$$3/1 \quad \forall_{2}^{2} - \psi_{1}^{2} = 2a(x_{2} - x_{1})$$

$$o^{2} - (\frac{100}{3.6})^{2} = 2a_{\chi}(50), a_{\chi} = -7.72 \text{ m/s}^{2}$$

$$1500(9.81) \text{ N}$$

$$4F$$

$$\Sigma F_{\chi} = ma_{\chi}: -4F = 1500(-7.72)$$

$$F = 2890 \text{ N}$$

$$\frac{3/2}{9} = 50(9.81)N \quad \sum Fy = 0: N - 50(9.81) \cos 15^{\circ} = 0$$

$$N = 474 N \quad \text{Throughout}$$

$$P = 0$$

$$F = 0$$

$$F = 0: F - 50(9.81) \sin 15^{\circ} = 0$$

$$F = 127.0 N$$

$$F_{max} = \mu_{s}N = 0.2(474) = 94.8 N < F: \text{ motion } \\ \sum F_{\chi} = ma_{\chi}: 0.15(474) - 50(9.81) \sin 15^{\circ} = 50a_{\chi}$$

$$\frac{a_{\chi} = -1.118 \text{ m/s}^{2}}{(b) P = 150 \text{ N}; Equilibrium check:}$$

$$\sum F_{\chi} = 0: 150 + F - 50(9.81) \sin 15^{\circ} = 0$$

$$F = -23.0 \text{ N}, |F| < F_{max} \text{ so no motion: } \\ a = 0$$

$$(c) P = 300 \text{ N}; Equilibrium check yields F = -173.0 \text{ N}$$

$$|F| > F_{max}; 300 - 0.15(474) - 50(9.81) \sin 15^{\circ} = 50a_{\chi}$$

$$a_{\chi} = 2.04 \text{ m/s}^{2}$$

$$\frac{3/4}{300\ 000\ (9.81)N} = \frac{-\overline{0.5}^{\circ}}{5} \sum F_{\chi} = ma_{\chi} :$$

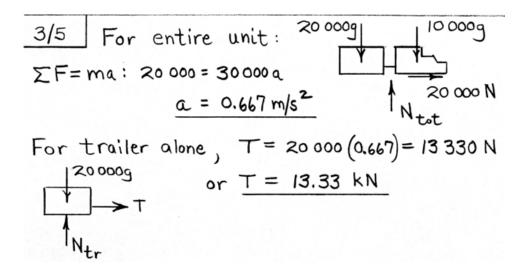
$$\frac{3(240\ 000) - 300\ 000\ (9.81)\sin\frac{1^{\circ}}{2} = 300\ 000\ a_{\chi}}{300\ 000\ a_{\chi}} = 2.31\ m/s^{2}$$

$$\frac{3(240\ 000)N}{300\ 000\ (9.81)N} = 2(2.31)s, \ S_{u} = 807\ m}{300\ 000\ (9.81)N} = F_{\chi} = ma_{\chi}:$$

$$\frac{300\ 000\ (9.81)N}{5\ (240\ 000)} = 2(2.31)s, \ S_{u} = 807\ m}{300\ 000\ (9.81)\sin\frac{1}{2}^{\circ}} = 300\ 000\ a_{\chi}} = 300\ 000\ a_{\chi}$$

$$\frac{3(240\ 000)}{3(240\ 000)} = 2.49\ m/s^{2}}{3(240\ 000\ m} = 300\ 000\ a_{\chi}} = 300\ 000\ a_{\chi}}$$

$$\frac{300\ 000\ a_{\chi}}{3(240\ 000)} = 2(2.49)s, \ S_{d} = 751\ m}{300\ 000\ a_{\chi}}$$



$$\frac{3/6}{ZF_{x} = ma_{x}}; mg \sin 40^{\circ} - \mu_{k} mg \cos 40^{\circ}$$

= ma
$$a = 9.81 (\sin 40^{\circ} - \mu_{k} \cos 40^{\circ})$$

= 6.31 - 7.51 \mu_{k}

For constant accel. $s = v_0 t + \frac{1}{2} a t^2$: $20 = 0 + \frac{1}{2} (6.31 - 7.51 \mu_k) 2.58^2$ $\mu_k = 0.0395$

$$\frac{3/7}{(a)} \quad \Sigma F = ma; \quad T - 100 = \frac{100}{32.2}a$$

$$(a) T \uparrow \qquad T \uparrow \qquad 150 - T = \frac{150}{32.2}a$$

$$a \qquad \downarrow a \qquad 50 = \frac{250}{32.2}a, \quad a = \frac{32.2}{5} = 6.44 \frac{5t}{5cc^2}$$

$$(b) \qquad 150 \ 16 \qquad 150 \ -100 = \frac{100}{32.2}a, \quad a = \frac{32.2}{2} = 16.10 \frac{5t}{5cc^2}$$

$$(b) \qquad 150 \ 16 \qquad 150 \ -100 = \frac{100}{32.2}a, \quad a = \frac{32.2}{2} = 16.10 \frac{5t}{5cc^2}$$

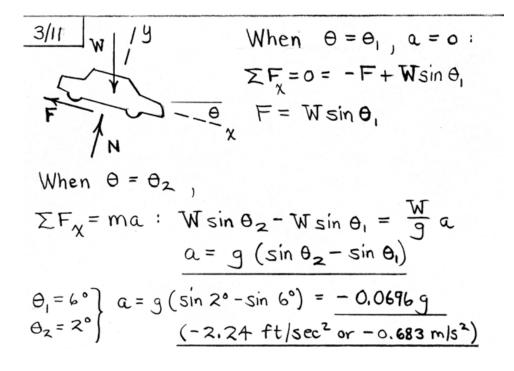
3/8 60 lb. 120 lb $\sum F_{y} = ma_{y} : \ 180 - 170 = \frac{170}{32.2}a$ $a = 1.894 \ ft/sec^{2}up$ У I 170 lb

