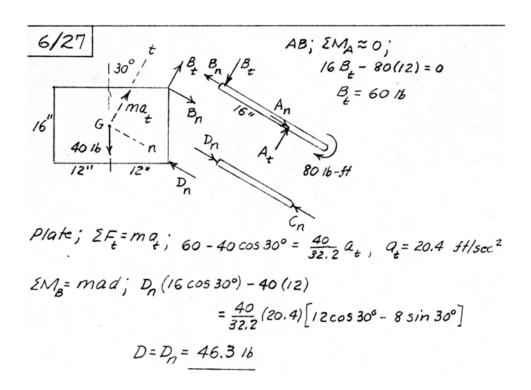
EFy=0: RA+R8-2mg=0

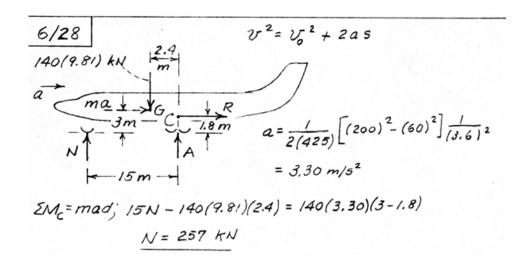
Subtract Eq. (A) from (B), combine with y-eq. to obtain $\theta = 2 tan^{-1} \frac{F}{mg}$

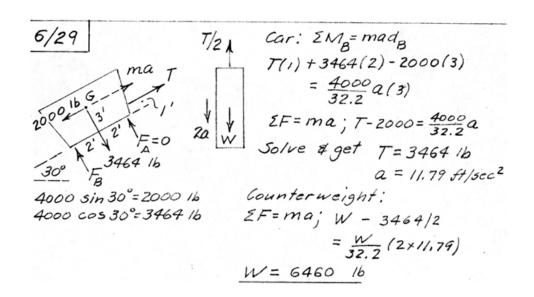
Both bars together: $\sum F_{\chi} = ma_{\chi}$: $F = 2ma_{\chi}a = \frac{9}{2}tan\frac{9}{2}$ From B: $mg tan \frac{9}{2} l cos \frac{9}{2} + mg \frac{1}{2} sin \frac{9}{2} - R_B l sin \frac{9}{2} = \frac{9}{2}tan \frac{9}{2} \frac{1}{2} cos \frac{9}{2}$

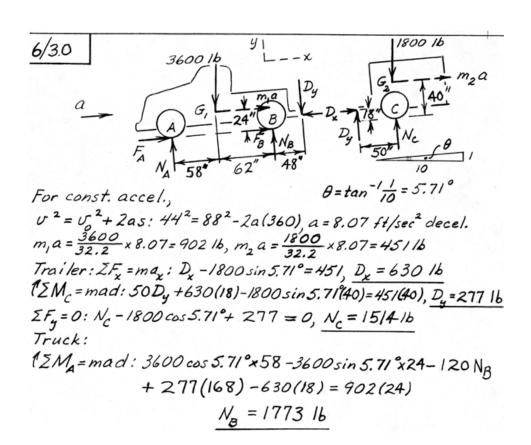
 $\Rightarrow \frac{R_8 = \frac{5}{4} \text{ mg}}{\text{Finally, from y-eq.}} \quad \frac{R_A = \frac{3}{4} \text{mg}}{R_A = \frac{3}{4} \text{mg}}$



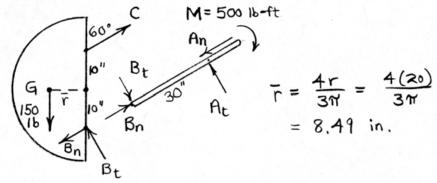




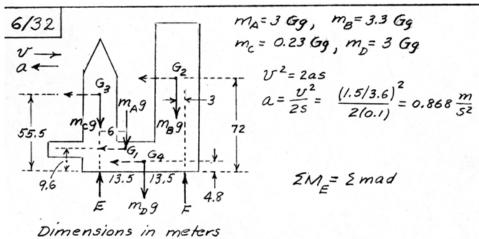




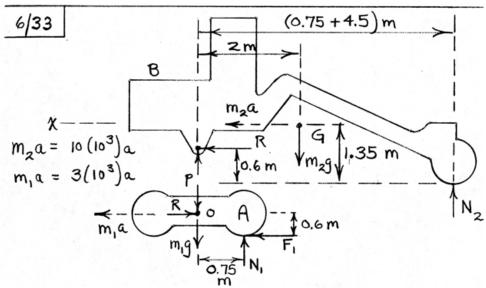
6/31 AB: $\{ \sum M_A = 0 : 30 B_t = 500(12) \}_{0}^{1} B_t = 200 1b$ $\{ \sum F_t = 0 \Rightarrow A_t = 200 1b \}_{0}^{1}$ Plate: $\{ \sum F_t = ma_t : 200 - 150 \frac{\sqrt{3}}{2} = \frac{150}{32.2} a_t \}_{0}^{1}$ $\{ a_t = 15.05 \text{ ft/sec}^2 \}_{0}^{2}$



$$\sum M_c = \text{mad}$$
: $200(20)(\frac{1}{2}) + B_n(20\frac{\sqrt{3}}{2})$
 $-150(8.49) = \frac{150}{32.2}15.05(\frac{\sqrt{3}}{2}8.49 + \frac{1}{2}10)$
 $A_n = B_n = 8.03 \text{ lb}$



27F - [3(6) + 3.3(27-3) + 3(13.5)]9.81 = [3(9.6) + 3.3(72) + 0.23(55.5) + 3(4.8)]0.868 27F = [350.8 + 254.8, F = 59.5 MN

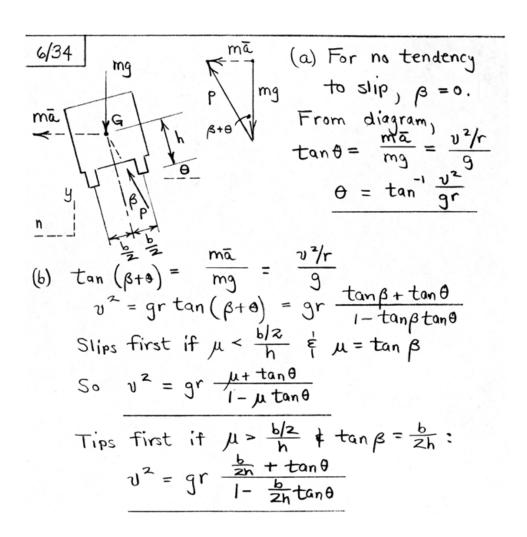


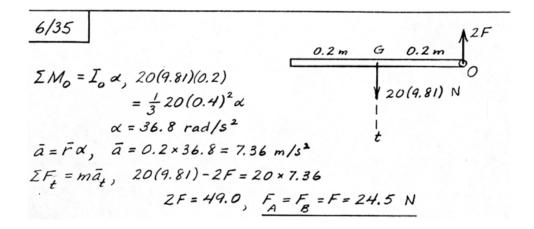
For rear wheels of unit A to lift off ground:

$$\bigoplus \sum_{N_1} m_1 \alpha d_1 : [P + 3(10^3)(9.81)](0.750) - 0.6R = 3(10^3)\alpha(0.6)$$

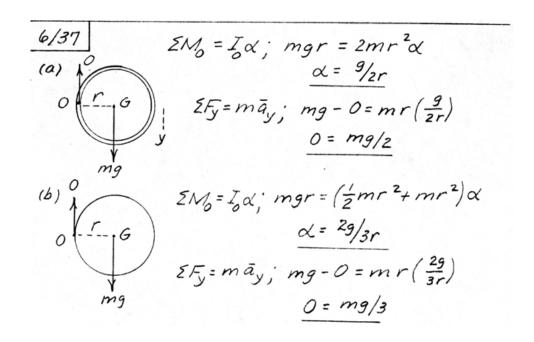
B
$$\times M_{N_2} = m_2 a d_2$$
: 10 (10³)(9.81)(4.5 + 0.75 - 2)
-P (4.5 + 0.75) + 0.6 R = 10 (10³) a (1.35)
 $\times F_X = mq_X$: R = 10 (10³) a

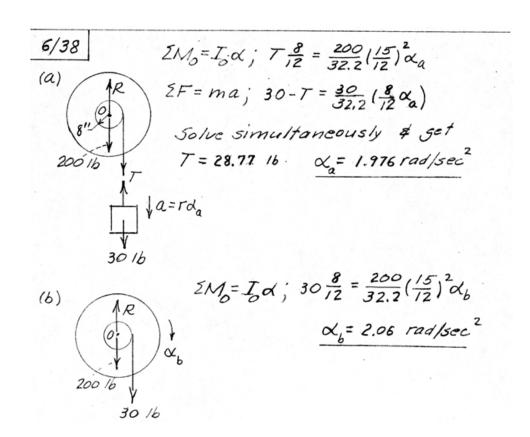
Solve the above three equations to obtain
$$R = 76.2 \text{ kN}$$
, $P = 49.8 \text{ kN}$, $Q = 7.62 \text{ m/s}^2$
For constant acceleration, $S = \frac{v^2}{2a} = \frac{(40/3.6)^2}{2(7.62)} = \frac{8.10 \text{ m}}{2}$

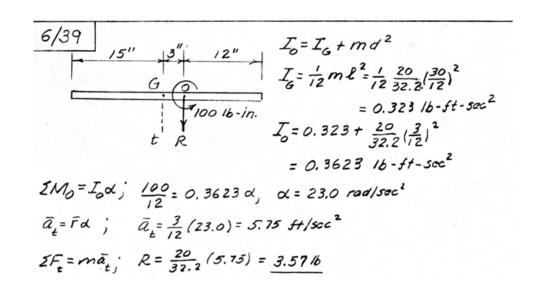




6/36 Accelerating force on rear wheels is $F = ma = \frac{5200}{9} 0.59 = 2600 \, lb$ $\alpha_{drum} = \frac{q_t}{r} = \frac{0.5(32.2)}{3} = 5.37 \, rad/sec^2$ $EM_0 = I_0 \alpha; \quad I_0 = \frac{2600(3)}{5.37} = 1453 \, lb-ff-sec^2$







 $F \sum M_0 = I_0 \propto \text{ for drum}:$ $T_1(0.2) - T_2(0.3) - 2 = 8(0.225)^2 \propto (1)$ $+ \sum F = ma \text{ for } 12 - kg \text{ cylinder}:$ $12(9.81) - T_1 = 12(0.2\alpha) (2)$ $+1 \sum F = ma \text{ for } 7 - kg \text{ cylinder}:$ $T_2 \qquad T_2 - 7(9.81) = 7(0.3\alpha) (3)$ Solution of Eqs. (1) - (3): $T_1 = 116.2 \text{ N}$ $T_2 = 70.0 \text{ N}$ $\alpha = 0.622 \text{ rod/s}^2$

For complete ring of mass 2m

moment of inertia about

diameter $\chi - \chi = \frac{1}{2}(2mr^2)$ So moment of inertia $\chi - \frac{1}{2}$ $\chi - \frac{1}{2}$

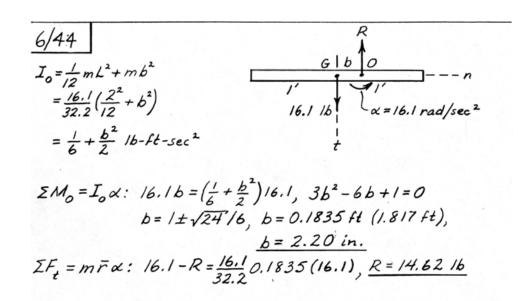
6/43

O
$$\bar{I} = \frac{1}{12} m \ell^2 = \frac{1}{12} \frac{10}{32.2} (\frac{18}{12})^2 = 0.0582 \text{ H-16-sec}$$
 $q''' (Sol. I)$
 $2M_G = \bar{I}\alpha$; $\frac{q}{12}P - 48\frac{q}{12} = 0.0582 \propto$
 $\ell''' = \frac{10}{10} lb$
 $2F_L = m\bar{\alpha}_L$; $P + 48 = \frac{10}{32.2} \frac{q}{12} \propto$

Solve simultaneously & get

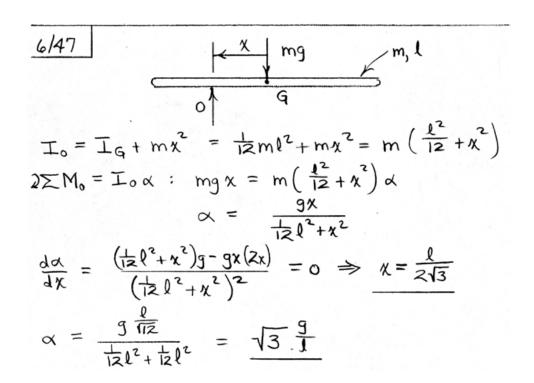
 $P = 96.0 \ lb$, $\alpha = 618.2 \ rad/sec^2$

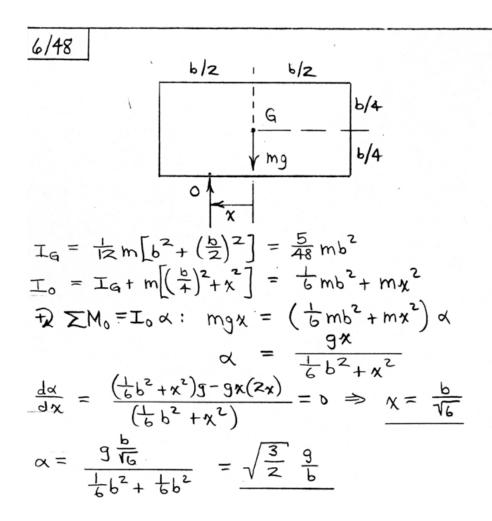
(Sol I) $g = \frac{10}{12} l^2 = \frac{10}{32} l^2 = \frac{10}{322} l^2 = \frac{10}{322} l^2 = \frac{10}{3222} l^2 = \frac{$



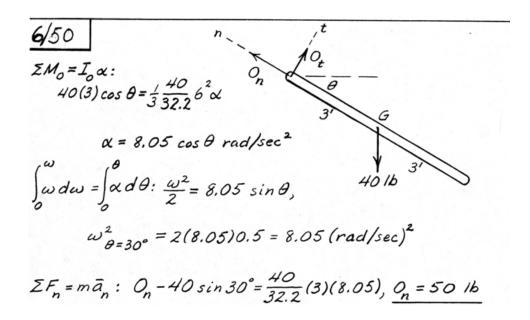
For slender rod, $q = \frac{k_0^2}{r} = \frac{\frac{1}{3}L^2}{\frac{L}{2}} = \frac{2}{3}(6) = 4 \text{ ft}$ For fixed-axis rotation, $ZM_Q = 0 \text{ at all times,}$ before, during, and after impact. R

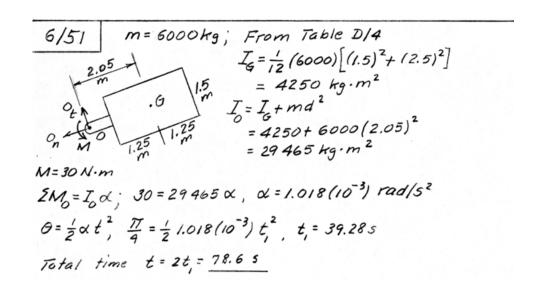
Thus $40(1) \cos 30^\circ - 4 O_t = 0, O_t = 8.66 \text{ lb at all times}$

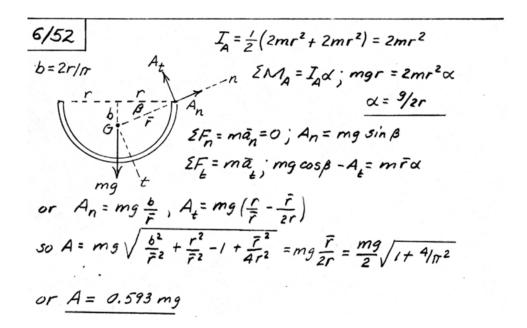




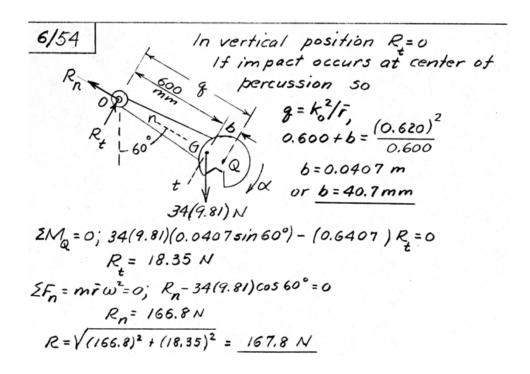
 $\frac{6/49}{\omega^{2} = \omega_{0}^{2} + 2\bar{\alpha}\theta, \left(\frac{1200 \times 2\pi}{60}\right)^{2} = 0 + 2\bar{\alpha}\left(18 \times 2\pi\right), \bar{\alpha} = 69.8 \text{ rad/s}^{2}}{60}$ Static test ZM = 0: $0.660 - 2.8(9.81)\bar{r}$, $\bar{r} = 0.0240 \text{ m}$ (a) $ZM = I\alpha$: $I, 5 = 2.8 k^{2} \times 69.8$, k = 0.0876 m or k = 87.6 mm(b) $ZF_{t} = m\bar{r}\alpha$: 2F = 2.8(0.0240)69.8 $\frac{F = 2.35 \text{ N}}{F = 2.35 \text{ N}} = 0.0240 \text{ m}$ (c) $ZF_{n} = m\bar{r}\omega^{2}$: $2R = 2.8(0.0240)(125.7^{2})$ $\frac{R}{60} = 125.7 \text{ rad/s} = 0.0240 \text{ m}$