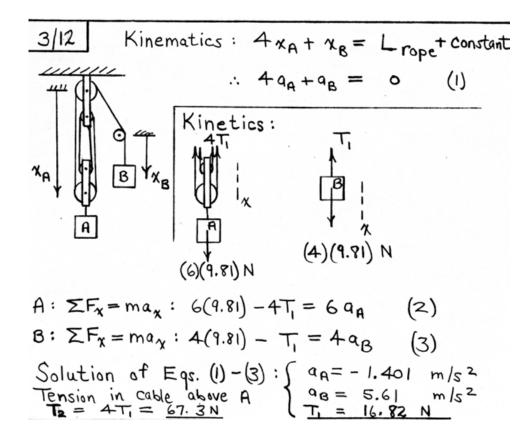
 $\begin{array}{rcl}
\hline & 60/b & \Sigma F_{\chi} = m a_{\chi} \\
\hline & 120/b & 60 + 120 - 250 \sin 15^{\circ} \\
\hline & & = \frac{2.50}{32.2} a \\
a = \frac{32.2}{250} (180 - 64.7) = 14.85 \, \text{ft/sec}^2
\end{array}$ 3/9 250 ib г 1N 150

$$\frac{3/10}{4T} + \frac{1}{4} \sum F = ma : 4(40,000) = \frac{750,000}{32.2} a$$

$$a = 6.87 \text{ ft/sec}^{2}$$

$$\frac{4T}{4T} + \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = \frac{1}{4} -$$





a=5ft/sec² 3/13 P ZF=max; 130 100 Ib P(1+ cos 30°) - 0.25N - 100 sin **3**0° = <u>100</u> 32.2 (5) 30° 0.25N P = 43.8 16

3/14 Coupler 1 will fail first, because it must accelerate more mass than any other coupler.

Rear part of train:

$$\sum_{x=20}^{202} \xrightarrow{102} 102 \text{ T} \qquad \sum_{x=102}^{102} \sum_{x=102}^{102} \text{ T} = 0.2 = \left(\frac{5/16}{32.2}\right) \alpha$$

$$a = 20.6 \text{ ft/sec}^2$$

Whole train:

$$\sum_{x=1}^{202} \xrightarrow{502}_{y} \sum_{x=1}^{7} \sum_{$$

$$\frac{3/15}{\text{ het m be the mass of each car}}$$

and 2m that of the locomotive.
$$\frac{102 \text{ mg}}{40,000} \stackrel{=}{\Rightarrow} \sum F = \text{ma}:$$

$$\frac{40,000}{32.2} = \frac{102(200,000)}{32.2} = 0.0631 \text{ ft/sec}^2$$

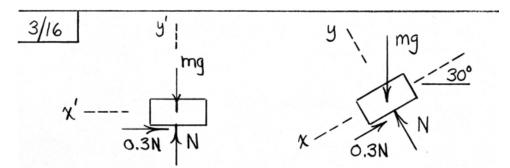
$$\frac{100 \text{ mg}}{N} \stackrel{=}{\Rightarrow} \sum F = \text{ma}: T_{1} = \frac{100(200,000)}{32.2} = 0.0631$$

$$\frac{100}{N'} \stackrel{=}{\Rightarrow} \sum F = \text{ma}: T_{1} = \frac{100(200,000)}{32.2} = 0.0631$$

$$\frac{100}{N'} \stackrel{=}{\Rightarrow} \sum F = \text{ma}: T_{100} = \frac{1(200,000)}{32.2} = 0.0631$$

$$\frac{100}{N'} \stackrel{=}{\Rightarrow} \sum F = \text{ma}: T_{100} = \frac{1(200,000)}{32.2} = 0.0631$$

$$\frac{100}{N'} \stackrel{=}{\Rightarrow} \sum F = \text{ma}: T_{100} = \frac{1(200,000)}{32.2} = 0.0631$$



- A to B; $\Sigma F_y = 0 \Rightarrow N = 0.866 \text{ mg}$ $\Sigma F_x = ma_x : \text{ mg sin } 30^\circ - 0.3(0.866 \text{ mg}) = ma$ $a_x = 2.36 \text{ m/s}^2$ $v_B^2 = v_A^2 + 2a_x d: v_B^2 = 0.8^2 + 2(2.36)(2)$ $v_B = 3.17 \text{ m/s}$
- B to C: $\Sigma F_{y'} = 0 \implies N = mg$ $\Sigma F_{x'} = ma_{x'}: -0.3(mg) = ma_{x'}, a_{x'} = -7.94 \text{ m/s}^2$ $U_c^2 = U_B^2 + 7a_{x'}s: 0 = 3.17^2 - 2(7.94)s$ S = 1.710 m

$$\frac{3/19}{2F_{x}} = ma_{x}; -0.3mg = ma_{x}$$

$$a_{x} = -0.3g = -0.3(9.81) = -2.94 \text{ m/s}^{2}$$

$$\int_{v}^{v} dv = \int_{a_{x}}^{s} dx; -\frac{v}{2}^{2} = a_{x}s$$

$$S = \frac{-(70/3.6)^{2}/2}{-2.94} = \frac{64.3m}{2}$$

$$\frac{3/20}{\sqrt{2}} \operatorname{Truck} : \begin{cases} v^2 - v_0^2 = 2a_{T}(x-x_0) \\ o^2 - (19.44)^2 = 2a_{T}(50-0) \\ a_{T} = -3.78 \text{ m/s}^2 \end{cases}$$
Crate :

$$\frac{mq}{\sqrt{2}} \sum F_x = ma_x : -F = m(-3.78) \\ F = 3.78 \text{ m} \end{cases}$$
F = 3.78 m
F = 3.78 m
F = 3.78 m
F = 3.78 m
F > F_{max} = \mu_s N = 0.3(m 9.81) = 2.94 m
F > F_{max}, crate slips, F = \mu_k N
$$\therefore \sum F_x = ma_x : -0.25 \text{ mg} = ma_{c}, a_c = -2.45 \text{ m/s}^2$$

$$a_{c/T} = a_c - a_T = -2.45 - (-3.78) = 1.328 \text{ m/s}^2$$

$$v_{c/T} - v_{c/T_0}^2 = 2a_{c/T}(x_{c/T} - x_{c/T_0})$$

$$v_{c/T}^2 - v_{c/T_0}^2 = 2(1.328)(3-0), \frac{v_{c/T} = 2.82 \text{ m/s}}{(\text{Truck stopping time} = 5.14 \text{ s, crate impacts at 2.13 s})$$

 $\begin{aligned} \sum F_{\chi'} = mq_{\chi'}; \\ mg\cos(45^{\circ}+30^{\circ}) &= ma\cos45^{\circ} \\ a &= g \frac{\cos 75^{\circ}}{\cos 45^{\circ}} = 9.81 \frac{0.2588}{0.7077} \end{aligned}$ 3/21 ×, W=mg ٧, 30 a F=0 450 = 0.366g 1450 FA

$$3/22 \quad x = X \sin \omega t$$

$$\dot{x} = X \omega \cos \omega t$$

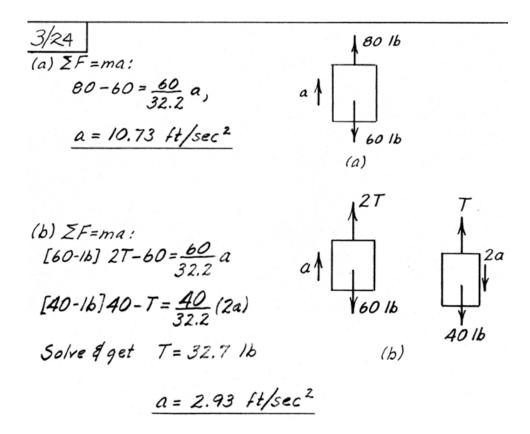
$$\ddot{x} = -X \omega^{2} \sin \omega t, \quad \ddot{x} \max = X \omega^{2}$$
FBD of circuit board:
$$V \xrightarrow{- \to \chi}$$

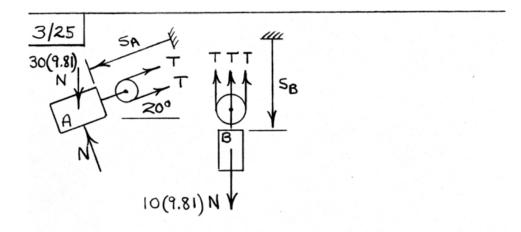
$$F \xrightarrow{\qquad} F \xrightarrow{\qquad} \Sigma F_{x} = \max_{x} : \quad F = m(-X \omega^{2} \sin \omega t)$$

$$F \xrightarrow{\qquad} F \xrightarrow{\qquad} F_{x} = \max_{x} : \quad F = m(-X \omega^{2} \sin \omega t)$$

3/23

$$20(9.81) = 196.2 \text{ M}$$
 (a) $2P = 120 \text{ N}$
 $\mu = 0.5$
 196.2 N
 $4 F = 98.1 \text{ N}$
 $4 F = 98.1 \text{ N}$
 $4 F = 98.1 \text{ N}$
 $100(9.81)$
 $100(9.81)$
 $4 F = 98.1 \text{ N}$
 $4 F = 100.0 \text{ A}$
 $4 F = 0.981 \text{ M}$
 $4 F = 98.1 \text{ N}$
 $4 F = 0.981 \text{ M}$
 $4 F = 98.1 \text{ N}$
 $4 F = 98.1$





Kinematic constraint: $L = 2S_A + 3S_B$ $\Rightarrow 0 = 2a_A + 3a_B$ (1) $\downarrow = \Sigma F = m_A a_A : 30(9.81) \sin 20^\circ - 2T = 30a_A$ (2) $+ \downarrow = \Sigma F = m_B a_B : 10(9.81) - 3T = 10a_B$ (3) Solution of Eqs. (1)-(3): $\begin{cases} \frac{a_A = 1.024 \text{ m/s}^2}{a_B = -0.682 \text{ m/s}^2} \\ T = 35.0 \text{ N} \end{cases}$

$$\begin{array}{rcl} 3/26 & Check for motion. Assume \\ y' & T & Static equilibrium. From B, \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

 $\frac{3/28}{91} \quad \text{Three-car unit:} \qquad (\theta = \tan^{-1}(\frac{5}{100}) = 2.86)$ $\frac{91}{91} \qquad x \qquad \sum F_y = 0 \Rightarrow N = mg \cos\theta$ $\sum F_x = ma_x : 0.5 mg \cos\theta - mg \sin\theta$ = ma $mg V N \qquad \alpha = g(0.5 \cos\theta - \sin\theta) = 4.41 \text{ m/s}^2$ $Car A: \qquad \sum F_y = 0: N_A = m_A g \cos\theta$ $91 \quad T_1 \qquad x \qquad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = ma_x : T_1 + 0.5 m_A g \cos\theta$ $V = \frac{1}{9} \quad \sum F_x = 0$

By similar analyses:

	(L)	(c)	(d)
a	2.78 m/s^2	2.78 m/s^2	2.78 m/s ²
Ti	32 700 N (T)	16 330 N (C)	16 330 N (C)
T2	16 330 N (T)	16 330 N (T)	32 700 N (C)

$$\frac{3/29}{D} \qquad \begin{array}{c} 1 \\ \xrightarrow{X} \\ \xrightarrow{D} \\ \end{array} \qquad \left(\text{Neglect weight for now} \right) \\ \sum F_{\chi} = ma_{\chi}: -D = -C_{D} \\ \xrightarrow{1}{2} P u^{2} S = m U \\ \xrightarrow{du}{d\chi} \\ \int_{0}^{\chi} (-C_{D} \\ \xrightarrow{1}{2} P S) \\ dx = m \\ \begin{array}{c} \frac{1}{2} \frac{dU}{U} \\ \frac{1}{2}$$