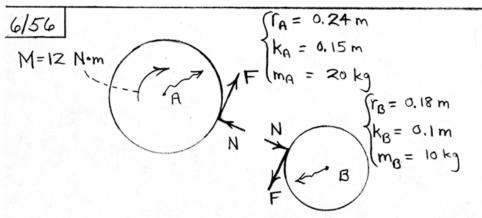




6/53 Rim: $I_0 = mr^2 = \frac{100}{32.2} \left(\frac{18}{12}\right)^2 = 6.99 \text{ lb-ft-sec}^2$ Each spoke: $I_0 = \frac{1}{3}mL^2 = \frac{1}{3}\frac{15}{32.2}\left(\frac{18}{12}\right)^2 = 0.349 \text{ lb-ft-sec}^2$ $= 0.349 \text{ lb-ft-sec}^2$ $\geq M_0 = I_0 \propto \frac{400}{12} = \left[6.99 + 3(0.349)\right] \propto \propto = 4.15 \text{ rad/sec}^2$ $\geq F_{\pm} = \sum_{i} m \vec{r} \vec{d}; \ 0 = \frac{15}{32.2} \left(\frac{9}{12}\right)(4.15) \neq 0 \quad (middle spoke only)$ $O_{\pm} = 1.449 \text{ lb}$



| 6/55 | For entire assembly, | $I_{ZZ} = 0.60 + (0.080 + 12(0.2)^2) = 1.160 \text{ kg} \cdot \text{m}^2$ | $ZM_Z = I_{ZZ} \propto : 16 = 1.160 \propto, \propto = 13.79 \text{ rad/s}^2$ | For Cylinder: | $ZF_t = ma_t : A + B = 12(0.2)(13.79)$ | $ZM_0 = I_{ZZ} \propto : M_0 = I_{ZZ} \sim : M_0 = I_{ZZ} \propto : M_0 = I_{ZZ} \sim : M_0 = I_{ZZ$



$$+^{\gamma} \sum M_{A} = I_{A} \propto_{A} : 12 - F(0.24) = 20(0.15)^{2} \propto_{A} (1)$$

$$F = I_{B} \propto_{B} : F(0.18) = 10(0.1)^{2} \propto_{B} (2)$$

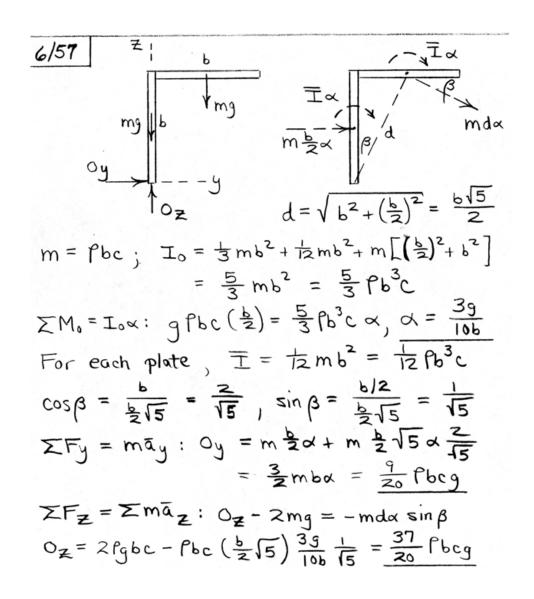
Tangential accelerations match:
$$r_A \propto_A = r_B \propto_B$$

0.24 $\propto_A = 0.18 \propto_B$ (3)

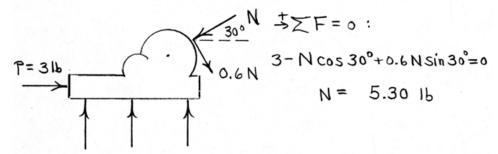
Solution of Eqs. (1)-(3):
$$F = 14.16 \text{ N}$$

$$\alpha_{A} = 19.12 \text{ rod/s}^{2}(CW)$$

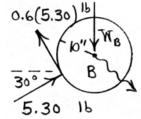
$$\alpha_{B} = 25.5 \text{ rod/s}^{2}(CCW)$$



6/58 Power unit C:



Wheel B: $12 \sum M_B = I_B x$: 0.6(5.30)($\frac{10}{12}$) = $\frac{50}{32.2} (\frac{8}{12})^2 x$



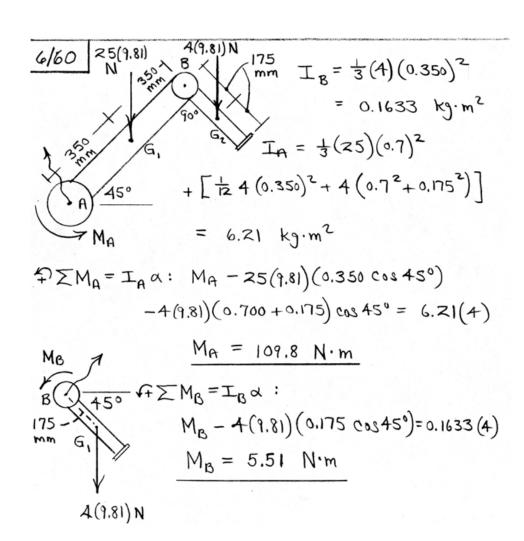
 $\alpha = 3.84 \text{ rad/sec}^2$

Steady-state speed:

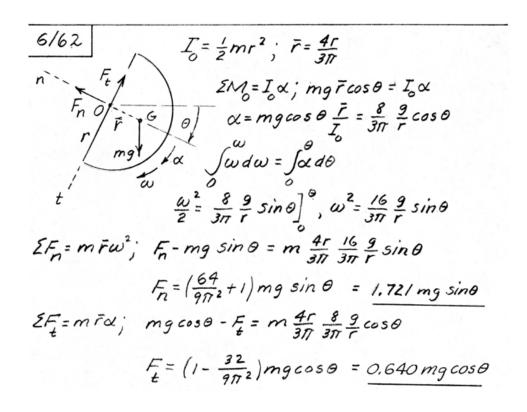
$$\omega_{B} = \frac{r_{B} \omega_{B}}{r_{B}} = \frac{8 \left[1600 \frac{2\pi}{60}\right]}{10}$$

$$\omega_{B} = \omega_{Bo}^{10} + \alpha t$$
: $t = \frac{\omega_{B}}{\alpha} = \frac{134.0 \text{ rad/sec}}{3.84} = 34.9 \text{ sec}$

6/59 For complete ring $I_0 = 2(2m)r^2$ For the half ring $I_0 = 2mr^2$ $I_0 = I_0 \alpha$; $M = 2mr^2 \alpha$, $\alpha = \frac{M}{2mr^2}$ $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$ $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$ $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$ $I_0 = I_0 \alpha$; $I_0 = I_0 \alpha$; I

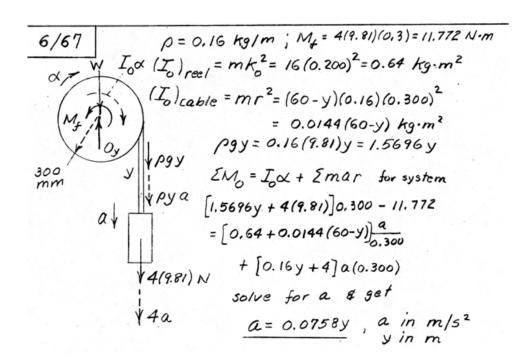


 $\frac{G/61}{t}$ $M \quad (case b)$ $\frac{1}{t}$ $M \quad (case b)$ $M \quad (case b)$ $M \quad (case b)$ $M \quad (case a)$ $M \quad (case b)$ $M \quad (case a)$ $M \quad (case a$





6/66 $M = \frac{T}{2}\Gamma$, $T = \frac{2(900)}{2} = 900 16$ t. $2M_0 = I_0 \alpha$; $T = \frac{2000}{2} = 900 16$ $2M_0 = I_0 \alpha$; $1 = \frac{1}{3} = \frac{600}{32.2} = \frac{72}{2} \alpha$ $1 = \frac{1}{3} = \frac{600}{32.2} = \frac{72}{2} \alpha$ $2 = 0.0899 \text{ rad/sec}^2$ $2 = \frac{1}{3} = \frac{600}{32.2} = \frac{600}{3$

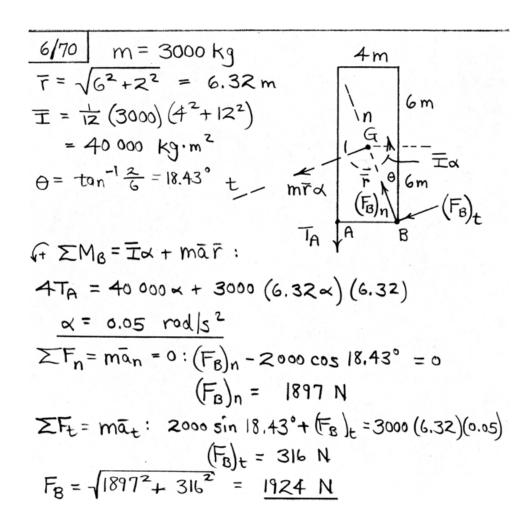


6/68
$$I = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$$
 $R_1 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_2 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_3 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_4 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_4 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_4 = \frac{1}{3} m \ell^2 + (\frac{1}{12} m \ell^2 + m \ell^2) = \frac{17}{12} (8)(0.5)^2$
 $R_5 = \frac{17}{12} (8)(0.5)^2$
 $R_6 = \frac{17}{12} (8)(0.5)^2$

6/69 Beam,
$$I_0 = \frac{1}{3} \frac{2000}{32.2} I_0^2 + \frac{500}{32.2} (2^2 + 4^2)$$

The second second

The mrd resultant for the winch has an x-component so that Q = 0.



$$\frac{6/71}{x} = \frac{\sin (45^{\circ}-\theta)}{x} = \frac{\sin 135^{\circ}}{1}$$
Differentiate WRT time t:
$$-\theta \cos (45^{\circ}-\theta) + \theta^{2} \sin (45^{\circ}-\theta) = \frac{\sin 135^{\circ}}{1}$$

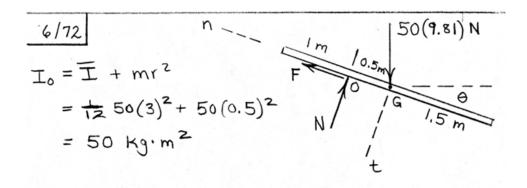
$$-\theta \cos (45^{\circ}-\theta) + \theta^{2} \sin (45^{\circ}-\theta) = \frac{\sin 135^{\circ}}{1}$$
So $\theta = -\frac{x}{1} \frac{\sin 135^{\circ}}{\cos (45^{\circ}-\theta)}$; For $1 = 8 \text{ m} \stackrel{?}{=} \theta = 35^{\circ}$,
and $x = 3 \text{ m/s}^{2}$ $\theta = -0.275 \text{ rod/s}^{2}$ (CW)
$$mg = 120(9.81) = 1177 \text{ KN}$$

$$T_{A} = \frac{1}{3} \text{ m} (b^{2} + 1^{2})$$

$$= \frac{1}{3} 120(10^{3}) \left[3^{2} + 8^{2}\right]$$

$$= 2920 (10^{3}) \text{ kg·m}^{2}$$

$$+ \sum_{B} \sum_{A} \sum_{B} \sum_{B}$$



$$\sum M_{o} = I_{o} \propto : 50(9.81)(0.5 \cos \theta) = 50 \propto$$

$$\propto = 4.905 \cos \theta = \omega \frac{d\omega}{d\theta}, \quad \int_{0}^{\omega} \omega d\omega = \int_{0}^{\theta} 4.905 \cos \theta d\theta$$

$$\omega^{2} = 9.81 \sin \theta$$

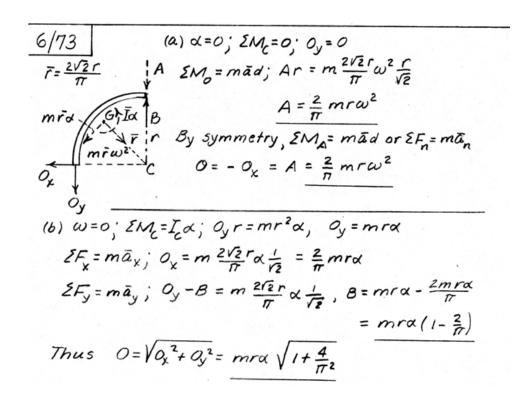
$$\sum F_{t} = m\bar{\alpha}_{t} : 50(9.81) \cos \theta - N = 50(0.5)(4.905 \cos \theta)$$

$$\sum F_{n} = ma_{n} : F - 50(9.81) \sin \theta = 50(0.5)(9.81 \sin \theta)$$

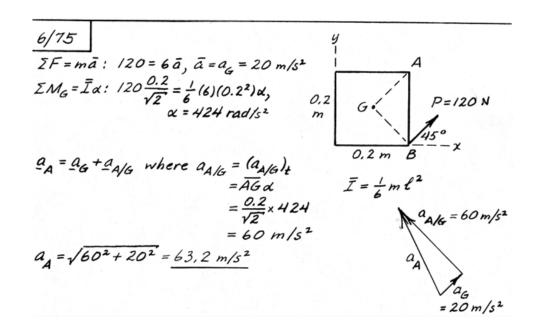
$$Slipping occurs when $F = 0.30N$

$$Z^{nd} = 9: 0.3N = 75(9.81) \sin \theta$$

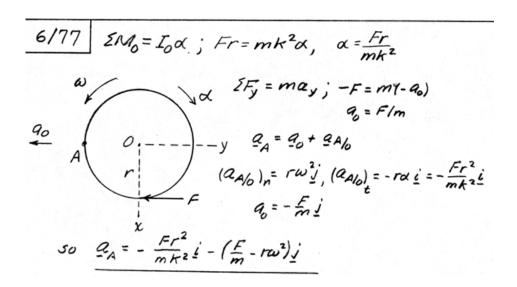
$$Divide + 0.30 =$$$$



6/74 $2M_0 = I_0 \lambda; \ mg \frac{l}{2} \sin \theta = \frac{1}{3}ml^2 \alpha$ $\alpha = \frac{3g}{2l} \sin \theta$ $\omega \qquad \theta \qquad \omega^2 = \frac{3g}{l} (-\cos \theta)^{\theta}$ $\omega^2 = \frac{3g}{l} (1-\cos \theta)$ $mg \qquad \Sigma F_n = m\tilde{\alpha}_n; \ mg \cos \theta - N = m \frac{l}{2} \omega^2$ $N = mg \cos \theta - m \frac{l}{2} \frac{3g}{l} (1-\cos \theta)$ $= mg \left[\cos \theta - \frac{3}{2} (1-\cos \theta)\right] = \frac{mg}{2} (5\cos \theta - 3)$ $\Sigma F_t = m\tilde{\alpha}_t; \ mg \sin \theta - F = m \frac{l}{2} \frac{3g}{2l} \sin \theta, \ F = \frac{mg}{4} \sin \theta$ $(a) \text{Slips at } \theta = 30^\circ, \ \mu_s = F/N = \frac{mg \sin 30^\circ/4}{mg (5\cos 30^\circ - 3)} = \frac{0.188}{mg (5\cos 30^\circ - 3)}$ $(b) \text{No slip: } N = 0 \text{ when } \cos \theta = 3/5, \ \theta = 53.1^\circ$



$$\begin{split} \mathcal{E}F_{\chi} = m\bar{a}_{\chi}; \; 3 = \frac{64.4}{32.2}a, \; a = 1.5 \; \text{ft/sec}^2 \\ \mathcal{U}^{=2} = 2\alpha\chi, \; \mathcal{U}^{2} = 2(1.5)(3) = 9 \\ \mathcal{U} = 3 \; \text{ft/sec} \\ \mathcal{E}M_{G} = \bar{I}\alpha; \; 3\frac{10}{12} = \frac{1}{2} \frac{64.4}{32.2} \frac{10}{12} \alpha \\ \mathcal{U} = 3.6 \; \text{rad/sec} \\ \mathcal{U} = \alpha t; \; \mathcal{U} = 3.6 \; (2) = 7.2 \; \text{rad/sec} \end{split}$$



6/78 $I = m\bar{k}^2 = 300 (1.5)^2 = 675 \text{ kg} \cdot m^2$ $I = m\bar{k}^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2$ $I = m\bar{k}^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2$ $I = m\bar{k}^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2$ $I = m\bar{k}^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2 = 300 (1.5)^2$

$$\frac{6/79}{40^{\circ}} + \frac{y}{40^{\circ}}$$

$$\begin{cases} mg = 8 \text{ lb}, \quad \overline{I} = \frac{1}{2}mr^{2} \\ \mu_{S} = 0.3, \quad \mu_{K} = 0.20 \\ \theta = 40^{\circ} \end{cases}$$

$$N \text{ Vmg} = 8 \text{ lb}$$

$$\Sigma F_{\chi} = m \bar{a}_{\chi} : -F + 8 \sin 40^{\circ} = \frac{8}{32.2} a$$
 (1)

$$\Sigma Fy = 0$$
: $N - 8\cos 40^\circ = 0$ (2)

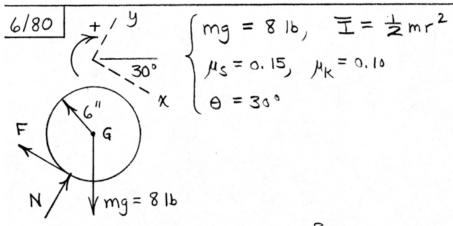
$$\sum M_G = \overline{I} \propto : F\left(\frac{6}{12}\right) = \frac{1}{2} \frac{8}{32.2} \left(\frac{6}{12}\right)^2 \propto (3)$$

Assume rolling with no slip:
$$a = \frac{6}{12} \alpha$$
 (4)

Solution of (1) - (4):
$$F = 1.714 \text{ 1b}$$
 $\alpha = 13.80 \frac{\text{ft}}{\text{Sec}^2}$
 $N = 6.13 \text{ 1b}$ $\alpha = 27.6 \frac{\text{rad}}{\text{sec}^2}$

$$F_{\text{max}} = \mu_S N = 0.3 (6.13) = 1.839 \text{ lb > F}$$

Assumption valid.



$$\Sigma F_{\chi} = m \bar{a}_{\chi} : -F + 8 \sin 30^{\circ} = \frac{8}{32.2} \alpha$$
 (1)

$$\sum F_y = 0 : N - 8 \cos 30^\circ = 0$$
 (2)

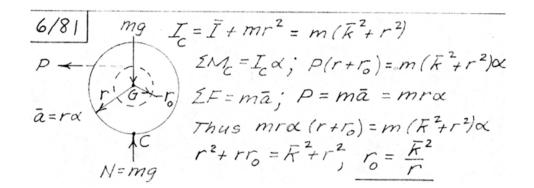
$$\sum M_{G} = \overline{L} \alpha : F\left(\frac{6}{12}\right) = \frac{1}{2} \frac{8}{32.2} \left(\frac{6}{12}\right)^{2} \alpha \qquad (3)$$

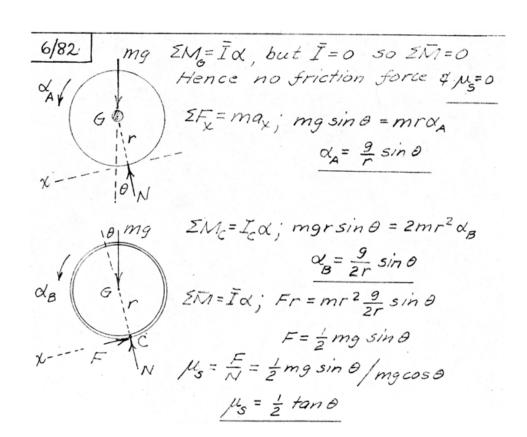
Assume rolling with no slip:
$$a = \frac{6}{12} \propto$$
 (4)

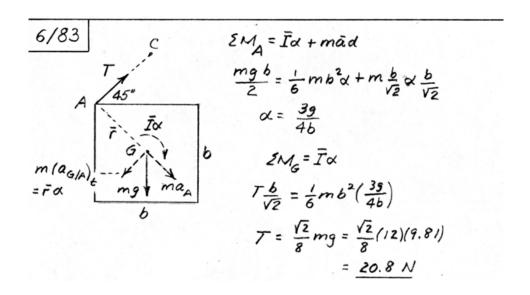
Solution of (1) - (4):
$$F = 1.333$$
 lb $\alpha = 10.73 \frac{ft}{sec^2}$
 $N = 6.93$ lb $\alpha = 21.5 \frac{rod}{sec^2}$