For $v_0 = 90$ mi/hr and x = 60 ft: v = 81.7 mi/hr Comment on y-motion. Assume v = 90 mi/hr = constant. Time t to plate is $t = \frac{60}{90(5280/3600)} = 0.455$ sec $v_y = v_{y_0} - gt = -32.2(0.455) = -14.64$ ft/sec, which would not oppreciably change $v = \sqrt{v_x^2 + v_y^2}$.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

PgL **3/**30 ZFx=max; $\begin{array}{c|c} x \rightarrow p \\ \hline & & P \\ \hline & & P \\ \hline & & & P \\ \hline & & & P \\ \hline & & & P \\ \hline & & & P \\ \hline$ 00 P9(L-X) $\frac{\mathcal{V}^{2}}{2} = \int \left(\frac{P}{\rho L} - \frac{\mu_{k}g\chi}{L}\right) d\chi = \frac{P}{\rho} - \frac{\mu_{k}gL}{2}, \quad \mathcal{V} = \sqrt{\frac{2P}{\rho} - \mu_{k}gL}$ From $\frac{v^2}{2} = \int_{x}^{x} \left(\frac{P}{PL} - \frac{M_{k}gx}{L}\right) dx$, we obtain $v(x) = \sqrt{2 \stackrel{\times}{\leftarrow} (\stackrel{\times}{e} - M_k g \stackrel{\times}{\geq})}$ Note that $v(L) \ge 0$ if $P \ge M_k lg \stackrel{\times}{\equiv} = P_{min}$

$$\frac{3/31}{10(9.81)N} \qquad \sum F_{\chi} = ma_{\chi} : P = 10a_{\chi}$$

$$\frac{1}{10} = \frac{dv}{dt}, \quad v = \int_{0}^{t} \frac{P}{10} dt$$
For $P_{1} = 10t$:
$$v = t^{2}/2, \quad s = t^{3}/6$$
At $t = 5s, \quad v = 12.5 \text{ m/s}, \quad s = 20.8 \text{ m}$
For $P_{2} = kt^{2}$: $50 = k(5)^{2}, \quad k = 2 \text{ N/s}^{2}$
So $P_{2} = 2t^{2}$

$$v = \int_{0}^{t} \frac{2t^{2}}{10} dt = \frac{t^{3}}{15}, \quad s = \frac{t^{4}}{60}$$
At $t = 5s, \quad v = 8.33 \text{ m/s}, \quad s = 10.42 \text{ m}$

$$\frac{3/32}{L} = \frac{19}{1200} = \frac{19}{2000} = \frac{1250}{2000} = 7.13^{\circ}$$

$$\begin{aligned} v_{B}^{2} - v_{A}^{2} &= 2a_{\chi} \left(5_{B} - 5_{A} \right); \\ \left(\frac{200}{3.6} \right)^{2} - \left(\frac{300}{3.6} \right)^{2} &= 2a_{\chi} \left(\frac{2000}{\cos 7.13} \right), \quad q_{\chi} = -0.957 \text{ m/s}^{2} \\ \sum F_{\chi} &= ma_{\chi}; \quad D + 200 \left(10^{3} \right) (9.8) \sin 7.13^{\circ} = \\ &= 200 (10^{3}) \left(-0.957 \right), \quad D = 435 \text{ kN} \\ \sum F_{y} &= 0; \quad L - 200 \left(10^{3} \right) (9.81) \cos 7.13^{\circ} = 0 \\ L &= 1.947 \text{ MN} \end{aligned}$$

The net aerodynamic force is then

$$R = \sqrt{L^2 + D^2} = \sqrt{1.947^2 + 0.435^2} = 1.995 \text{ MN}$$

$$\frac{3/36}{1 \times 10^{-5}} = 150 \times +400 \times^{2} (N)$$

$$+ \uparrow \Sigma F = 0 \Rightarrow N = 58.9 N$$

$$F_{s} = 17.66 N$$

$$(a) \times = 50 \text{ mm} : F_{s} = 150(0.050) + 400(0.050)^{2}$$

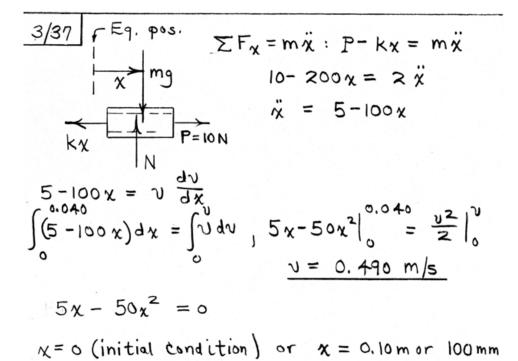
$$= 8.5 N < F_{max}$$

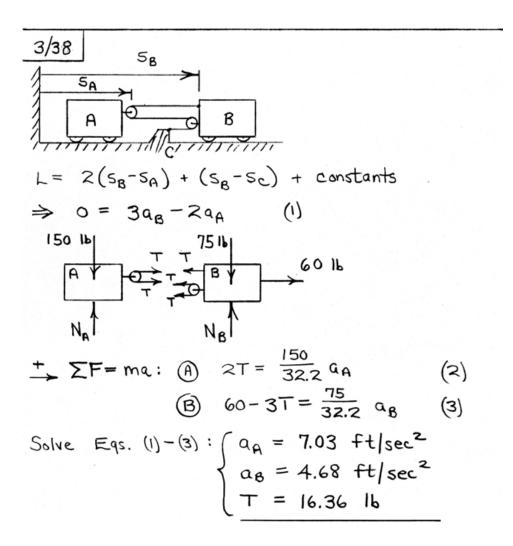
$$S_{0} = \frac{10}{10}$$

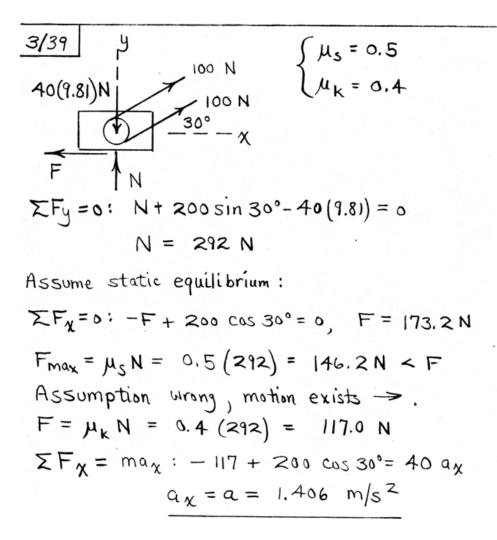
$$(b) F_{s} = 150(0.1) + 400(0.1)^{2} = 19 N > F_{max}$$

$$\Sigma F_{\chi} = ma_{\chi} : -19 + 0.25(58.9) = 6q$$

 $a = -0.714 \text{ m/s}^2$







$$\frac{3/41}{M_{p}} = \frac{mg}{2F_{y}} = ma_{y}; \quad mg - kv = ma$$

$$a = g - \frac{k}{m}v$$

$$R = kv \quad v \quad v \quad dv = a \quad dy, \quad \int \frac{v \quad dv}{g - \frac{k}{m}v} = \int \frac{dy}{dy}$$

$$\frac{m^{2}}{H^{2}} \left[(g - \frac{k}{m}v) - g \ln (g - \frac{k}{m}v) \right]^{v} = h$$

$$h = \frac{m^{2}}{H^{2}} \left[-\frac{k}{m}v - g \ln (l - \frac{kv}{mg}) \right]$$

$$h = \frac{m^{2}}{H^{2}} \quad g \ln \left(\frac{l}{l - \frac{kv}{mg}} \right) - \frac{mv}{k}$$

 $\frac{3/42}{y} \begin{array}{|c|} mg & \mathcal{E}F_{y} = ma_{y}; mg - cv^{2} = ma \\ a = g - \frac{c}{m}v^{2} \\ y' & \mathcal{V}dv = ady, \int \frac{v}{g - \frac{c}{m}v^{2}} = \int dy \\ R = cv^{2} & \mathcal{V}dv = ady, \int \frac{v}{g - \frac{c}{m}v^{2}} = \int dy \\ -\frac{m}{2c} \ln \left(g - \frac{c}{m}v^{2}\right) \Big]^{v} = h, h = \frac{m}{2c} \ln \left(\frac{mg}{mg - cv^{2}}\right)$

$$\frac{3/43}{19} \begin{cases} \sum F_{\chi} = ma_{\chi}; -F\cos\theta + N\sin\theta = m_{2}a \\ \sum Fy = 0; F\sin\theta + N\cos\theta - m_{2}g = 0 \end{cases}$$

$$F = m_{2}(g\sin\theta - a\cos\theta)$$
(slipping impends *)
$$\begin{cases} F = m_{2}(g\sin\theta - a\cos\theta) \\ N = m_{2}(a\sin\theta + g\cos\theta) \end{cases}$$
For impending slip, $F = M_{5}N$, or $m_{2}(g\sin\theta - a\cos\theta) = \mu_{5}m_{2}(a\sin\theta + g\cos\theta)$
Solving for $a: a = g \frac{\sin\theta - \mu_{5}\cos\theta}{\cos\theta + \mu_{5}\sin\theta}$
With numbers, $a = 0.0577g (Note: \tan^{-1}\mu_{5})$
Let slipping impend up the inclined block (reverse $F \text{ on obove } F^{\text{s}}D) \neq \text{obtain}$
 $a = g \frac{\sin\theta + \mu_{5}\cos\theta}{\cos\theta - \mu_{5}\sin\theta} = 0.745g$

$$P (m_{1}+m_{2})g \sum F_{\chi} = ma_{\chi}; P = (m_{1}+m_{2})a$$

$$N_{tot} = 0.0577(m_{1}+m_{2})g \leq P \leq 0.745(m_{1}+m_{2})g$$

$$\frac{3/44}{x_{A}^{2} + x_{B}^{2}} = l^{2}$$

$$\frac{3/44}{x_{B}^{2} + x_{B}^{2} + x_{$$

 $\sin \frac{150^{\circ}}{l} = \frac{\sin 15^{\circ}}{s_{B}}, S_{B} = S_{A} = 0.259 \text{ m}$ 3/45 в Sß RB Law of cosines: 12 = SA2 + SB2 - ZSA SB COS 150° $211=0=25_{A}V_{A}+2s_{B}V_{0}-2(-\frac{13}{2})(5_{A}V_{B}+s_{B}V_{A})$ $SAVA + SBVB + \frac{\sqrt{3}}{2} (SAVB + VASB) = 0^*$ With $S_{A} = S_{B} = 0.259 \text{ m}$, $v_{A} = 0.4 \text{ m/s}$: $v_{B} = -0.4 \text{ m/s}$ Differentiate # : UA2+SARA + VB2+SBAB+ 5 (SAAB + VAVB + QA SB + VAVB)=0 0.483 9A + 0.483 9B + 0.0429 = 0 (I)Numbers : Kinetics : + $\Sigma F = ma_B$: - $T \cos 15^\circ = 3a_B$ (2) $\stackrel{+}{\longrightarrow} \Sigma F = ma_A : 40 - T \cos 15^\circ = 2 a_A$ (3) Solution of Eqs. (1)-(3): T= 25.0 N $q_{A} = 7.95 \text{ m/s}^{2}$ as = - 8.04 m/s2