F=
$$\mu_k N = 0.10(6.93) = 0.693 \, lb$$

From Eqs. (1) $4(3)$: $\alpha = 13.31 \, ft/sec^2$, $\alpha = 11.15 \, rad/sec^2$







$$6/84$$

$$Q_{A} = 0$$

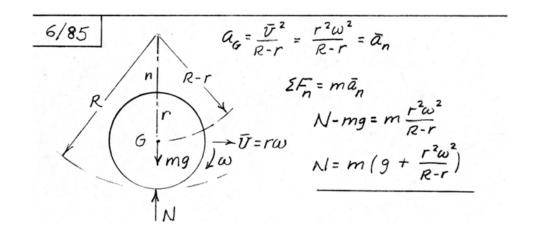
$$W_{AB} = 0$$

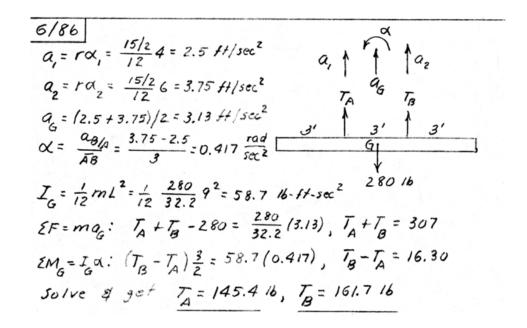
$$\overline{a} = \frac{U^{2}}{2r}$$

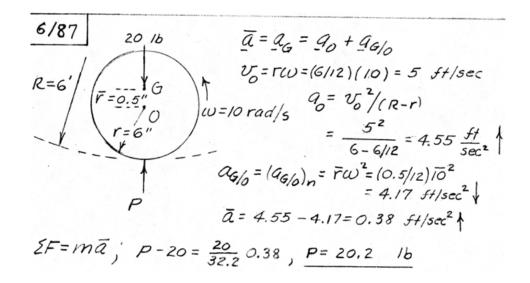
$$A = m\overline{a} = \frac{U^{2}}{2r}$$

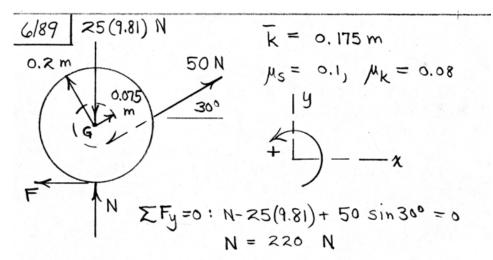
$$A = m \frac{U^{2}}{2r} + \overline{a} = 0$$

$$A = m \frac{U^{$$









$$\Sigma F_{\chi} = m \bar{a}_{\chi} : 50 \cos 30^{\circ} - F = 25a$$
 (1)

$$\sum M_G = I \propto : 50(0.075) - F(0.2) = 25(0.175)^2 \propto (2)$$

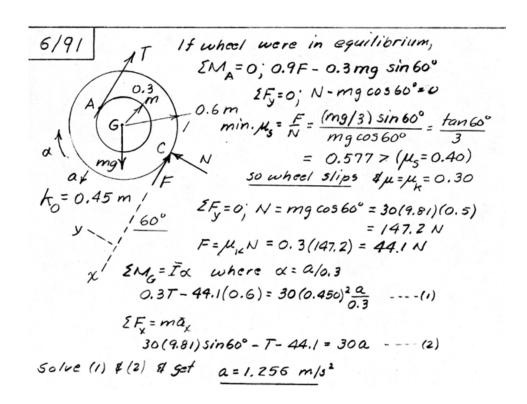
Assume rolling with no slip:
$$\alpha = -rd$$
 (3)
Solution of (1)-(3): $\alpha = 0.556 \text{ m/s}^2$, $\alpha = -2.78 \text{ rad/s}^2$
 $\alpha = -2.78 \text{ rad/s}^2$

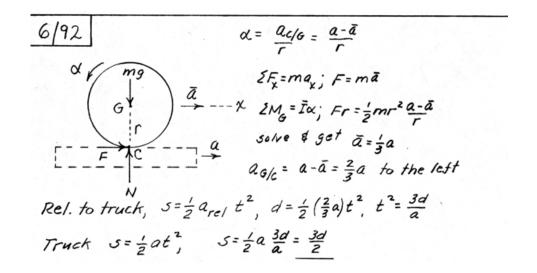
 $F_{\text{max}} = \mu_s N = 0.1 (220) = 22.0 \text{ N} < F: Slips, \frac{F = \mu_k N = 17.62 N}{200}$ From Eqs. (1) \(\frac{1}{2}\): \(\alpha = 1.027 \text{ m/s}^2\) \(\alpha = 0.295 \text{ rad/s}^2\)

$$\sum F_{\chi} = m\bar{\alpha}_{\chi}$$
: 30 cos 70° - F = 25a (1)

$$\sum M_G = \bar{I}_{\alpha} : 30(0.075) - F(0.2) = 25(0.175)^2 \alpha$$
 (2)

Solution of Eqs. (1)-(3):
$$\begin{cases} \alpha = -0.0224 \text{ m/s}^2 \\ \alpha = 0.1121 \text{ rad/s}^2 \\ F = 10.82 \text{ N} \end{cases}$$





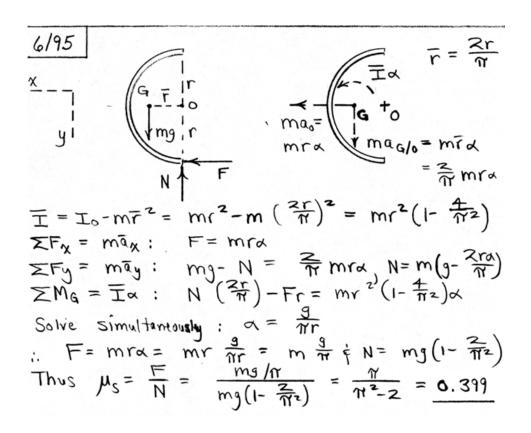
6/93

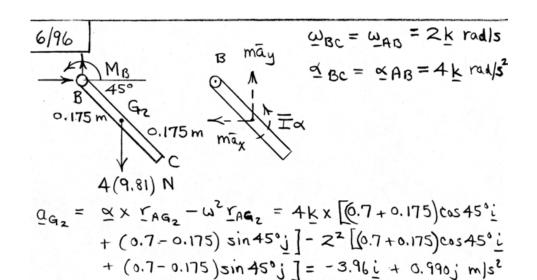
Ay

Ax

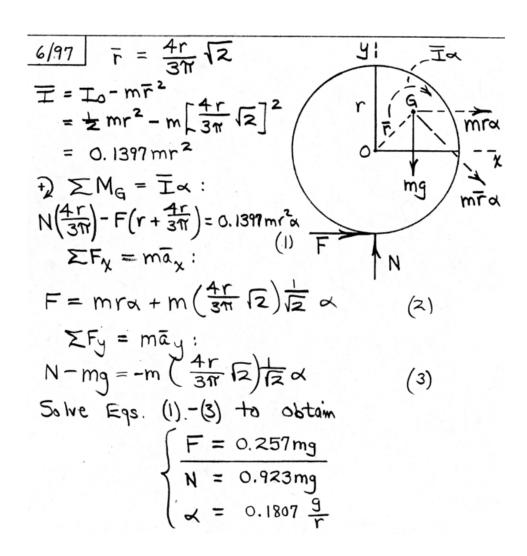
0.4m

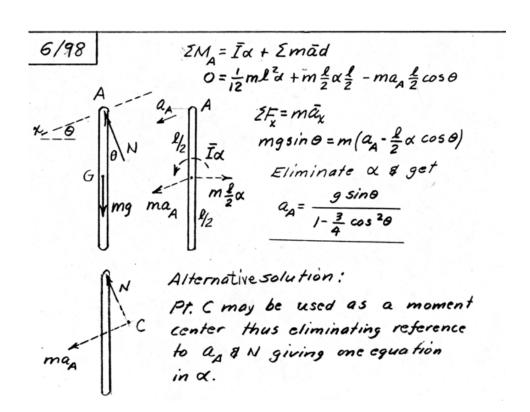
$$G = \{ -\frac{G}{4} \} \}$$
 $m = \{ -\frac{G}{4} \} \}$
 $m = \{ -\frac{G}{4} \}$
 $m = \{ -\frac{G}{4} \} \}$
 $m = \{ -\frac{G}{4} \}$
 $m = \{$



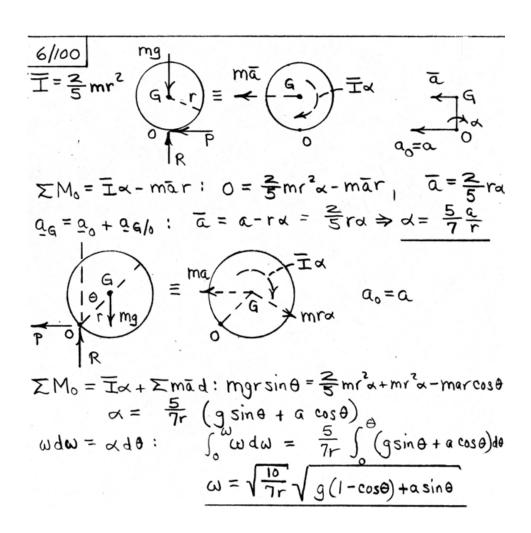


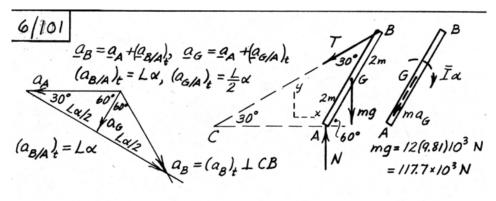
$$\sum M_B = \overline{I} \times + \sum mad : M_B - 4(9.81)(0.175 \sin 45^\circ) = \frac{1}{12}(4)(0.35)^2(4) + 4(0.990)(0.175 \cos 45^\circ) - 4(3.96)(0.175 \sin 45^\circ), M_B = 3.55 N·m (CCV)$$





 $\frac{6/99}{C_{1}} = \frac{T_{2}}{C_{1}} = \frac{T_{2}}{C_{1}} = \frac{g}{w_{2}} = \frac{g}{k^{2}/r^{2}+1} = \frac{g}{k^{2}/r^{2}+1}$



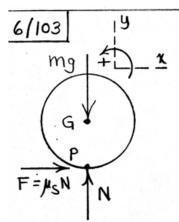


From accel. diag. $a_B = \frac{L}{2} \alpha \sec 30^\circ = \frac{4}{2} \sec 30^\circ d = 2.30 \alpha \text{ m/s}^2$ Since a_G passes through A,

 $\Sigma M_A = \bar{I}_{\alpha}: 1/7.7(10^3)2\cos 60^\circ - T \times 4\sin 30^\circ = \frac{1}{12}12(10^3)4^2 \alpha$ $1/7.7(10^3) - 2T = 16(10^3)\alpha - (a)$

 $\Sigma F_{\chi} = m\bar{a}_{\chi}$: $T\cos 30^{\circ} = 12(10^{3})(a_{6})_{\chi}$ where $a_{6} = \frac{L}{2}\alpha \tan 30^{\circ}$, $(a_{6})_{\chi} = \frac{L}{2}\tan 30^{\circ}\alpha \cos 60^{\circ} = 0.577\alpha \frac{m}{s^{2}}$

so $T = 8(10^3)\alpha$ --- (b) Solve (a) \$\frac{4}{5}\$ (b) \$\frac{4}{9}\$ et \$\alpha = 3.68\$ rad/s², T = 29.4 kN $a_A = \frac{L}{2}\alpha/\cos 30^\circ = \frac{4}{2}(3.68)/\cos 30^\circ$, $a_A = 8.50$ m/s² Clears the Surface is very small and that the speed of B is constant (while on surface). Time t between $A \neq B$ leaving surface: $t = \frac{1}{V}$. $T = 2m(\frac{1}{2})^2 = ml^2/2$ $T_B = \frac{ml^2}{2} + 2m(\frac{1}{2})^2 = ml^2$ $Z_{Mg} = T_B \ddot{\theta} : Z_{Mg} \dot{Z} = ml^2 \ddot{\theta} , \ddot{\theta} = \frac{9}{1} (CCW)$ $\omega = \omega_0 + \ddot{\theta} \dot{t} = \frac{9}{1} \dot{V} = \frac{9}{V}$



The no-slip constraint is found by equating the horizontal acceleration of point P to the acceleration ac of the cart

$$(a_P)_{hor} = a_G + r\alpha = a_C$$
 (1)

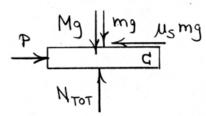
$$\sum F_y = 0 \Rightarrow N = mg$$
 (2)

$$\Sigma F_{\chi} = ma_{G}: \mu_{S} m_{g} = ma_{G}$$
 (3)

$$\Sigma F_{\chi} = ma_{G}: \mu_{S} m_{g} = ma_{G}$$
 (3)
 $\Sigma M_{G} = \Xi \alpha : + \mu_{S} m_{g} r = m k^{2} \alpha$ (4)

Solution of (1), (3), $\dot{\epsilon}(4)$: $\begin{cases} a_G = \mu_S g \\ a_C = \mu_S g \left[1 + \frac{r^2}{K^2} \right] \\ \alpha = + \mu_S g r / \bar{k}^2 \end{cases}$

Cart:



$$\sum F_{\chi} = M a_{c}:$$

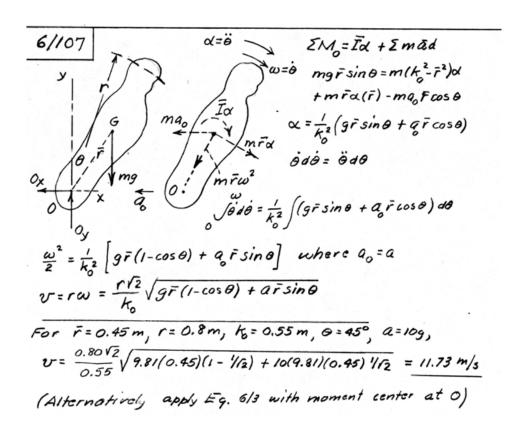
$$P - \mu_{s} m_{g} = M \mu_{s} g \left[1 + \frac{r^{2}}{k^{2}} \right]$$

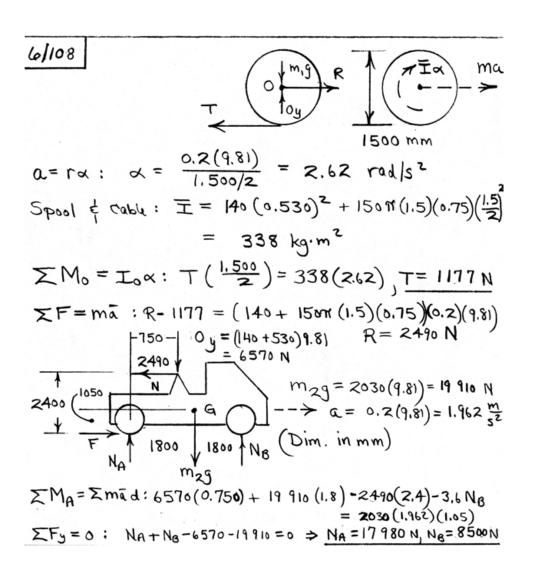
$$P = \mu_{s} g \left[m + M \left(1 + \frac{r^{2}}{k^{2}} \right) \right]$$

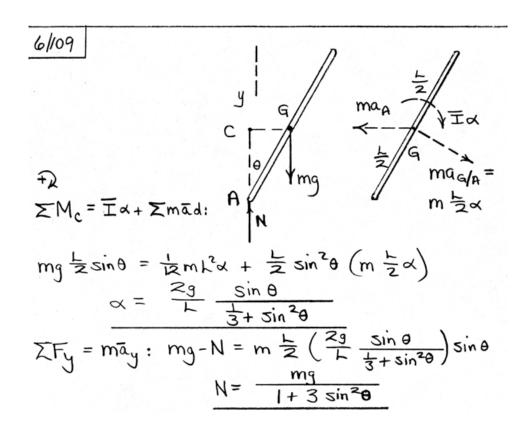
6/104 $m\bar{a} = mq_0 + mq_{6/6} = mq + m\bar{r}\omega^2 + m\bar{r}\alpha$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 3 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft}$ $a = 4 \text{ ft/s}\alpha^2, \bar{r} = 6 \text{ ft/s}\alpha^2, \bar{r} =$

6/105 $I_{A} = \frac{1}{12}m([1.8]^{2} + [3.0]^{2}) + m([0.9]^{2} + [1.5]^{2})$ $y_{A} = \frac{4}{3}m([0.9]^{2} + [1.5]^{2}) = 4.08 \text{ m}$ $y_{A} = \frac{4}{3}m([0.9]^{2} + [1.5]^{2}) = 4.08 \text{ m}$ $y_{A} = \frac{1}{4}x + [5xma]$ $y_{A} = I_{A}x +$

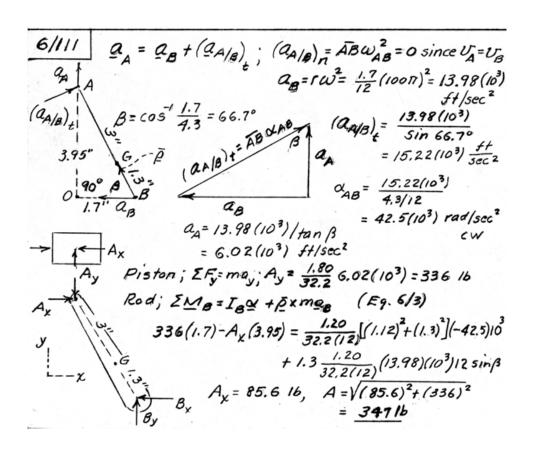
6/106 $\Sigma F = ma$; $\mu W = \frac{W}{9}a$, $a = \mu g$ $v = v_0 - \mu g t$, $t = \frac{v_0 - v}{\mu g} = time$ to slow down to vel. v $T = u = v_0 + u = v_0 +$