►3/46 m
F =
$$\frac{Gm^2}{x^2}$$

m = $PV = 7210 \left(\frac{4}{3} \text{ m } 0.05^3\right)$
= 3.775 kg
 $\Sigma F_x = ma_x : - \frac{Gm^2}{(2x)^2} = mv \frac{dv}{dx}$
 $T = \frac{Gm}{4} \int \frac{dx}{x^2} = \int v \, dv$
 $x_0 = 0.5$ $V_0 = 0$
 $V = \sqrt{Gm} \sqrt{\frac{1}{2x} - 1} = \sqrt{6.673 \times 10^{-11}} (3.775) \sqrt{\frac{1}{2}(0.05)} - 1$
 $= \frac{4.76 \times 10^{-5} \text{ m/s}}{\sqrt{\frac{1}{2} - x}}$
Now, $\frac{dx}{dt} = -\sqrt{Gm} \sqrt{\frac{1}{2} - \frac{x}{x}}$
 $\int \frac{\sqrt{1}x}{\sqrt{\frac{1}{2} - x}} = -\sqrt{Gm} \int \frac{dt}{dt}$
 $x_0 = 0.5$
 $\left[-\sqrt{x} \sqrt{\frac{1}{2} - x} + \frac{1}{2} \sin^{-1} \sqrt{2x} \right]_{x=0.05}^{x=0.05} = -\sqrt{Gm} t$
Solving, $\frac{t=48,800 \text{ s}}{5}$ or $t = 13 \text{ hr } 33 \text{ min}$

$$\frac{||\mathbf{x}||^{2}}{||\mathbf{x}||^{2}}$$
 Let $f = \max ||\mathbf{x}||^{2}$ Let $f = \max |$

$$\frac{3}{48} + 1 \sum F = ma : 2T \frac{y}{\sqrt{b^2 + y^2}} - mg = ma, a = -ij
T = \frac{m(a+g)\sqrt{b^2 + y^2}}{2y} where a = f(v, y)
Let L = length of cable ABC = $2\sqrt{b^2 + y^2} \frac{mg}{\sqrt{b^2 + y^2}}, \quad L = 2\frac{\sqrt{b^2 + y^2}}{b^2 + y^2} - 2\frac{yj(yj)}{(b^2 + y^2)\sqrt{b^2 + y^2}} = 0$
so $\sqrt{b^2 + y^2} \left(\frac{v^2(b^2 + y^2)}{4y^2} + yij\right) = \frac{y^2}{\sqrt{b^2 + y^2}} \frac{v^2(b^2 + y^2)}{4y^2} = 0$
Simplify and get $ij = -\frac{b^2v^2}{4y^3} = -a$
Thus $T = \frac{m(g + \frac{b^2v^2}{4y^3})\sqrt{b^2 + y^2}}{2y}, \quad T = \frac{m}{2y}\sqrt{b^2 + y^2} \left(g + \frac{b^2v^2}{4y^3}\right)$$$

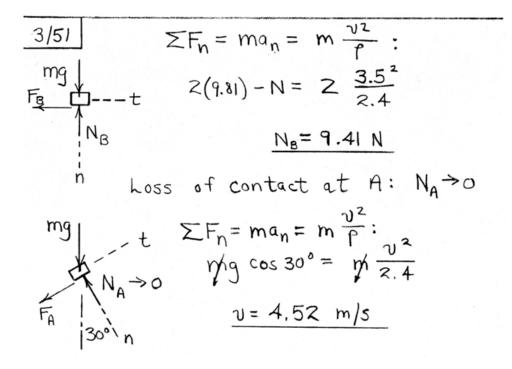
3/49 n	$\sum F_n = ma_n = m \frac{v^2}{p}$:
2(9.81)N	$N - 2(9.81) = 2 \frac{4^2}{1.5}$
N N	N = 41.0 N up

Any friction present would not enter the normal equation.

$$\frac{3/50}{N = \frac{3}{16} lb} \sum F_n = mq_n = m \frac{v^2}{p} :$$

$$\frac{3}{16} = \frac{2/l6}{32.2} \left(\frac{5^2}{p}\right)$$

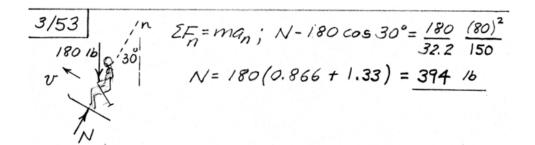
$$\frac{f = 0.518 \text{ ft}}{16} = \frac{12}{32} \left(\frac{5}{16}\right)$$

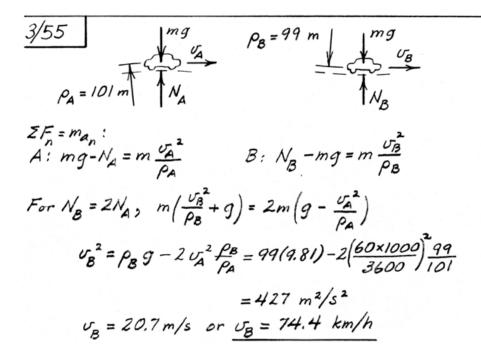


$$\begin{array}{ccc} 3/52 \\ \hline Mg \\ Mg \\ A \\ \hline Ma \\ n \\ \end{array} \begin{array}{c} \Sigma F_n = ma_n : -N + mg \cos 30^\circ = m \frac{V_A^2}{f} \\ N_A = m \left(g \cos 30^\circ - \frac{V_A^2}{f}\right) \\ = 2 \left(9.81 \cos 30^\circ - \frac{4.5}{2.4}\right) \\ = 0.1164 N \\ \hline \end{array}$$