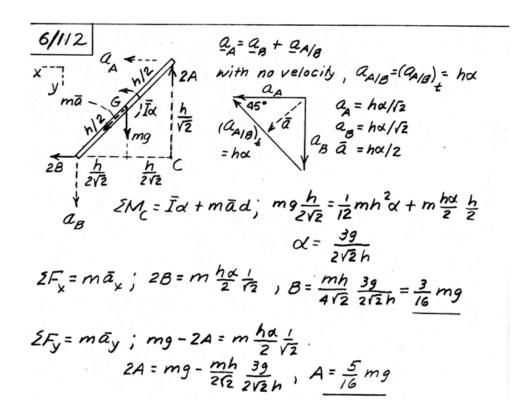




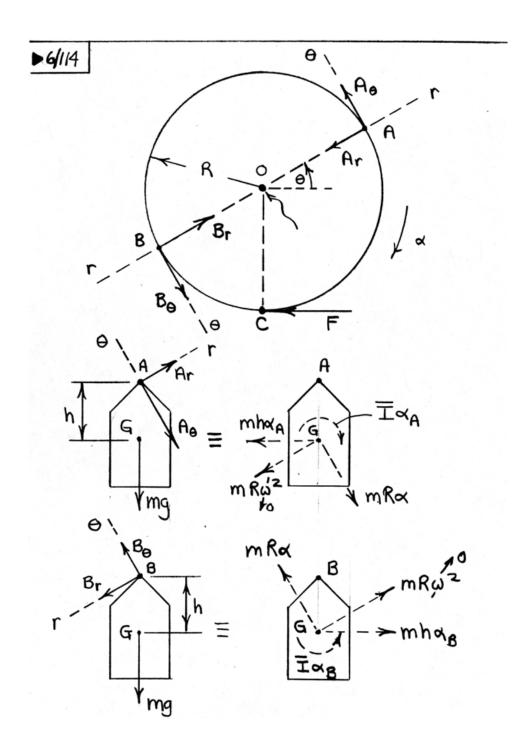


6/110 $\vec{r} = \vec{0}\vec{G} = 0.040 \text{ m}$; $m\vec{r}\vec{w}^2 = 10 (0.040)(2^2) = 1.6 \text{ N}$ $\vec{W} = 2 \text{ rad/s}$ $\vec{I} = m\vec{k}^2 = 10 (0.064)^2 = 0.0410$ $m\vec{r}\vec{w}^2 = 0.1 \text{ m}$ $m\vec{r}\vec{w} = 10 (0.040) \frac{a_0}{o.1} = 4a_0 \text{ N}$ $\vec{M} = \vec{I}\vec{w} + \vec{E}\vec{m}\vec{a}\vec{d}$ $\vec{A} = 10 (0.040) = 0.0410 \frac{a_0}{o.1} + 4a_0 (0.040)$ $\vec{A} = 2.60 \text{ m/s}^2$ $\vec{A} = 2.60 \text{ m/s}^2$





 $\sum F_{x} = m\bar{a}_{x} : R_{A} + 6\cos 15^{\circ} + R_{B}\sin 15^{\circ} = \frac{8}{32.2} \bar{a}_{x} \qquad (1)$ $R_{A} = \frac{8}{32.2} \bar{a}_{x} \qquad (1)$ $\sum F_{y} = m\bar{a}_{y} : R_{B}\cos 15^{\circ} - 6\sin 15^{\circ} - 8 = \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (2)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{32.2} \bar{a}_{y} \qquad (3)$ $\sum M_{G} = \bar{I}_{x} : \frac{8}{3$



Substitute (1) \(\frac{1}{k} \) into (3)

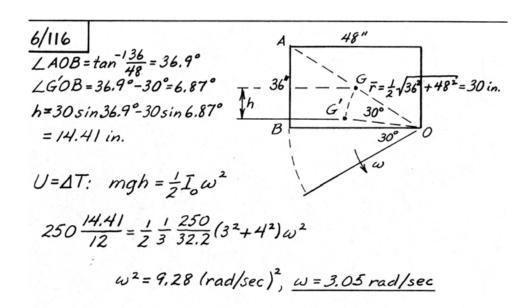
FR - \(\frac{1}{2} \) \[2m Rx - 2m Rx \left(\frac{h \sin \theta_n}{k} \right)^2 \] R = Iox

Simplify \(\frac{1}{k} \) Solve for F: $F = \left\{ mR \left[n - 2 \frac{h^2}{k^2} \left(\sin^2 \theta_1 + \sin^2 \theta_2 + \cdots \sin^2 \theta_{n/2} \right) \right] + \frac{Io}{R} \right\} x$ (n = 0 corresponds to \theta = 0; \(n/2 \) corresponds to \theta < \text{T} \)

Note: The above expression for F simplifies to $F = \left\{ mRn \left(1 - \frac{h^2}{2k^2} \right) + \frac{Io}{R} \right\} x$

6/115
$$I_0 = \frac{1}{12}ml^2 + m(\frac{1}{4})^2 + 2m(\frac{3l}{4})^2$$

 $= \frac{6l}{48}ml^2$
 $T_1 + U_{1-2} = T_2: 0 + mg(\frac{1}{4}) + 2mg(\frac{3l}{4}) = \frac{1}{2}\frac{6l}{48}ml^2\omega^2$
 $\omega = 1.660\sqrt{\frac{3}{1}}$ CW



Weight cancels so does not influence the results.

 $\frac{6/117}{T_1 + U_{1-2}} = T_2$ $T_1 = \frac{1}{2} 8(0.3)^2 + \frac{1}{2} 12(0.210)^2 \left(\frac{0.3}{0.2}\right)^2 = 0.955 J$ $U_{1-2} = 8(9.81)(1.5) - 3\left(\frac{1.5}{0.2}\right) = 95.2 J$ $T_2 = \frac{1}{2} 8 y^2 + \frac{1}{2} 12(0.210)^2 \left(\frac{y}{0.2}\right)^2 = 10.62 y^2$ So $0.955 + 95.2 = 10.62 y^2$, y = 3.01 m/s

6/118 $U_{1-2} = \Delta T + \Delta V_g$ $0 = \frac{1}{2}m(4^2 - 0^2) - m_g(5)(1 - \cos \theta)$ $\theta = 33.2^{\circ}$

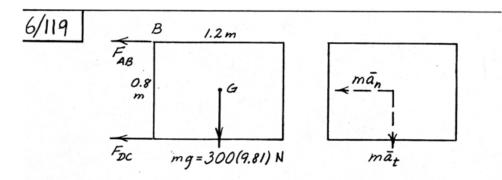


Plate has curvilinear translation so $T = \frac{1}{2}mv^2$

 $U = \Delta T$: 300(9.81)(0.8 cos 60°) = $\frac{1}{2}$ (300) σ^2 , $\sigma = 2.80$ m/s $\omega = \sigma/r$: Angular relocity of links is $\omega = 2.80/0.8 = 3.50$ rad/s

$$\Sigma F_t = m\bar{a}_t$$
: $\bar{a}_t = 9.81 \text{ m/s}^2$
 $\bar{a}_n = \sigma^2/r$: $\bar{a}_n = 2.80^2/0.8 = 9.81 \text{ m/s}^2$

$$ZM_B = m\bar{a}d: 300(9.81)(0.6) + F_{DC}(0.8)$$

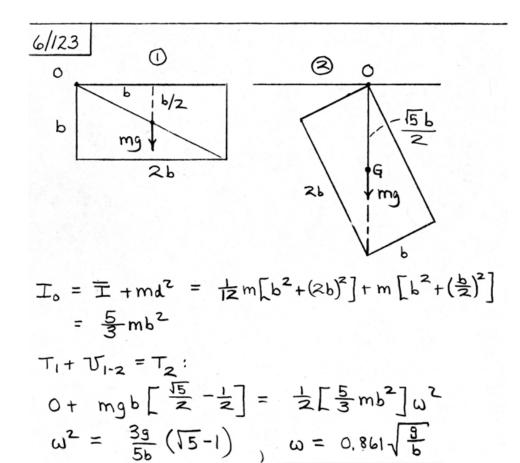
= 300(9.81)(0.6) + 300(9.81)(0.4)
 $F_{DC} = 1472 \text{ N}$



6/121 $U = \Delta T$; $U = 40(2 \times 3) = 240 \text{ J}$ $\Delta T_{hoop} = \frac{1}{2} m \bar{u}^2 + \frac{1}{2} \bar{I} \omega^2 = \frac{1}{2} m \omega^2 (r^2 + r^2) = m r^2 \omega^2$ $= 10(0.3)^2 \omega^2 = 0.9 \omega^2$ $\Delta T_{each pair} = \frac{1}{2} m \bar{v}^2 + \frac{1}{2} \bar{I} \omega^2 = \frac{1}{2} m r^2 \omega^2 + \frac{1}{2} \frac{1}{12} m (2r)^2 \omega^2$ $= \frac{2}{3} m r^2 \omega^2$ $\Delta T_{both pair} = \frac{4}{3} m r^2 \omega^2 = \frac{4}{3} 4(0.3)^2 \omega^2 = 0.48 \omega^2$ Thus $240 = 0.9 \omega^2 + 0.48 \omega^2$, $\omega^2 = 173.9$ $\omega = 13.19 \, rad/s$

6/122

For rotation: $T_{rot} = \frac{1}{2}I_c\omega^2 = \frac{1}{2}(4)(\frac{1}{12}mb^2 + m\frac{b}{2})\omega^2$ $= \frac{2}{3}mb^2\omega^2$ For translation: $T_{tran} = \frac{1}{2}(4m)\upsilon^2 = 2m\upsilon^2$ For $T_{tran} = T_{rot}$: $2m\upsilon^2 = \frac{2}{3}mb^2\omega^2$ $\upsilon = \frac{b\omega}{\sqrt{3}}$



Final position of OADE (all bars)

$$b = \omega \qquad \Delta V_g = 8bpg(-2b) = -16pgb^2$$

$$A \rightarrow V_A \qquad \Delta T = 8\left(\frac{1}{3}mb^2\right)\omega^2$$

$$2b \quad \forall \omega \qquad = \frac{8}{3}pb^3\omega^2$$

$$U = O = \Delta T + \Delta V_g$$

$$U = O = \frac{8}{3}pb^3\omega^2 - 16pgb^2$$

$$\omega^2 = 6g/b, \quad \omega = \sqrt{6g/b}$$

6/125 Note: the wheel has no motion in initial or final positions so $\Delta T_{wheel} = 0$ $U' = \Delta V_g + \Delta T'$; $U' = Fb \sin \theta$ $\Delta V_g = -2m_g g \frac{b}{2} \sin \theta$ $\Delta T = 2(\frac{1}{2} I_c \omega^2) = \frac{1}{3} m_o b^2 \omega^2$ Thus $Fb \sin \theta = -m_o g b \sin \theta + \frac{1}{3} m_o b^2 \omega^2$ $\omega = \sqrt{\frac{3(F + m_o g) \sin \theta}{m_o b}}$

6/126 Power $P = \frac{d(Energy)}{dt} = \frac{\Delta E}{t}$ $\Delta E = \frac{1}{2} \tilde{\Gamma}(\omega_2^2 - \omega_1^2) = \frac{1}{2} (1200)(0.4)^2 (5000)^2 - [3000]^2) (\frac{217}{60})^2$ $= 16.84(10^6) \text{ J}$ $P = \frac{16.84(10^6)}{2(60)} = 140.4(10^3) \text{ J/s or } W$ 50 $P = 140.4 \text{ KW} \text{ or } P = \frac{140.4(10^3)}{7.457(10^2)} = 188 \text{ hp}$

6/127 $\Delta V_g + \Delta T = 0$ $\Delta V_g = -5.4(3.08)(9.81)(3.3) = -538 \text{ J}$ $\Delta T = \frac{1}{2}6.0(3.08)(0.375 \text{ w})^2$ $+ \frac{1}{2} \left[41(0.30)^2 + (3.08)(18-6)(0.375)^2 \right] \omega^2$ $= 1.299 \omega^2 + 4.44 \omega^2 = 5.74 \omega^2$ Thus $-538 + 5.74 \omega^2 = 0$, $\omega^2 = 93.8$, $\omega = 9.68 \text{ rad/s}$

6/128
$$U'_{1-2} = \Delta T + \Delta V_g + \Delta V_e$$

 $U'_{1-2} = M\theta = \frac{\pi}{2}M = 1.571 M \text{ in.-1b}$
 $\Delta T = \frac{1}{2}I_0\omega^2 - 0 = \frac{1}{2}(\frac{1/2}{32.2\times12}\times10^2)4^2 = 24.8 \text{ in.-1b}$
 $\Delta V_g = Wh = 12(-8) = -96 \text{ in.-1b}$
 $\Delta V_e = \frac{1}{2}k(\dot{x}_2^2 - \dot{x}_1^2) = \frac{1}{2}3([30 - 15\sqrt{2}]^2 - 0) = 115.8 \text{ in-1b}$
Thus $1.571M = 24.8 - 96 + 115.8$, $M = 28.4 \text{ lb-in.}$

6/129 For system $\Delta T + \Delta V_g = 0$ since U = 0Yoke: $\Delta V_g = 3 \times 9.81(-0.3) = -8.83 \text{ J}$ $\Delta T = \frac{1}{2}I\omega^2 = \frac{1}{2}(3 \times 0.35^2)(\frac{V_A}{0.5})^2$ $= 0.735 V_A^2$ $A = \frac{1}{2}I_C\omega^2 = \frac{1}{2}(2 \times 4 \times 0.25^2)(\frac{V_A}{0.25})^2$ $= 4V_A^2$ Thus $0.735 V_A^2 + 4V_A^2 - 8.83 - 19.62 = 0$ $4.735 V_A^2 = 28.45, V_A^2 = 6.01, V_A = 2.45 \text{ m/s}$

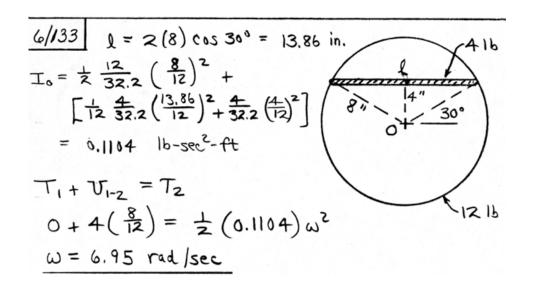
 $V_A = 0$, so F and N are applied at a stationary point and thus do no work.

(b) $v \neq 0$, $v_A \neq 0$: F and N do Work.

For the top position $\omega_{8} = \frac{\sigma}{0.080}$, $\omega_{0A} = \frac{\sigma}{0.280}$ For entire system $U' = \Delta T + \Delta V_{g}$ $U'_{1-2} = M\theta = 4(\pi/2) = 6.28 \text{ J}$ $\Delta T_{0A} = \frac{1}{2}I_{0}\omega_{0A}^{2} = \frac{1}{2}0.8(0.140^{2})(\sigma/0.280)^{2} = 0.1\sigma^{2} \text{ J}$ $\Delta T_{B} = \frac{1}{2}m\sigma^{2} + \frac{1}{2}\bar{I}\omega^{2} = \frac{1}{2}0.9\sigma^{2} + \frac{1}{2}\left[\frac{1}{2}0.9\times0.080^{2}\right]\left(\frac{\sigma}{0.080}\right)^{2}$ $= 0.675\sigma^{2} \text{ J}$ $(\Delta V_{g})_{0A} = mgh = 0.8(9.81)(0.100) = 0.785 \text{ J}$ $(\Delta V_{g})_{8} = mgh = 0.9(9.81)(0.280) = 2.47 \text{ J}$ Thus $6.28 = 0.1\sigma^{2} + 0.675\sigma^{2} + 0.785 + 2.47$, $\sigma^{2} = 3.90 \text{ (m/s)}^{2}$ $\sigma = 1.976 \text{ m/s}$

$$\begin{array}{lll}
6/32 & T_{1} + U_{1-2} = T_{2} \\
T_{1} &= 0 \\
U_{1-2} &= \int_{1}^{\infty} M d\theta = \int_{0}^{\infty} Z(1 - e^{-0.1\theta}) d\theta \\
&= \left(2\theta + 20 e^{-0.1\theta}\right) \Big|_{0}^{5(2\pi)} \\
&= 2(5)(2\pi) + 20 e^{-0.1(5)(2\pi)} - 20 \\
&= 43.7 \text{ J}
\end{array}$$

$$T_{2} &= \frac{1}{2} T \omega^{2} = \frac{1}{2} (50)(0.4)^{2} \omega^{2} = 4\omega^{2}$$
So $0 + 43.7 = 4\omega^{2}$ $\omega = 3.31 \text{ rad/s}$



6/134 $T = mk^2 = 10(0.090)^2 = 0.081 \text{ kg·m}^2$ $M = I\dot{\omega}$, $\dot{\omega} = M/I = -2.10/0.081 = -25.9 \text{ rad/s}^2$ $\omega_0 = 80\,000(\frac{2\pi}{60}) = 8380 \text{ rad/s}$ $P = \frac{1}{4t}(\frac{1}{2}I\omega^2) = I\omega\dot{\omega}$

(a)
$$t=0$$
: $P = I\omega i = (0.081)(8380)(25.9)$
= 17590 W or 17.59 KW

(b)
$$t = 1205$$
: $\omega = \omega_0 + \omega t = 8380 - 25.9$ (120)
= 5270 rad/s
 $P = T\omega \dot{\omega} = (0.081)(5270)(25.9) = 11060 \text{ W}$
or $P = 11.06 \text{ kW}$

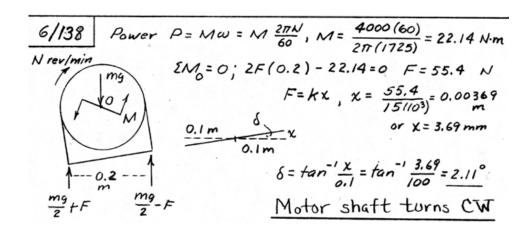
$$\omega_{\text{max}} = \omega_{\text{x}=0.211}$$

$$\omega_{\text{y}} = 0.789 \ell$$

$$\omega_{\text{only}} = 0.789 \ell$$

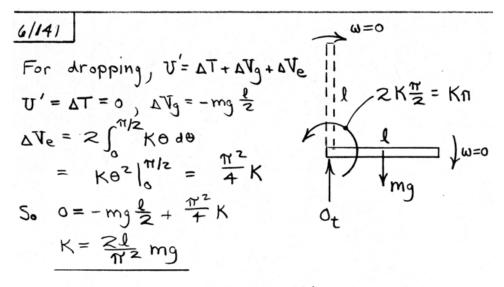
6//36 $O = \Delta V_g + \Delta T$; $\Delta V_g = -200 \left[\frac{12}{12} \sin 30^\circ + \frac{18}{12} (1 - \cos 30^\circ) \right]$ $\bar{K} = 4 \text{ in.}$ 2 in. 2 in.

 $U = \Delta T : mg \left(\frac{8r}{3\pi} \right) = \frac{1}{2} I_c \omega^2$ $I_G = I_0 - m\bar{r}^2, I_c = I_G + m(r - \bar{r})^2$ $So \ I_c = I_0 - m\bar{r}^2 + m(r - \bar{r})^2$ $I_c = m \left(\frac{1}{2} r^2 - \bar{r}^2 + r^2 - 2r\bar{r} + \bar{r}^2 \right) = m \left(\frac{3}{2} r^2 - 2r \left[\frac{4r}{3\pi} \right] \right) = mr^2 \left(\frac{3}{2} - \frac{8}{3\pi} \right)$ $So \ mg \left(\frac{8r}{3\pi} \right) = \frac{1}{2} mr^2 \left(\frac{3}{2} - \frac{8}{3\pi} \right) \omega^2, \ \omega^2 = \frac{32}{9\pi - 16} \frac{g}{r}, \ \omega = \sqrt{\frac{g}{r}} \frac{32}{9\pi - 16} \frac{rad}{s}$ $\bar{E}F_n = m\bar{a}_n : \ N - mg = m\bar{r} \omega^2, \ N = mg + m \frac{4r}{3\pi} \omega^2$ $N = mg \left(1 + \frac{128}{3\pi (9\pi - 16)} \right)$

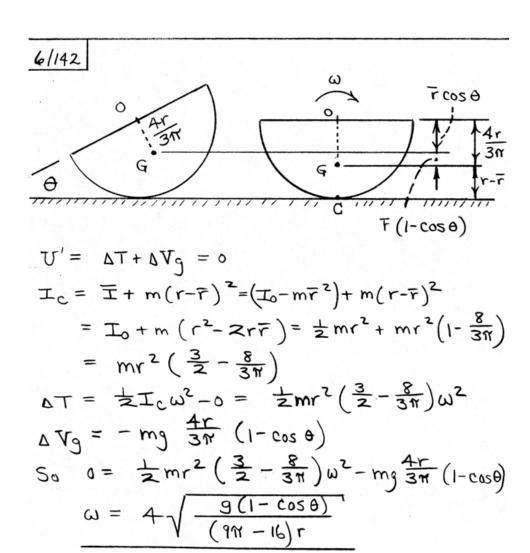


For treads $T = 2(T_{hoop} + T_{top} section)$, $T_{tottom} section = 0$ $T_{hoop} = \frac{1}{2}I_c\omega^2 = \frac{1}{2}\left[2\pi r\rho(r^2+r^2)\frac{v^2}{r^2}\right] = 2\pi \rho rv^2$ $T_{top} section = \frac{1}{2}(\rho b)(2v)^2 = 2\rho bv^2$ $U = M\theta = M\frac{s}{r}$ $Thus M\frac{s}{r} = 2(2\pi \rho rv^2 + 2\rho bv^2), M = 4\rho \frac{r}{s}v^2(\pi r + b)$

6/140 $\Delta V_{e} = \frac{1}{2}(1500) \left[(0.1 + 2 \times 0.05)^{2} - \overline{0.1}^{2} \right] = 22.5 \text{ J}$ $\Delta V_{g} = -(150)(9.81)(0.05) = -73.58 \text{ J}$ $\Delta T = \sum_{e} \frac{1}{m} \overline{v}^{2} + \frac{1}{2} \overline{i} \overline{w}^{2} = \frac{1}{2}(150) \underline{v}^{2} + \frac{1}{2}(50)(0.3)^{2} \left(\frac{\underline{v}}{0.4} \right)^{2}$ $= 75 \underline{v}^{2} + 14.06 \underline{v}^{2} = 89.06 \underline{v}^{2}$ $\Delta T + \Delta V_{g} + \Delta V_{e} = 0; \quad 89.06 \underline{v}^{2} - 73.58 + 22.5 = 0$ $\underline{v}^{2} = 0.573, \quad \underline{v} = 0.757 \text{ m/s}$



Release from rest at $\theta = \frac{\pi}{2}$: $\sum M_0 = I_0 \alpha$: $\frac{2!}{\pi^2} mg\pi - mg \frac{1}{2} = \frac{1}{3} ml^2 \alpha$, $\alpha = 0.410 \frac{9}{2}$ Lid would not stay down; $K = \frac{2!}{\pi^2} mg$ is not practical.



6/143 During rotation d0 of radial line,

disk rotates through angle dY between

lines OC' and O'C". CC'=CC" so $Rd\theta = rd\beta$ & $dY = d\theta + d\beta$ $= (1 + \frac{R}{r})d\theta$ or $Y = (1 + \frac{R}{r})\theta$ For $\theta = \frac{\pi}{3}$, $Y = (1 + 0.6/0.15)\frac{\pi}{3} = 5\pi/3$ rad $U' = \Delta T + \Delta V_g$: $U' = MY = 40\frac{5\pi}{3} = 209$ J $\Delta T = \frac{1}{2}I_c\omega^2 = \frac{1}{2}(\frac{3}{2}mr^2)(\frac{\sigma}{r})^2 = \frac{3}{4}m\sigma^2 = \frac{3}{4}(30)\sigma^2$

 $U' = \Delta T + \Delta V_g: \quad U' = M\gamma = 40 \frac{5\pi}{3} = 209 J$ $\Delta T = \frac{1}{2} I_c \omega^2 = \frac{1}{2} \left(\frac{3}{2} m r^2 \right) \left(\frac{\sigma}{r} \right)^2 = \frac{3}{4} m \sigma^2 = \frac{3}{4} (30) \sigma^2$ $= 22.5 \sigma^2$ $\Delta V_g = mgh = mg(R+r) (1-\cos 60^\circ)$ $= 30(9.81)(0.75) \left(\frac{1}{2} \right) = 110.4 J$ $209 = 22.5 \sigma^2 + 110.4, \quad \sigma^2 = 4.40 \quad (m/s)^2, \quad \underline{\sigma} = 2.10 \quad m/s$

Total mass $m = 2rf + 2\pi rf = 2rf(1+\pi)$ There f = mass per unit length. $r = \frac{\sum rm}{\sum m} = \frac{2rf(r) + 2\pi rf(3r)}{2rf + 2\pi rf(3r)}$ $= r \frac{1+3\pi}{1+\pi}$ $= r \frac{1+3\pi}{1+\pi}$ $T_{B-B} = \frac{1}{3}(2rf)(2r)^2 + \left[2\pi rfr^2 + 2\pi rf(3r)^2\right]$ $= \frac{4+30\pi}{3(1+\pi)} mr^2$ $T_{A-B} = \frac{1}{3}(2rf)(2r)^2 + \left[\frac{1}{2}2\pi rfr^2 + 2\pi rf(3r)^2\right]$ $= \frac{8+57\pi}{6(1+\pi)} mr^2$ $T_1 + U_{1-2} = T_2$ (a) $0 + mgr = \frac{1+3\pi}{1+\pi} = \frac{1}{2} \frac{8+57\pi}{6(1+\pi)} mr^2 \omega^2$ $\frac{\omega}{8+57\pi} = \frac{1}{2} \frac{3(1+\pi)}{3(1+\pi)} mr^2 \omega^2$ $\frac{\omega}{1+3\pi} = \frac{1}{2} \frac{3(1+\pi)}{3(1+\pi)} mr^2 \omega^2$

6/145
$$P = \frac{dU}{dt} = \frac{d}{dt}(T + V_g) + RV$$

$$P = \frac{d}{dt} \left[\frac{5}{2}mv^2 + \frac{1}{2}\bar{1}\omega^2 \right] + \frac{d}{dt}(mgh) + RV$$

$$= \sum mv \frac{dv}{dt} + \sum \bar{1}w \frac{dw}{dt} + mgv \sin\theta + RV$$

$$= mva + 4\bar{1}w + (mg\sin\theta + R)V$$

$$= (mv + 4\bar{1}\frac{v}{r^2})a + (mg\sin\theta + R)V$$
(a) with $a = 0$, $P = 0 + (500 \times 9.81 \times \frac{1}{\sqrt{101}} + 400)\frac{72}{3.6}$

$$= 17.761 \text{ W or } P = 17.76 \text{ kW}$$

(b) with
$$a = 3 \text{ m/s}^2$$

$$P = \left(500 \frac{72}{3.6} + 4 (40)(0.4)^2 \frac{72/3.6}{\overline{0.6}^2}\right) 3 + 17.761$$

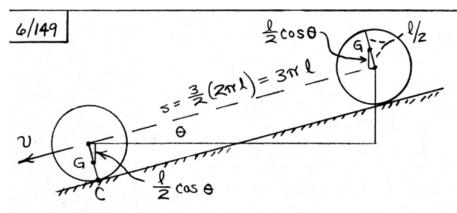
$$= 30.000 + 4.267 + 17.761$$

$$= 52.028 \text{ w or } P = 52.0 \text{ kW}$$

6/146 $\Delta T_{translational} = \frac{1}{2}mv^2 - 0 = \frac{1}{2}(10000)(\frac{72}{3.6})^2 - 0$ $= 2(10^6) \ J$ $\Delta T_{rotation} = \frac{1}{2}I(\omega_2^2 - \omega_1^2)$ $= \frac{1}{2}(1500)(0.5)^2(\omega_2^2 - \left[\frac{4000\times217}{60}\right]^2)$ $= 187.5\omega_2^2 - 32.90\times10^6 \ J$ $\Delta E = 0.1(187.5\omega_2^2 - 32.90\times10^6) = 18.75\omega_2^2 - 3.29\times10^6$ $\Delta V_g = mgh = 10000(9.81)(20) = 1.96\times10^6 \ J$ $\Delta E = \Delta T + \Delta V_g;$ $18.75\omega_2^2 - 3.29\times10^6 = 2\times10^6 + 187.5\omega_2^2 - 32.90\times10^6 + 11.96\times10^6 \ J$ $168.75\omega_2^2 = 25.65\times10^6; \quad \omega_2^2 = 152.000 \ (rad/s)^2$ $\omega_2 = 390 \ rad/s \ or \quad N = \frac{390\times60}{217} = \frac{3720 \ rev/min}{2}$

6/147 For equil. $ZM_0 = 0$, $0.05F_0 - 147.2 (0.1698) = 0$, $F_0 = 500 \text{ N}$ $F_0 = 2k\delta$, where $\delta = initial \text{ spring stretch}$ in equil. position. $\delta = \frac{500}{2 \times 2.6 \times 10^3} = 0.0961 \text{ m}$ $U' = \Delta T + \Delta V_e + \Delta V_g \text{ where } U' = 0$ $\Delta T = \frac{1}{2} I_o \omega^2 - 0 = \frac{1}{2} (\frac{1}{2} \times 15 \times 0.4^2) \omega^2 = 0.6 \omega^2$ $T = \frac{1}{2} I_o \omega^2 - 0 = \frac{1}{2} (\frac{1}{2} \times 15 \times 0.4^2) \omega^2 = 0.6 \omega^2$ $T = \frac{1}{2} I_o \omega^2 - 0 = \frac{1}{2} (\frac{1}{2} \times 15 \times 0.4^2) \omega^2 = 0.6 \omega^2$ $T = \frac{1}{3\pi} I_o 0.1698 \text{ m}$ $T = \frac{1}{2} I_o \omega^2 - 0.1746^2 = -55.3 \text{ J}$

6/148 Each spring stretches 4 ft. So $\Delta V_e = 2(\frac{1}{2}kx^2) = 2(\frac{1}{2}50[4]^2) = 800 \text{ ft-16}$ $\Delta V_g = -200(9-4) = -1000 \text{ ft-16}$ $U = \Delta T + \Delta V_g + \Delta V_e : 0 = \frac{1}{2} \frac{200}{32.2} v^2 - 1000 + 800$ $v^2 = 64.4, v = 8.02 \text{ ft/sec}$



Mass center drops
$$h = 2(\frac{1}{2}\cos\theta) + (3\pi l)\sin\theta$$

= $l(\cos\theta + 3\pi \sin\theta)$

$$U' = \Delta T + \Delta Vg : U' = 0$$

$$T = \frac{1}{2} I_c \omega^2 = \frac{1}{2} \left(\frac{1}{3} m l^2\right) \left(\frac{v}{l}\right)^2 = \frac{1}{6} m v^2$$

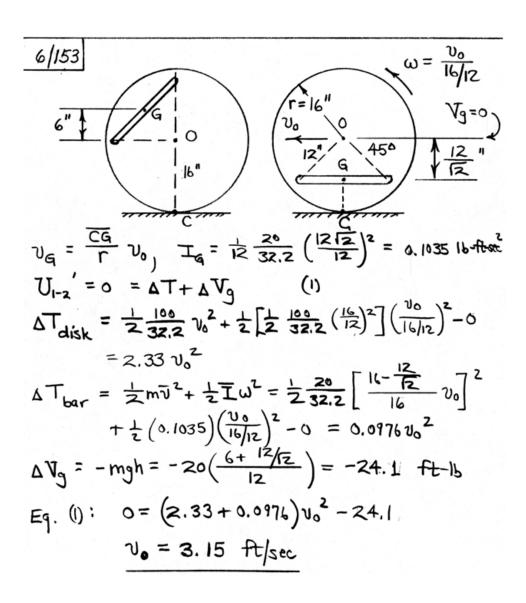
$$\Delta V_g = -mgh = -mgl \left(\cos \theta + 3\pi \sin \theta\right)$$

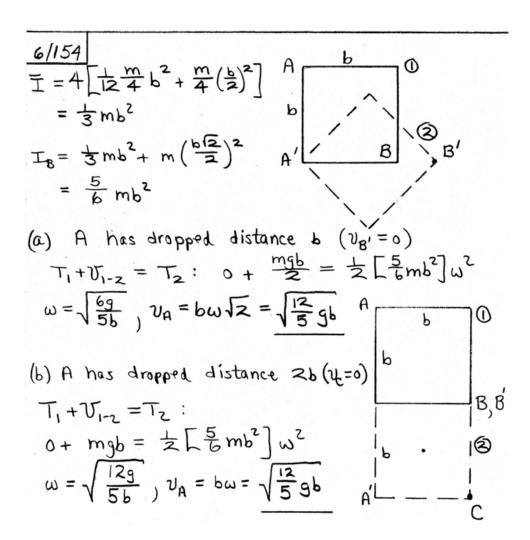
$$S_0 \quad O = \frac{1}{6} m v^2 - mgl \left(\cos \theta + 3\pi \sin \theta\right)$$

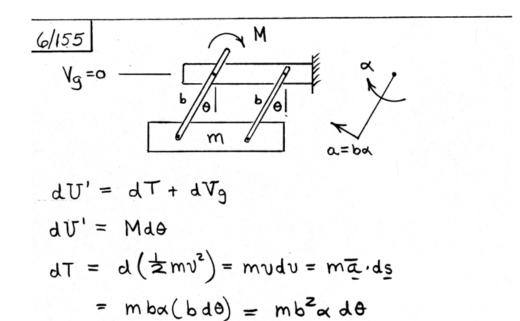
$$V = \sqrt{6gl \left(\cos \theta + 3\pi \sin \theta\right)}$$

Let p = mass of paper per unit length w = v/rFor general position m = p(L-x) $\Delta T = \frac{1}{2} \overline{I} \omega^2 + \frac{1}{2} m \overline{v}^2$ $= \frac{1}{2} \frac{1}{2} m r^2 \omega^2 + \frac{1}{2} m v^2$ $= \frac{3}{4} m v^2 = \frac{3}{4} p(L-x) v^2$ $\Delta V_g = -pg(L-x) x \sin \theta - pg x \frac{1}{2} \sin \theta$ $= -pg x (L - \frac{x}{2}) \sin \theta$ $U = 0 = \Delta T + \Delta V_g$; $0 = \frac{3}{4} p(L-x) v^2 - pg x (L - \frac{x}{2}) \sin \theta$ $v^2 = \frac{4}{3} \frac{9 x (L - x/2) \sin \theta}{L - x}$, $v = 2 \sqrt{\frac{9x}{3}} \frac{L - \frac{x}{2}}{L - x} \sin \theta$ As $x \to L$, $v \to \infty$ so that the loss of potential energy $-pg L \sin \theta/2$ is concentrated in the kinetic energy of the last bit of moving paper. Abrupt termination of motion causes abrupt energy loss at the end.

6/151 Let x = distance moved by center 0 in m. $\theta = \tan^{-1} \frac{1}{5} = 11.31^{\circ}$, $\sin \theta = 0.1961$ $\Delta V_g = mg \Delta h = mgx \sin \theta = 10(9.81)x(0.1961) = 19.24x$ $\Delta V_e = \frac{1}{2}k(x_2^2-x_1^2) = \frac{1}{2}(600)[(0.225 - \frac{275}{200}x)^2 - (0.225)^2]$ $567.2x^2 - 185.6x$ $\Delta T = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}(10)v^2 + \frac{1}{2}(10)(0.125)^2(\frac{v}{0.2})^2$ $= 6.95v^2$. For system, $U = \Delta T + \Delta V_g + \Delta V_e$: $0 = 6.95v^2 + 19.24x + 567.2x^2 - 185.6x$ $v^2 = 23.93x - 81.57x^2$ Set $\frac{dv^2}{dx} = 0$ to get x = 0.1467 m for v_{max} $v_{max}^2 = 23.93(0.1467) - 81.57(0.1467)^2$, $v_{max}^2 = 1.325\frac{m}{s}$







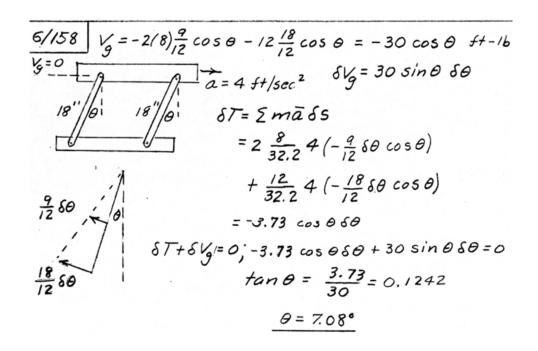
$$dV_g = d(-mgbcos\theta) = mgbsin \theta d\theta$$
Thus $Md\theta = mb^2 \propto d\theta + mgbsin \theta d\theta$

$$\propto = \frac{M}{mb^2} - \frac{9}{b} sin \theta$$

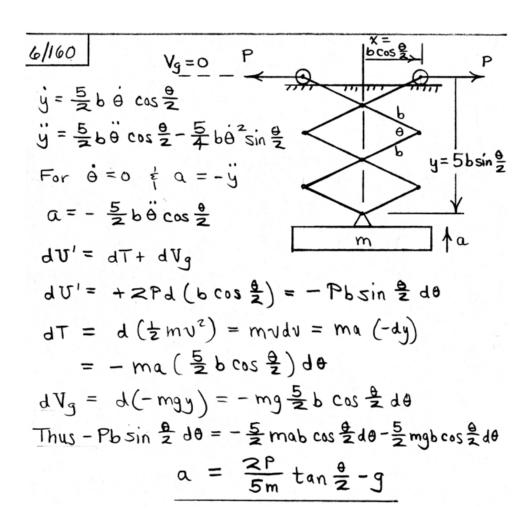
G/156 Active forces: $I_c = \frac{1}{12}ml^2 + m\left(\frac{l}{2}\right)^2 = \frac{1}{3}ml^2$ dU' = dT + dVDue to the equilibrium condition,

The work due to the weight mg' I_{12} I_{2} I_{3} I_{2} I_{3} I_{4} I_{5} I_{5} I