$$\Sigma F_{t} = ma_{t} :- mg \sin 30^{\circ} = ma_{t}$$

 $a_{t} = -\frac{g}{2} = -4.90 m/s^{2}$



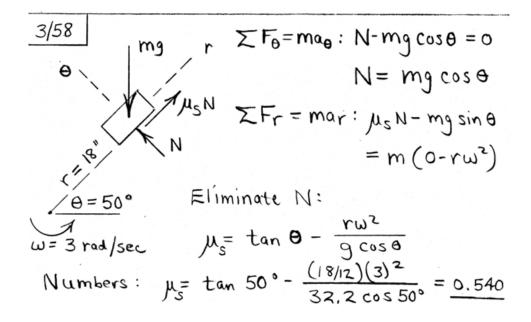


$$\frac{3/57}{Slider} \sum F_{\theta} = ma_{\theta} = m(r\theta + 2i\theta); N = 0.2 \cos 30^{\circ}$$

$$Slider : = \frac{0.2}{32.2} (r\theta + 2(-4)(3))$$

$$F = N = 0.024 \text{ lb}$$

$$N = 0.024 \text{ lb}$$



$$\begin{array}{c|c} \hline 3/59 \\ \hline \Sigma Fy = \mathbf{o} : \ N \ \overline{\frac{12}{2}} - mg = \mathbf{o}, \ N = \frac{2}{\sqrt{2}} mg \\ \hline y \\ \hline \Sigma F_n = ma_n : \ N \ \overline{\frac{52}{2}} = m\left(3R + R \ \overline{\frac{52}{2}}\right) \ \Omega^2 \\ \hline n & - Q \\ \hline n & \frac{2}{\sqrt{2}} mg\left(\frac{\sqrt{2}}{2}\right) = mR\left(3 + \frac{\sqrt{2}}{2}\right) \ \Omega^2 \\ \hline mg & 45^\circ \end{array}$$
With R = 0.200 m, $\ \Omega = 3.64 \ \frac{rad}{s}$

$$\frac{3/60}{0 \text{ mg}} \sum F_{h} = m \frac{\sqrt{2}}{f} : mg = m \frac{\sqrt{2}}{1}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = 3.13 \text{ m/s}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2} = 3.13 \text{ m/s}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = 3.13 \text{ m/s}$$

$$\frac{3/6/}{n} + \frac{\sqrt{2}}{r} = \frac{\left[(35)(\frac{5280}{3600})\right]^2}{100}$$

$$\frac{-1}{n} + \frac{1}{F} = 26.4 + \frac{1}{5ec^2} \left(\frac{1}{32.2} + \frac{1}{1}\right)$$

$$= 0.818 \text{ g}$$

$$\Sigma F_n = ma_n : F = \frac{3000}{32.2} (26.4)$$

$$= \frac{2460 \text{ lb}}{16}$$
(An average of 614 lb per tire!)

$$\frac{3/62}{100} t \qquad \sum F_{n} = ma_{n} : F_{n} = \frac{3000}{32.2} \left(\frac{(25 \cdot \frac{5280}{3600})^{2}}{100}\right)^{2}$$

$$F_{n} = 1253 \ 1b$$

$$F_{n} = 1253 \ 1b$$

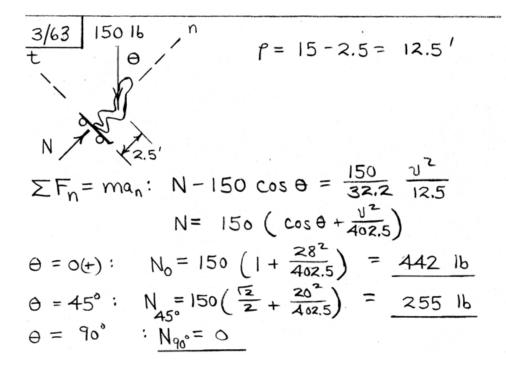
$$\int F_{n} = F_{n} \sqrt{F_{n}^{2} + F_{t}^{2}} = F_{tot}$$

$$F_{t} \sqrt{F_{n}^{2} + F_{t}^{2}} = 2400^{2}$$

$$F_{t} = 2047 \ 1b$$

$$\sum F_{t} = ma_{t} : -2047 = \frac{3000}{32.2} \ a_{t}$$

$$a_{t} = -22.0 \ ft/sec^{2}$$



$$\frac{3/64}{3m} \xrightarrow{\text{y}} \Sigma F_n = ma_n :$$

$$\frac{3m}{160^{\circ}} \xrightarrow{\text{lom}} T_{\text{sin}} 60^{\circ} = m[3+10\sin 60^{\circ}] \omega^2$$

$$\Sigma F_y = 0: T\cos 60^{\circ} - mg = 0$$

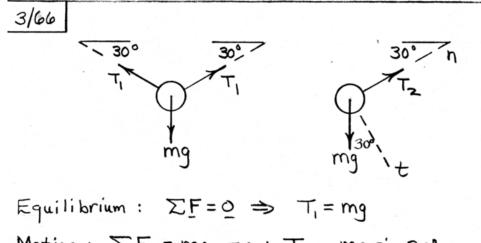
$$\Sigma F_y = 0: T\cos 60^{\circ} - mg = 0$$

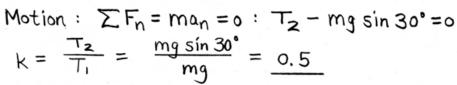
$$\Rightarrow \tan 60^{\circ} = \frac{3+10\sin 60^{\circ}}{9.81} \omega^2$$

$$\omega = 1.207 \operatorname{rad}/s$$

$$N = 1.207 \left(\frac{60}{2\pi}\right) = 11.53 \operatorname{rev}/min$$

 $\Sigma F_{\theta} = m (r\ddot{\theta} + 2\dot{r}\dot{\theta})$ P = 0.06 (0 + 2[600][0.5]) P = 36 NContact is against right-hond
Side of barrel. z3/65 mg θ mg





$$\frac{3/67}{n \cdot 1} \sum_{\substack{n \in \{1,8\}\}} K_{n}} \sum F_{n} = ma_{n} :$$