6/157 dU = dT C = instantaneous center of E = instanta

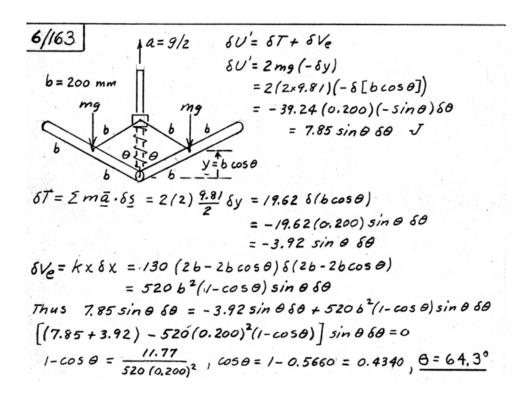


 $\frac{6/159}{dV_g = 2(6)d(8\cos\theta) + 10d(18\cos\theta)}$ $= 276 d(\cos\theta) = -276 \sin\theta d\theta \sin -16$ $dT_{bar} = d(\frac{1}{2}mv^2) = mvdv = ma_t ds$ $= \frac{10}{32.2 \times 12} (18\alpha) / 8 d\theta = 8.39 \alpha d\theta$ $= 2d(\frac{1}{2}I_0\omega^2) = 2I_0\omega d\omega = 2I_0\alpha d\theta$ $= 2(\frac{6}{32.2 \times 12} 10^2) \alpha d\theta = 3.11 \alpha d\theta$ $dT_{links} = 2d(\frac{1}{2}I_k\omega^2) = 2I_0\omega d\omega = 3.11 \alpha d\theta$ $dT_{links} = 2(18)\cos 30^\circ = 31.2 \sin 3 \cot \alpha = 2(18)\cos \frac{\theta}{2} - 18,$ $dx = 36(-\sin \frac{\theta}{2} \frac{d\theta}{2})$ $dV_e = d(\frac{1}{2}kx^2) = kx dx = -\frac{15}{12} / 8(2\cos \frac{\theta}{2} - 1) / 36\sin \frac{\theta}{2} \frac{d\theta}{2}$ $= -148.2 d\theta \sin -16$ $Thus 0 = (8.39 + 3.11) \alpha d\theta - 148.2 d\theta - 276 \sin 60^\circ d\theta$ $\alpha = 33.7 \ rad/sec^2$



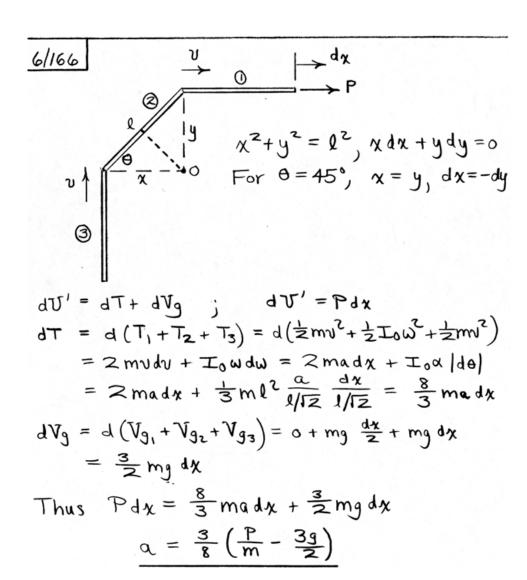
5/161 dU'=dT+dVg; $dU'=Md\theta$ $dT=madh=mad(2bsin\theta)$ $=2mbacos\theta d\theta$ $dVg=mgdh=2mbgcos\theta d\theta$ $dVg=mgdh=2mbcos\theta(a+g)d\theta$ $a+g=\frac{M}{2mbcos\theta}$ But $2bsin\theta=h$ $so <math>cos\theta=\sqrt{4b^2-h^2/2b}$ so $a=\frac{M}{2mb\sqrt{1-(h/2b)^2}}-g$ $=\sqrt{1-(h/2b)^2}$

For a virtual displacement $M = K\theta$ $M = K\theta$ $\delta\theta$ from the steadystate configuration, $\delta U = \delta T$ $\delta U = -M \delta\theta + mg \delta (\bar{r} \cos \theta)$ $\delta U = -M \delta\theta - mg \bar{r} \sin \theta \delta\theta$ $\delta T = mg \cdot \delta S = ma (-\bar{r} \delta\theta \cos \theta)$ $\delta U = \delta T \cos \theta \cos \theta$ $\delta U = \delta T$



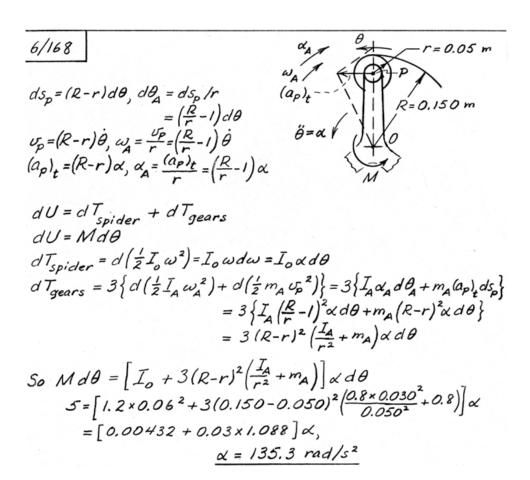
6/164 Replace P by force Pat B and couple M=Pb dU = dTdU = Pcos Ad(2bsinA) + PbdA $= Pb(2\cos^2\theta + 1)d\theta$ $dT_{AC} = d\left(\frac{1}{2}2m\sigma^2 + \frac{1}{2}\bar{I}\omega^2\right)$ $=2m\sigma d\sigma + \bar{I}\omega d\omega = 2m\alpha dx + \bar{I}\alpha d\theta$ where $x = 2b sin\theta$, $\sigma = 2b\theta cos\theta$, $a = 2b(\theta cos\theta - \theta^2 sin\theta)$ = 2h g cos & since &=0 So $dT_{AC} = 2m(2b\ddot{\theta}\cos\theta)d(2b\sin\theta) + \frac{1}{12}(2m)(2b)^2\ddot{\theta}d\theta$ $=2mb^2(4\cos^2\theta+\frac{1}{3})\ddot{\theta}d\theta$ $dT_{oc} = d(\frac{1}{2}I_o\omega^2) = I_o\omega d\omega = I_o\omega d\theta = \frac{1}{3}mb^2\theta d\theta$ So dT=2mb2(4cos20+3) 0d0+3mb20d0 = mb2 (8 cos20+1) + de $Pb(2\cos^2\theta+1)d\theta=mb^2(8\cos^2\theta+1)\ddot{\theta}d\theta$ $\ddot{\theta} = \alpha = \frac{P(2\cos^2\theta + 1)}{mb(8\cos^2\theta + 1)}$

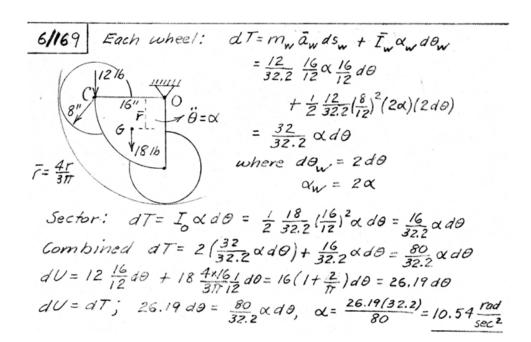
 $V_{g} = 0$ V_{g



6/167 Radius to each weight is $r = 0.25 + 1.5 \sin \theta$ in. $\delta T = 2 (mr\omega^2)(-\delta r) = 2 \frac{12}{16(32.2)} \frac{0.25 + 1.5 \sin \theta}{12} \omega^2(-\delta r)$ ft-16

But $\delta r = 1.5 \cos \theta \delta \theta$ in. $\delta T = 2(1.5) - 2(1.5) \cos \theta = 0.625 \sin \beta$, $\beta = 15^\circ$ So $\cos \theta = \frac{3 - 0.625 \sin 15^\circ}{3 - 0.625 \sin 15^\circ} = 0.9461$, $\theta = 18.90^\circ$ So $\delta T = \frac{0.25 + 1.5 \sin 18.90^\circ}{8(32.2)} \omega^2(-\frac{1.5 \cos 18.90^\circ}{12}) \delta \theta$ $\delta V_e = K \times \delta x = 5(12) \frac{2(1.5)}{12}(1 - \cos \theta) \delta \left\{ \frac{2(1.5)}{12}(1 - \cos \theta) \right\}$ $\delta U = \delta T + \delta V_e = 0$; $-0.3378(10^{-3}) \omega^2 \delta \theta + 65.50(10^{-3}) \delta \theta = 0$ $\delta U = \delta T + \delta V_e = 0$; $-0.3378(10^{-3}) \omega^2 \delta \theta + 65.50(10^{-3}) \delta \theta = 0$ $\delta U = \frac{65.50}{0.3378} = 193.9 \quad (rad/sec)^2$ $\omega = 13.92 \quad rad/sec, N = \frac{13.92}{2T} = 133.0 \frac{rev}{min}$





6/170

A

A

A

Pdy-mg 2 dy + M_B d0 = d($\frac{1}{2}mv^2$)

y= l sin 0, dy = l cos 0 d0

mg

d($\frac{1}{2}ml^2$) = ma d(2y)

= 2ma l cos 0 d0

So (P-2mg) l cos 0 + M_B = 2ma l cos 0

B

MB

But P-mg = ma so

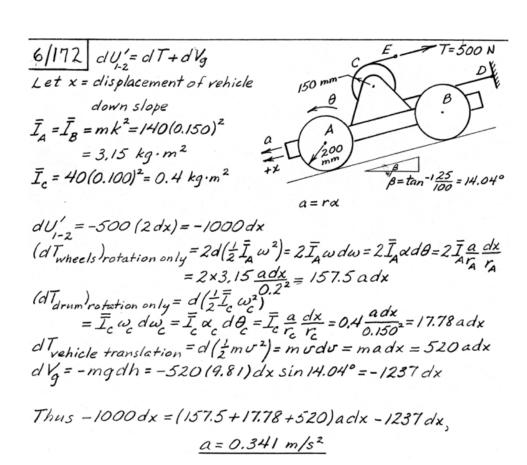
MB = mg l cos 0 ($\frac{a}{9}$ + 1)

MB = 200(9.81)(6)(0.866)($\frac{1.2}{9.81}$ + 1)

CAR = 1/440 N·m or 1/.44 kN·m

Lower arm; $\Sigma M = 0$; $M + M_B - Pl \cos \theta = 0$ $M = -mgl \cos \theta \left(\frac{\alpha}{g} + i\right) + mg\left(\frac{\alpha}{g} + i\right) l \cos \theta$, M = 0M = 0 can be obtained by inspection since m is directly above C. Also, problem can be solved directly by F - m - a equations.

6/171 dV' = dT + dVq $dV' = \sum m_i q_i \cdot ds_i + \sum \prod_i \alpha_i \cdot d\theta_i$ ($o \cdot \frac{0.2}{m}$ + Emigdhi Let $\begin{cases} x = \text{angular acceleration of } OA \end{cases}$ $\begin{cases} d\theta = \text{angular displacement of } OA \end{cases}$ Arm oA: $\overline{\alpha} = \frac{0.3}{2} \propto d\overline{s} = \frac{0.3}{2} d\theta d\theta dh = -\frac{0.3}{2} d\theta$ $d\mathcal{J}'_{arm} = 4\left(\frac{0.3}{2}\right)\left(\frac{0.3}{2}d\theta\right) + 0.03 \times d\theta - 4(9.8)\left(\frac{0.3}{2}d\theta\right)$ = 0.12 × d8 - 5.89 dA Gear D: a=aA = 0.3x, d== 0.3d+, dh=-0.3d+ 00 = 30 , db0 = 3 d0 $T = mk^2 = 5(0.064)^2 = 0.0205 \text{ kg·m}^2$ $dU_{t}' = 5(0.3 \, a)(0.3 \, d\theta) + 0.0205(3 \, a)(3 \, d\theta)$ $-5(9.81)(0.340) = 0.634 \times 40 - 14.7240$ For system: dV' = dVorm + dV' = 0 0.12x d0 - 5.89 d0 + 0.634x d0 - 14.72d0 = 0 $\alpha = 27.3 \text{ rod/s}^2$

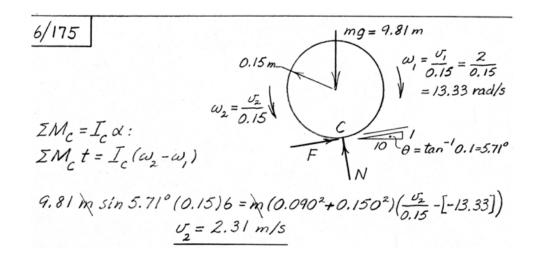


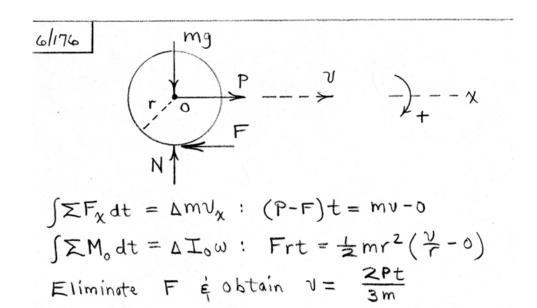
$$\int_{t_{1}}^{t_{2}} M_{0} dt = H_{02} - H_{01}$$

$$\int_{0}^{3} 90 \cos 15^{\circ} (0.8) dt = 4(\frac{1}{3})(60)(1.2)^{2} \omega$$

$$\omega = 1.811 \text{ rad/s}$$

G = my \overline{H}_{a} G = my \overline{H}_{a} $\overline{$

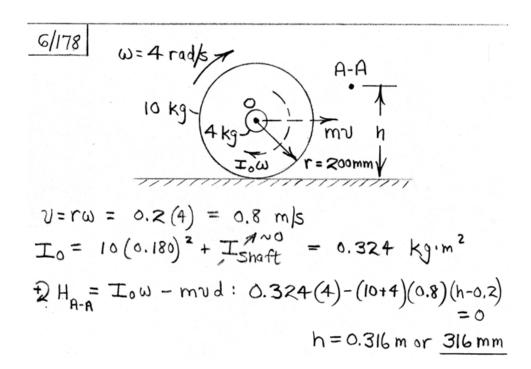




$$\int_{t_{1}}^{t_{2}} M_{q} dt = \overline{I} (\omega_{2} - \omega_{1}^{2}) = m \overline{k}^{2} \omega$$

$$\int_{0}^{3} 10 (1 - e^{-t}) dt = 75 (0.5)^{2} \omega$$

$$10 \left[t + e^{-t} \right]_{0}^{3} = 75 (0.5)^{2} \omega, \quad \underline{\omega} = 1.093 \text{ rad/s}$$



6/179 O (Sun center)
$$-\frac{1}{d} = \frac{149.6 (109) \text{ m}}{149.6 (109) \text{ m}} = \frac{1}{149.6 (109)} = \frac{1}{149.6 ($$

System
$$\int_{0}^{10} \sum F dt = \Delta G : 400(10) = (1200 + 800)[\nu - (-1.5)]$$

 $v = 0.5 \text{ m/s} \text{ (right)}$

Drum
$$\int \sum M_0 dt = \Delta H_0 : 400(0.500)(10) = 800(0.480)^2 [\omega - (-3)]$$

 $\omega = 7.85 \text{ rad/s} CW$

The rotation of the drum does not affect the linear momentum of the system, so V=0.5 m/s is independent of ω .

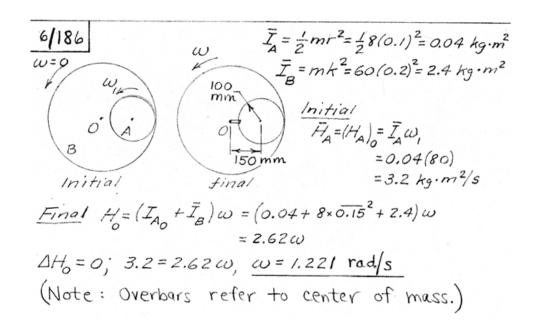
6/181 $Mdt = d(I\omega) = Id\omega$ $M = -k\omega^2 so -k\omega^2 dt = Id\omega$ $-k \int_0^t dt = I \int_0^t \frac{d\omega}{\omega^2} dt - kt = I(-\frac{1}{\omega})_{\omega_0}^{\omega_0/2} = I(\frac{-1}{\omega_0/2} + \frac{1}{\omega_0})$ $= -I/\omega_0$ $so t = \frac{I}{\omega_0 k}$

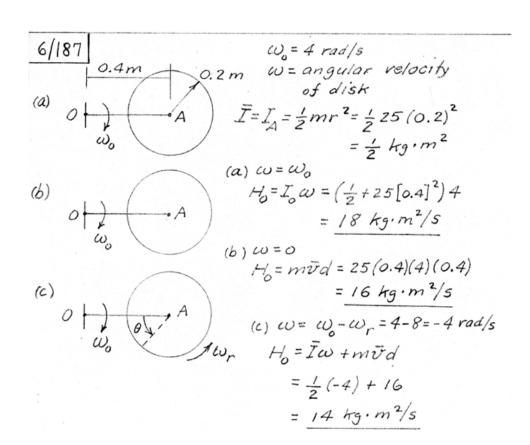
6/182 For no slipping 4 mass center at 0, $ZM_c = I_c \propto so \int ZM_c dt = \Delta H_c = \Delta (I_c \omega)$ $I_c = m(k_o^2 + r^2) = 2(0.060^2 + 0.080^2)$ $= 0.02 kg \cdot m^2$ $= 0.02 kg \cdot m^2$ $= 0.02 \left(\frac{\sigma}{0.080} - \left[\frac{-0.3}{0.080}\right]\right)$ $0.469 = 0.25 (\sigma + 0.3)$ $0.469 = 0.25 (\sigma + 0.3)$ $0.80F(5) - 0.3(5) = 0.09(\sigma + 0$

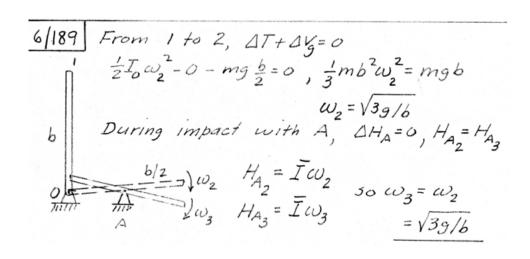
6/183 $H_{0_1} = H_{0_2}$: $mvb = (I_0 + mb^2) \omega$ $\frac{2}{16} \frac{1}{32.2} (1500) \frac{15}{12} = \left[\frac{1}{3} \frac{20}{32.2} (\frac{30}{12})^2 + \frac{2}{16} \frac{1}{32.2} (\frac{15}{12})^2\right] \omega$ $\omega = 5.60 \text{ rad/sec}$ 6/184 $\int \sum M_{G} dt = \overline{H}_{2} - \overline{H}_{1}$: $O_{\chi} \frac{15}{12} (0.001) = \frac{1}{12} \frac{20}{32.2} (\frac{30}{12})^{2} (\omega - 0)$ Where $\omega = 5.60 \text{ rad/sec from}$ Frob. 6/183. ω $0_{\chi} = 1449 \text{ lb}$

6/185 f $H_{01} = H_{02}$ for system

muh = $(I_0 + mh^2) \omega$ $\left(\frac{1/16}{32.2}\right) \left(\frac{43}{12}\right) = \left[\frac{55}{32.2}\left(\frac{37}{12}\right)^2 + \frac{1/16}{32.2}\left(\frac{43}{12}\right)^2\right] \omega$ $\omega = 0.684 \text{ rad/sec}$

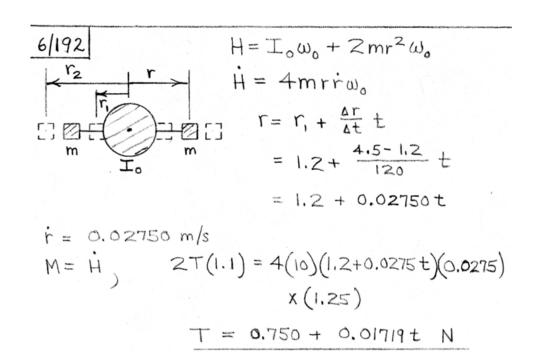


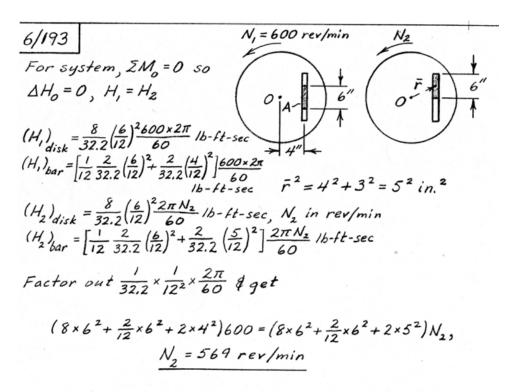




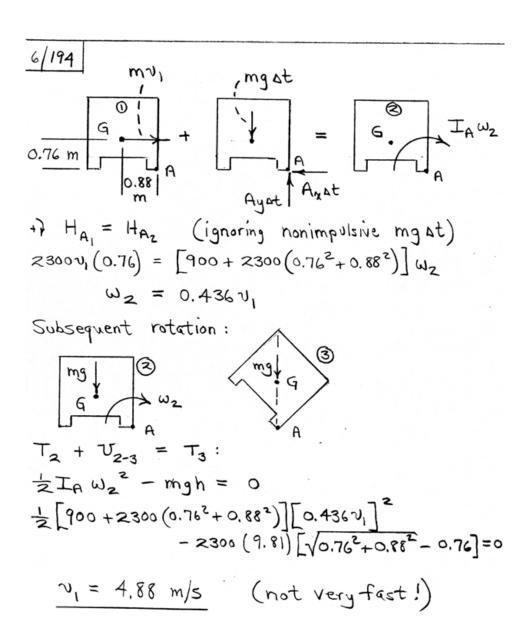
6/190 Approximate the diver's body as a uniform slender box in the first case and as a sphere in the second case. Conservation of angular momentum $H_1 = H_2$: $\frac{1}{12} M_1^2 N_1 = \frac{2}{5} M_1^2 N_2$ $\frac{1}{12} (2)^2 (0.3) = \frac{2}{5} (\frac{0.7}{2})^2 N_2$ $N_2 = 2.04 \text{ rev/s}$

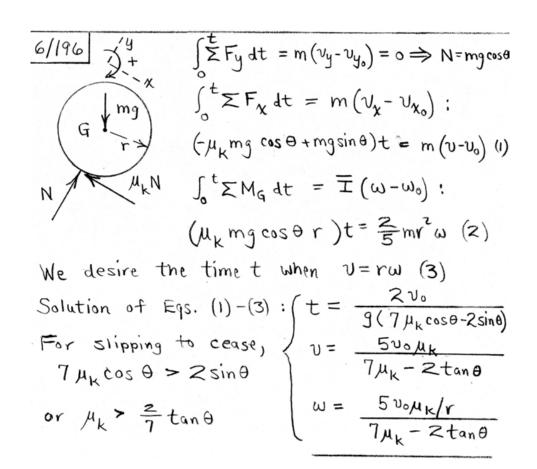
 $\frac{6/191}{Initial conditions:} \sum M_o = 0 = \Delta H_o so H_{o_1} = H_{o_2}$ 0A = 110 mm AG=80mm (I) each red = 0.84(12 × 0.160 + 0.1362) = 0.01733 kg·m2 $(I_o)_{disk} = 30(0.090)^2 = 0.243 \text{ kg·m}^2$ $\omega_1 = 600 \times 2\pi/60 = 62.8 \text{ rad/s}$ $H_{0} = [4(0.01733) + 0.243]62.8 = 19.62 \text{ kg} \cdot \text{m}^2/\text{s}$ Final conditions: $(I_o)_{each\ rod} = 0.84(\frac{1}{12} \times 0.160^2 + [0.110 + 0.080]^2) = 0.0321 \text{ kg·m}^2$ (Io) disk = 0.243 kg·m2 $H_0 = [4(0.0321) + 0.243] \omega_2 = 0.371 \omega_2$ Thus 19.62 = 0.371 w2, w2 = 52.8 rad/s, N=504 rev/min Energy loss: $T = \sum_{i=1}^{1} I_{i} \omega^{2} = \frac{1}{2} (4 \times 0.01733 + 0.243)(62.8)^{2} = 617 J$ $T_2 = \sum_{i=1}^{4} I_0' \omega'^2 = \frac{1}{2} (4 \times 0.0321 + 0.243)(52.8)^2 = 518$ J AE = T, -T, = 617-518 = 98.1 J loss Direction of rotation & sequence of rod release do not affect the results.





Friction forces in the slot are internal so have no effect on ZM_0 . Hence the final value of N_2 , as well as the loss of energy, is unaffected.



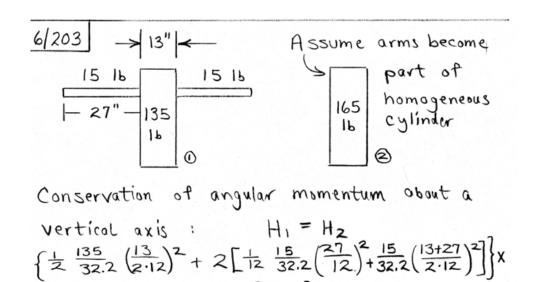


6/198 Conservation of angular momentum about the vertical spin axis of the platform: $H_1 = H_2$ $\left[10(0.3)^2\right](250 \frac{2\pi}{60}) = \left[1 + \frac{1}{2}(10)(0.3)^2 + 10(0.6)^2\right] \times (30 \frac{2\pi}{60})$ $I = 3.45 \text{ kg} \cdot \text{m}^2$

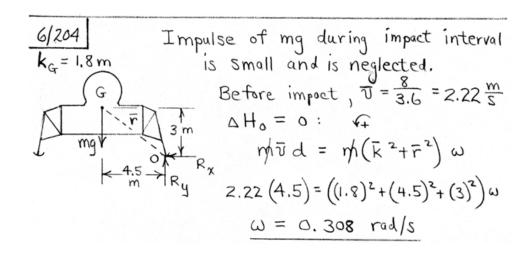
6/199 Conservation of angular momentum about the vertical spin axis of the platform: $H_1 = H_2$ $[10(0.3)^2][250] = [3.45 + 10(0.6)^2]N$ $-10(0.3)^2[250]$ N = 63.8 rev/min

6/200 Bar B: $U_{1-2} = 0 = \Delta T + \Delta V_g$ $\Delta V_g = -mgh = -8(9.81)(0.180) = -14.13 J$ $\Delta T = \frac{1}{2}I\omega_B^2 = \frac{1}{2}(8)(0.220)^2\omega_B^2 = 0.1936\omega_B^2$ So $0 = 0.1936\omega_B^2 - 14.13$, $\omega_B = 8.54 \text{ rod/s}$ Prior to impact: $H_0 = I\omega_B = 8(0.220)^2(8.54) = 3.31\frac{kg \cdot m^2}{s}$ For system after import: $H_0 = I_{tot}\omega = [z \cdot zo(0.3)^2 + 8(0.220)^2] \omega = 3.99\omega$ $\Delta H_0 = 0: 3.99\omega - 3.31 = 0, \quad \omega = 0.830 \text{ rad/s}$ After import: $U_{1-2}' = 0 = \Delta T + \Delta V_g$ $\Delta V_g = mgh = 2.720(9.81)(0.25)(1-cos\theta)$ $+8(9.81)(0.18)(1-cos\theta) = 112.2(1-cos\theta)$ $\Delta T = 0 - \frac{1}{2}I\omega^2 = \frac{1}{2}[z \cdot 2o(0.3)^2 + 8(0.220)^2](0.830)^2$ = -1.372 JSo $0 = 112.2(1-cos\theta) - 1.372$, $\Theta = 8.97^{\circ}$ $Loss of energy <math>|\Delta E| = (V_g)_{before} - (V_g)_{after}$ = 14.13 - 112.2(1-cos8.97') = 12.75J

6/201 $\Delta H = 0$; Initial: $H_{rods} = 2I\omega = 2(1.5)(0.060)^2 \frac{300 \times 2\pi}{60} \text{ N·m·s}$ $H_{base} = mk^2\omega = 4(0.040)^2 \frac{300 \times 2\pi}{60} \text{ N·m·s}$ Final: $H_{rods} = 2[I + md^2]\omega = 2m[\frac{l^2}{12} + d^2]\frac{2\pi N}{60}$ $= 2(1.5)[\frac{0.3^2}{12} + (0.150 + 0.060)^2]\frac{2\pi N}{60}$ $= 0.1548(\frac{2\pi N}{60}) \text{ N·m·s}$ $H_{base} = 4(0.040)^2 \frac{2\pi N}{60} = 0.0064(\frac{2\pi N}{60})$ Thus $[3(0.06)^2 + 4(0.04)^2]300 = [0.1548 + 0.0064]N$ 0.0172(300) = 0.1612 N, N = 32.0 rev/min Neglecting impulse of weight, $\Delta H_A = 0$ $\frac{1}{45^{\circ}}$ during impact: $m_1 = \frac{1}{2} \sin \alpha = \frac{1}{3} m \ell^2 \omega_2$ $\omega_2 = \frac{3v_1}{2\ell} \sin \alpha$ Ax Ay During subsequent rotation about A, $v = \Delta T$ or $-mg = \frac{1}{2} \left(1 - \cos 45^{\circ}\right) = 0 - \frac{1}{2} I_A \omega_2^2$ $\omega_2 = \sqrt{\frac{39}{2} \left(1 - \frac{\sqrt{2}}{2}\right)}$ So $\sqrt{\frac{39}{2} \left(1 - \frac{\sqrt{2}}{2}\right)} = \frac{3v_1}{2\ell} \sin \alpha$ Sin $\alpha = \frac{0.625}{v_1} \sqrt{g\ell}$ $\left(0 \le \alpha \le 45^{\circ}\right)$



 $1 = \left\{ \frac{1}{2} \frac{165}{32.2} \left(\frac{13}{2.12} \right)^2 \right\} N$ N = 4.78 rev/sec



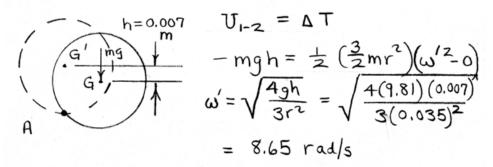
Velocity of bar at impact = $\sqrt{2gh} = \overline{v}$ Alz Velocity of bar at impact = $\sqrt{2gh} = \overline{v}$ Neglect Small impulse of weight.

Algorithms $\Delta H_B = 0$ Thus $\Delta H_B = 0$ Thu

Angular impulse of mg is negligible.

Before impact: $H_A = \overline{L}\omega + mv(r-h)$ $= mk^2 \frac{v}{r} + mv(r-h)$ $= mk^2 \frac{v}{r} + mv(r-h)$ Just after impact: $H_A' = \overline{L_A} \frac{v'}{r} = m(k^2 + r^2) \frac{v'}{r}$ $\Delta H_A = 0: mv(\frac{k^2}{r} + r - h) = m(k^2 + r^2) \frac{v'}{r}$ $v' = v(1 - \frac{rh}{k^2 + r^2})$ During roll on curb point, $\Delta T + \Delta V_g = 0$ $\left[0 - \frac{1}{2}m(k^2 + r^2) \frac{v'^2}{r^2}\right] + \left[mgh - 0\right] = 0$ Solve for $v: v = \frac{r}{k^2 + r^2 - rh} \sqrt{2gh(k^2 + r^2)}$

6/207 Process II - roll about fixed point A



Process I - impact at A

$$\Delta H_{A} = 0: mv(r-h) = I_{A}\omega'$$

$$= (\frac{3}{2}mr^{2})\omega'$$

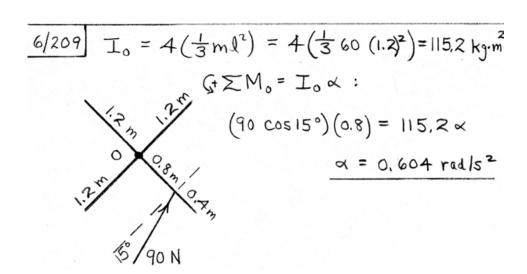
$$\Delta H_{A} = 0: mv(r-h) = I_{A}\omega'$$

$$= (\frac{3}{2}mr^{2})\omega'$$

$$\Delta = \frac{3r^{2}\omega'}{r-h} = \frac{3(0.035)^{2}(8.65)}{0.035 - 0.007} = 1.135 \frac{rad}{5}$$

 $\begin{array}{lll} \blacktriangleright 6/208 & During \ slipping \ (a_o)_x = 0, \ so \\ \hline \Sigma F_x = 0, \ F - mg \sin\theta = 0, \ F = \mu_k mg \cos\theta \\ so \ mg \sin\theta = \mu_k mg \cos\theta, \\ \mu_k = \tan\theta = \tan 10^{\circ} \\ \mu_k = 0.1763 \\ \hline \Sigma M_o \times t = \Delta H_o: \\ 0.1763 \ (30) \ (9.81) \cos 10^{\circ} \ (0.1) t \\ &= 0 - (-30 \times 0.075^2) \frac{2\pi \times 300}{60}, \ t = 1.037s \\ \hline During \ rolling \ (assume \ no \ slip) \\ \int \Sigma F_x \ dt = m\Delta v_x: \ (30 \times 9.81 \sin 10^{\circ} - F) \ 4 = 30 \ (v - 0), \ 204 - 4F = 30v \\ \int M_o \ dt = I_o \Delta w: \ 0.1F \times 4 = 30 \times 0.075^2 \ (v/0.1), \ 4F = 16.88 \ v \\ Combine \ get \ F = 18.40 \ N, \ v = 4.36 \ m/s \end{array}$

Check: $F_{max} = \mu_s N_s \not= \mu_k N = 0.1763 \times 30 \times 9.81 \cos 10^\circ = 51.1 N < \mu_s N$ so $18.40 < \mu_k N < \mu_s N \not= assumption of no slip is valid.$

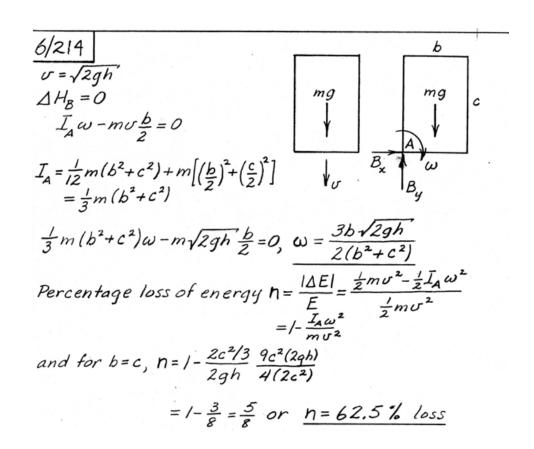


 $\frac{6|210}{\omega = \frac{1}{2}m} = \frac{1}{2}mr^{2} \left(\frac{7}{r}\right) = \frac{1$

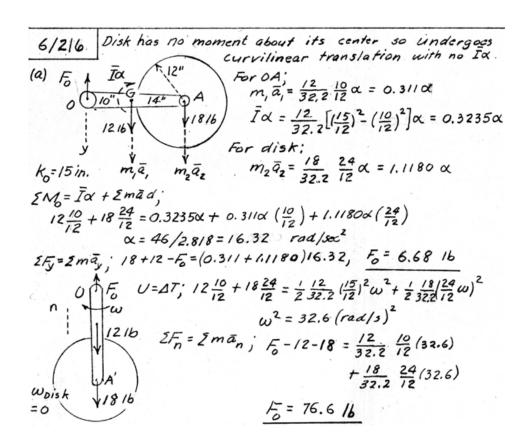
 $\begin{array}{l} G/211 \\ F_{+} \sum M_{0} = I_{0} \ddot{\theta} : \\ -mg \stackrel{?}{>} \sin \theta = \frac{1}{3} m \ell^{2} \ddot{\theta} \\ \ddot{\theta} = -\frac{3g}{2\ell} \sin \theta \\ \dot{\theta} d\dot{\theta} = \ddot{\theta} d\theta \\ \Rightarrow \omega^{2} = \omega_{0}^{2} - \frac{3g}{2\ell} (1 - \cos \theta) \\ When <math>\theta = \beta_{1} \omega = 0 : 0 = \omega_{0}^{2} - \frac{3g}{2\ell} (1 - \cos \beta) \\ \omega_{0}^{2} = \frac{3g}{2\ell} (1 - \cos \beta) \\ \Rightarrow \frac{d\theta}{dt} = \sqrt{\frac{3g}{2\ell}} \sqrt{\cos \theta - \cos \beta} \\ \Rightarrow \frac{d\theta}{dt} = \sqrt{\frac{3g}{2\ell}} \sqrt{\cos \theta - \cos \beta} \\ S_{0} & t = \sqrt{\frac{3g}{3g}} \int_{0}^{\beta} \frac{d\theta}{\sqrt{\cos \theta - \cos \beta}} \\ \end{array}$

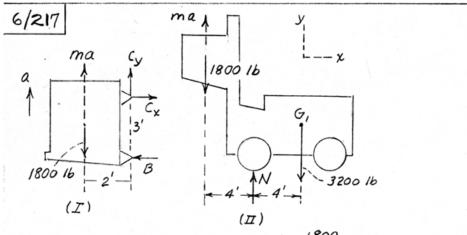
6/212 Max. power occurs when dV /dt is greatest, which occurs when \overline{v}_y is max. at the start. $\overline{v}_y = 1.500 \, \omega = 1.500 \, \frac{4\pi}{180} = 0.1047 \, \text{m/s}$ $P = mg \, \overline{v}_y = 1600(5) \, 9.81(0.1047) = 8218 \, \text{W}$ or $P = 8.22 \, \text{kW}$

6/213 $\Delta V_g + \Delta V_e + \Delta T = 0$ $\Delta V_g = -15(2) = -30 \text{ ft} - 16$ $\Delta V_e = \frac{1}{2} 3 (\sqrt{6^2 + 4^2} - 2)^2 = 40.74 \text{ ft} - 16$ $\Delta T = 0 - \frac{1}{2} \frac{1}{3} \frac{15}{32.2} A^2 \omega^2 = -1.242 \omega^2$ $-30 + 40.74 - 1.242 \omega^2 = 0, \quad \omega^2 = 8.64, \quad \omega = 2.94 \text{ rad/sec}$



 $I = 4 \left[\frac{1}{12} m (2r^2) + m \left(\frac{r}{12} \right)^2 \right]$ $= \frac{8}{3} m r^2$ $\sum F_y = 0: N = 4 mg \cos \theta$ $\sum F_x = m a_{gx}: 4 mg \sin \theta - F = 4 ma$ $\sum M_q = I \propto : Fr = \frac{8}{3} m r^2 \propto$ $No slipping: a = r \propto$ $Solution of (1) - (3): \begin{cases} a = \frac{3}{5} g \sin \theta, \alpha = \frac{39}{5r} \sin \theta \end{cases}$ $F = \frac{8}{5} mg \sin \theta$ $H_s = \frac{F}{N} = \frac{\frac{8}{5} mg \sin \theta}{4 mg \cos \theta} = \frac{2}{5} \tan \theta$



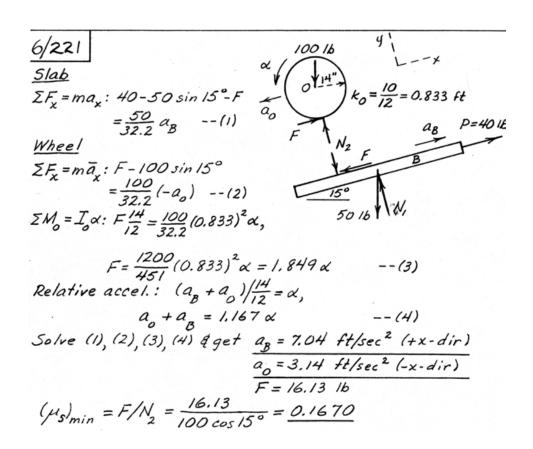


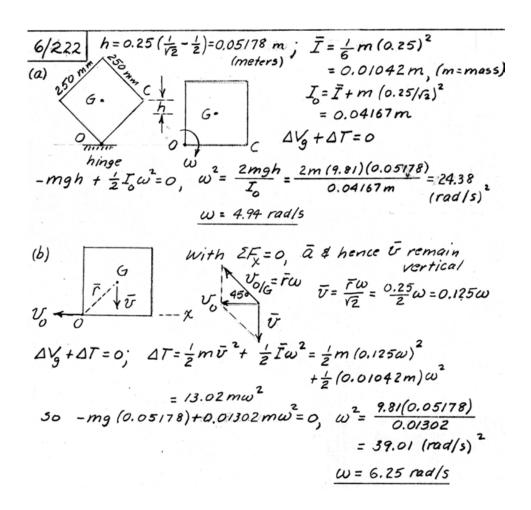
(II)
$$\geq M_c = m\bar{\alpha}d$$
; $3200(4) - 1800(4) = \frac{1800}{32.2}a(4)$, $a = 25.04$
 ft/\sec^2
(I) $\geq M_c = m\bar{\alpha}d$; $3B - 2(1800) = \frac{(800)}{32.2}(25.04)(2)$

(I)
$$\sum M_c = m\bar{a}d$$
, $3B - 2(1800) = \frac{(800)}{32.2}(25.04)(2)$
 $B = 2/30 \text{ lb}$

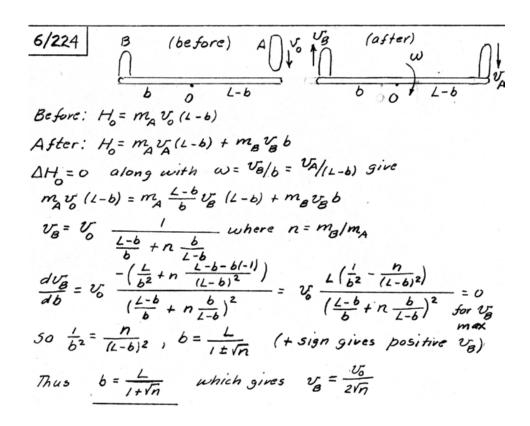
6/219 For the entire spacecraft, $\sum M_{\chi} = I_{\chi} \propto : 10^{-6} = 150,000 \, \text{d}$ $\propto = 6.67 \times 10^{-12} \, \text{rad/s}^2$ $\Theta = \Theta_0 + \omega_0 t + \frac{1}{2} \times t^2$ $\frac{1}{3600} \left(\frac{M}{180} \right) = 0 + 0 + \frac{1}{2} \left(6.67 \times 10^{-12} \right) t^2$ $t = 1206 \, \text{s}$

5/220 For system $U = \Delta T + \Delta V_g + \Delta V_e$ $U = 0, \Delta T = \frac{1}{2}I_0\omega^2 = \frac{1}{2}(\frac{1}{3}mL^2)(\frac{V_A}{L})^2$ $= \frac{1}{6}mV_A^2 = \frac{1}{6}\frac{60}{32.2}V_A^2 = 0.3106V_A^2$ $\Delta V_e = \frac{1}{2}kx^2 - 0$ $= \frac{1}{2}10(5-1)^2 = 80 \text{ ft-16}$ $V_A \Delta V_g = -60(2) = -120 \text{ ft-16}$ Thus $0 = 0.3106V_A^2 - 120 + 80$ $V_A^2 = 128.8, V_A = 11.35 \text{ ft/sec}$





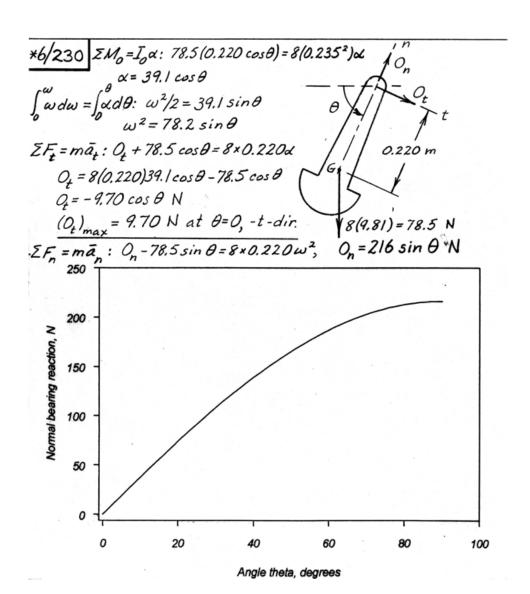
6/223 $\delta T_{both bolls} = 2ma_r \delta r$, $r = \frac{1}{12}(1+6\sin\beta)$ ft $a_r = -r\omega^2 = -r(15.71)^2$ $= -20.56(1+6\sin\beta)\frac{ft}{5\pi c^2}$ $\delta T = -2\frac{3}{32.2}(20.56)(1+6\sin\beta)\frac{cos\beta}{2}\delta\beta$ $\delta V_g = -20\delta h_2 - 2(3)\delta h_s$ $\delta V_g = -20\delta h$

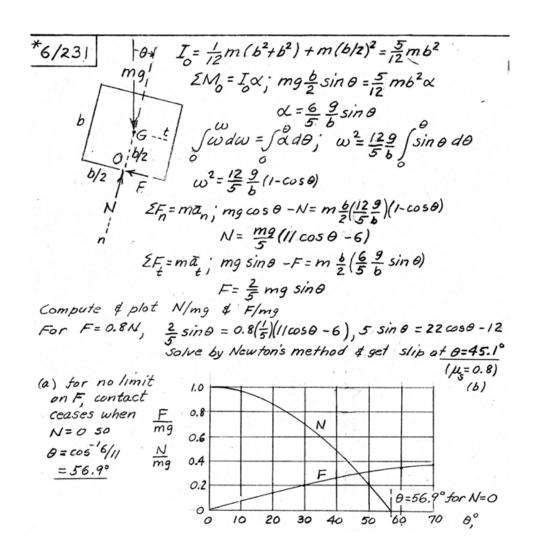


(a) Max. acceleration occurs when $F = \mu N_A = 0.8 N_A$ (b) $F = \mu N_A = 0.8 N_A$ (c) $F = \mu N_A = 0.8 N_A$ (c) $F = \mu N_A = 0.8 N_A$ (d) $F = \mu N_A = 0.8 N_A$ (e) $F = \mu N_A = 0.8 N_A$ (f) $F = \mu N_A = 0.8 N_A$ (g) $F = 0.8 (92.33) = 73.86 N_A$ (h) $F = 0.8 (92.33) = 73.86 N_A$ (g) $F = 0.8 (92.33) = 73.86 N_A$ (h) $F = 0.8 (92.33) = 73.86 N_A$ (h) F

►6/228 $\bar{I} = \frac{1}{12}mt^2 = \frac{1}{12}(4)(1.2)^2 = 0.48 \text{ kg·m}^2$, Fdt = 14 N·s C_y C_x C_y C_y C

►6/229 Fixed-axis rotation $\Sigma F_n = m\bar{a}_n : T - 150 = \frac{150}{32.2} \frac{13^2}{92/12},$ T = 253 1b15016 $\theta = \cos^{-1}(10/23) = 64.2^{\circ}$ T=253 16 B= 0-18°=46.2° ZF = 0: 253-Rcos18°-Pcos46.2°=0 IF, =0: Rsin 18°-Pcos 46.2°=0 Solve & get P=86.716, R=20316 $\gamma = \sin^{-1}\frac{13}{92} = 8.12^{\circ}$ $\Sigma F_{t} = m\bar{a}_{t}$: 203 sin 18° - $F_{t} = \frac{75}{32.2} \frac{13^{2}}{92/12} \sin 8.12$ F = 55.416 mān, k T+ ZMo = Io x = 0: 203 sin 18° (92-18.18) -75 (13) +55.4 (92) +M = 0 M = 504 lb-in. 203 lb





*6/232
$$U' = \Delta T + \Delta V_e + \Delta V_g$$
; $U' = 0$

$$\Delta T = \frac{1}{2} m \sigma^2 - 0 = \frac{1}{2} \frac{10}{32.2} \sigma^2 ft - 16$$

$$\Delta V_e = \frac{2}{2} k (x_2^2 - x_1^2) = 6 \left[(\sqrt{x^2 + 12^2} - 12)^2 - (15 - 12)^2 \right] \frac{1}{12}$$

$$= \frac{1}{2} \left[x^2 - 24 \sqrt{x^2 + 144} + 279 \right] ft - 16$$

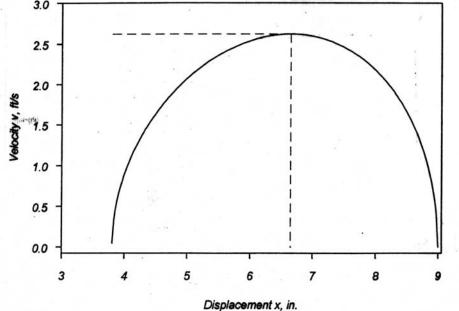
$$\frac{5}{32.2} \sigma^2 + \frac{x^2}{2} - 12 \sqrt{x^2 + 144} + \frac{279}{2} + \frac{15}{2} - \frac{5x}{6} = 0$$

$$\sigma^2 = \frac{32.2}{5} \left\{ 12 \sqrt{x^2 + 144} - \frac{x^2}{2} + \frac{5x}{6} - 147 \right\} (ft/sec)^2$$
(where x is in inches)

Plot σ vs. x (see continuation)
$$\sigma = 0 \text{ at } x = 3.81 \text{ in.}$$

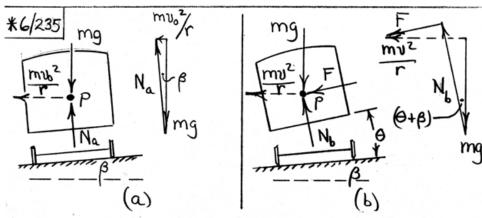
$$\sigma_{max} = 2.62 \text{ ft/sec at } x = 6.65 \text{ in.}$$
3.0

2.5



*6/233 $U = \Delta T$: $T = \frac{1}{2} I_c \omega^2 = \frac{1}{2} \frac{1}{3} \frac{W}{9} 4^2 \omega^2$ $U = Wh = W(2 - 2\cos\theta)$ $=2W(1-\cos\theta)$ Thus $2W(1-\cos\theta) = \frac{8W}{3g}\omega^2$, $\omega^2 = \frac{3g}{4}(1-\cos\theta)$ $\omega = \sqrt{(3\times32.2/4)(1-\cos\theta)} = 4.91\sqrt{1-\cos\theta}$ rad/sec $U_A = U_{A/B} \cos \theta = L \cos \theta$ $= 4 (4.91) \sqrt{1 - \cos \theta} \cos \theta \text{ ft/sec}$ UA = UB + UA/B: = 19.66 cos 0-11-cos0 = 7.57 ft/sec 6 Velocity of end A, ft/s 2 0 20 40 60 80 100 Angle theta, degrees

*6/234 From the solution of Prob. 6/23, $K\theta - \frac{5}{2} mgl \sin \theta - \frac{5}{2} mal \cos \theta = 0$ With numbers: $75\theta - 7.36 \sin \theta - 14.72 \cos \theta = 0$ Numerical solution: $\theta = 12.17^{\circ}$



(Passenger is shown as particle P above)
Note that F = 0.3 mv²/r

Note That
$$F = \frac{mv_0^2/r}{mg} = \frac{v_0^2}{gr} = \frac{(160/3.6)^2}{9.81(1900)}$$

 $\beta = 6.05^\circ$

(b) From the force polygon,

$$mg \sin (\theta + \beta) + \frac{0.3mv^2}{r^2} = \frac{mv^2}{r} \cos (\theta + \beta)$$

9.81 $\sin (\theta + \beta) + \frac{(260/3.6)^2}{1900} (0.3 - \cos (\theta + \beta)) = 0$
9.81 $\sin (\theta + \beta) + 2.75 [0.3 - \cos(\theta + \beta)] = 0$

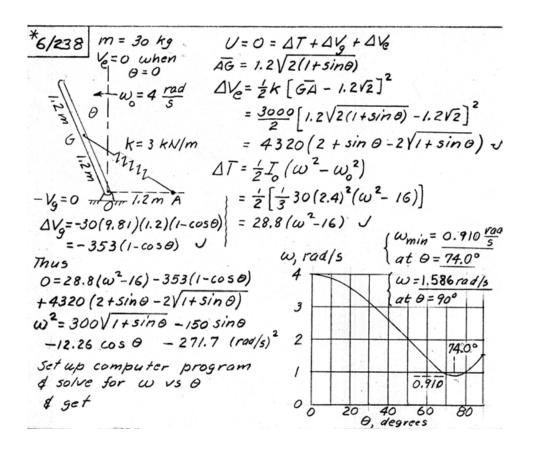
Numerical solution: $\theta = 4.95^{\circ}$

G+
$$\sum M_A = I_A \alpha$$
: 300 (3 $\sin \beta$) - 981 ($2 \sin \theta$) = 533 α

$$\frac{900}{\sqrt{2}} \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right) - 1962 \sin \theta = 533\alpha \quad (1)$$

$$\omega d\omega = \int_0^{\theta} \alpha d\theta : \omega^2 = \frac{2}{533} \int_0^{\theta} \left[\frac{900}{\sqrt{2}} \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right) - 1962 \sin \theta \right] d\theta$$
or $\omega^2 = \frac{2}{533} \left[\frac{1800}{\sqrt{2}} \left(1 - \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \right) - 1962 \left(1 - \cos \theta \right) \right] (2)$

- (a) For max ω , set $\alpha = 0$ in (1) f solve for θ : $\theta = 22.4^{\circ} \qquad \text{From } (2) : \underline{\omega_{\text{max}}} = 0.680 \frac{\text{rad}}{\text{S}}$
- (b) Solve (2) for w = 0: 0 max = 45.9°



$$\frac{*6/239}{O_X} \qquad \overline{r} = \frac{\sum m\overline{r}}{\sum m} = \frac{2m (1/2) + m(31/4)}{3m} = \frac{7}{12} l$$

$$I_0 = \frac{1}{3} (2m) l^2 + \left[\frac{1}{2} m (\frac{l}{4})^2 + m(\frac{31}{4})^2\right]$$

$$= \frac{|Z|}{96} m l^2$$

$$= \frac{|Z|}{96} m l^2$$

$$= \frac{168}{3} \frac{9}{12} \cos \theta$$

$$\Rightarrow \omega = \frac{168}{3} \frac{9}{12} \frac{1}{3} \cos \theta$$

$$\Rightarrow \omega = \frac{168}{3} \frac{9}{12} \frac{1}{3} \cos \theta$$

$$\Rightarrow \omega = \frac{168}{3} \frac{9}{12} \frac{1}{3} \frac{1}{3} \sin \theta$$

$$\Rightarrow t = \int_0^{\theta} \frac{d\theta}{\left[\omega_0^2 + \frac{336}{321} \frac{9}{3} \sin \theta\right]^{1/2}}$$
Numerical solution with
$$\begin{cases} \omega_0 = 3 \text{ rad/s} \\ l = 0.8 \text{ m} \\ \theta = \frac{1}{12} \frac{1}{2} \sin \theta \end{cases}$$

*6/240 (+ ZM = I = : 丒 mg & sin 0 = 3 mb2 0 $\ddot{\theta} = \frac{3}{2} \frac{9}{5} \sin \theta$ $\dot{\theta} d\dot{\theta} = \ddot{\theta} d\theta$; $\int_{0}^{4} \dot{\theta} d\dot{\theta} = \frac{3q}{2b} \int_{0}^{4} \sin\theta d\theta$ $\frac{\dot{\theta}^2}{3} - \frac{\theta_0^2}{3} = \frac{39}{2h} \left(\cos \theta_0 - \cos \theta \right)$ $\frac{d\theta}{dt} = \left[\dot{\theta}_0^2 + \frac{39}{b} \left(\cos\theta_0 - \cos\theta\right)\right]^{1/2}$ $\int_{0}^{t} dt = \int_{0}^{t} \frac{d\theta}{\left[\dot{\theta}_{0}^{2} + \frac{3\theta}{b} \left(c\omega \theta_{0} - c\omega \theta\right)\right]^{1/2}}$ With $\theta_0 = 10^{\circ} (0.1745 \text{ rad})$, b = 60', $g = 32.2 \frac{77}{\text{sec}^2}$ and $\dot{\theta}_0 = \frac{(v_A)_0}{L} = \frac{4.5}{60} = 0.0750 \text{ rod/sec}, a$ numerical solution yields t= 2.85 sec Energy considerations from to = 100 to 0 = 900: $\Delta T + \Delta V_9 = 0$ $\Delta T = \frac{1}{2} \pm 0 \left[\frac{v_A}{b} \right]^2 - \frac{1}{2} \pm 0 \left[\frac{(v_A)_0}{b} \right]^2 - \frac{1}{6} m \left[v_A^2 - (v_A)_0^2 \right]$ A Vg = - mg h = - mg \(\frac{b}{2} \) cas 10° 50 to [vn2 - 4.52] - x (32.2) 2 cos 10° = 0 UA = 75.7 ft/sec