$$N_{A} - 90 (9, 81) = 90 \frac{(600/3.6)^{2}}{1000}$$

$$A: \underbrace{N_{A}} = 3380 \text{ N}$$

$$B: \underbrace{N_{B}}_{NA} \sum F_{n} = ma_{n} :$$

$$B: \underbrace{N_{B}}_{T} = 90 \frac{(600/3.6)^{2}}{1000}$$

$$N_{B} + 90 (9.81) = 90 \frac{(600/3.6)^{2}}{1000}$$

$$N_{B} = 1617 \text{ N}$$

$$N_{B} = 1617 \text{ N}$$

(Note static normal $m_3 = 90(9.81) = 883 N$)

$$\frac{3/68}{3/68} = (4000 \frac{\text{rev}}{\text{min}})(\frac{4 \text{min}}{60 \text{ sec}})(\frac{2\pi \text{ rad}}{\text{sec}})$$

$$= 4/8.9 \text{ rad/sec}$$
FBD of pebble :
$$N = \frac{18.9 \text{ rad/sec}}{2\mu_s} = \frac{18.9 \text{ rad/sec}}{(0.010)(0.350)(4/8.9)^2}$$

$$M = \frac{18.9 \text{ rad/sec}}{2\mu_s} = \frac{(0.010)(0.350)(4/8.9)^2}{2(0.95)}$$

$$N = \frac{12.3 \text{ N}}{2(0.95)}$$
Tire Center

$$\frac{3/70}{(R+h)} = \sum_{i=1}^{t} \sum_{i=1}^{t} F_{n} = ma_{n} : F = \frac{Gm_{e}m}{(R+h)^{2}} = m \frac{\sqrt{2}}{(R+h)}$$

$$F = \frac{1}{(R+h)} But \quad V = \frac{1}{2} = \frac{2\pi(R+h)}{(23.944)(3600)}$$

$$Combining the two equations:$$

$$V = \frac{2\pi(R+h)}{(23.944)(3600)} = -\sqrt{\frac{Gm_{e}}{(R+h)}}$$
Solve for h to obtain $\frac{h = 3.580 \times 10^{7} \text{ m}}{(35,800 \text{ km})}$

3/71 Point A :	$\Sigma F_n = mq_n$:
∑ 75 (9.81) N	$N_{\rm A} = 75(9,81) = 75 \frac{22^2}{40}$
t NA	$N_{A} = 1643 N$

Point B:	$\Sigma F_n = ma_n$:
√75(9.81) N	$75(9.81) - N_8 = 75 \frac{12^2}{20}$
M Λ N _B	$N_{B} = 195.8 N$
n' (Note	static normal of magnitude mg = 75(9.81) = 736 N
(N =)	mg = 75(9.81) = 736 N

$$\frac{3/72}{\Theta} = \frac{\pi}{3} \sin 0.950 t$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) \cos 0.950 t$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) \cos 0.950 t$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = \frac{\pi}{3} (0.950) = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = 0.995 \text{ rod} \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = 0.995 \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = 0.95 \text{ rod} \text{ rod} \text{ rod} \text{ ls}$$

$$\frac{\Theta}{\Theta} = 0.95 \text{ rod} \text{$$

$$\frac{3/73}{N} = \frac{1}{N} \sum F_y = 0: N \cos\theta - mg = 0$$

$$N = \frac{1}{Mg} \cos\theta$$

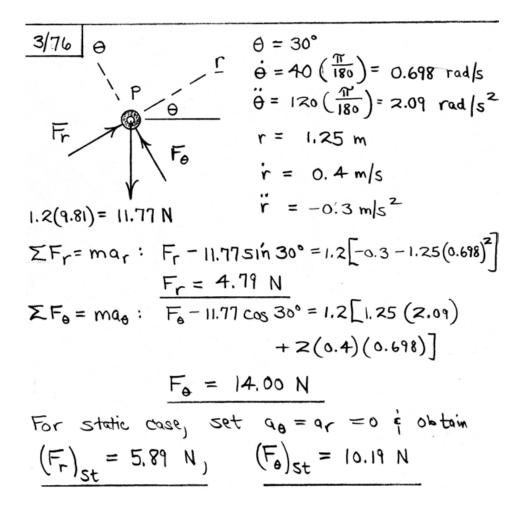
$$\sum F_n = \frac{1}{Man}: N \sin\theta = \frac{1}{M} (r \sin\theta) \omega^2$$

$$\left(\frac{\frac{mg}{cos\theta}}{\cos\theta}\right) \sin\theta = \frac{1}{M} r \sin\theta \omega^2$$

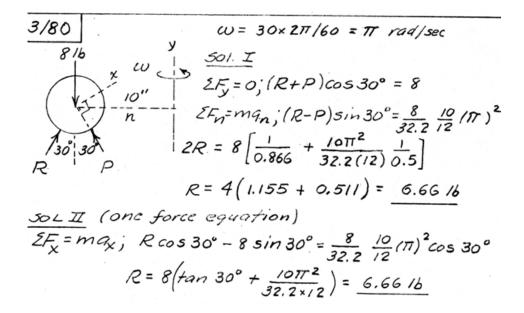
$$\frac{\omega}{w} = \sqrt{\frac{3}{r \cos\theta}}$$
Note that $\cos\theta = \frac{3}{r\omega^2} \le 1$

$$\vdots \quad \omega^2 \ge \frac{3}{r} \quad \text{is a restriction.}$$

4 $a_n = r\dot{\theta}^2 = 0.15 (300 \frac{2\pi}{60})^2 = 148.0 \text{ m/s}^2$ $\Sigma F_x = m q_x; T = 3(148.0 \cos 45^\circ)$ T = 3/4 N $n = 45^\circ$ R Direction of rotation does not change accel, hence has no influence on T or R.



$$\frac{3/78}{3/78} \begin{cases} \sum F_y = 0 : N \cos\theta - mg + \mu_s N \sin\theta = 0 \\ \sum F_n = ma_n : -N \sin\theta + \mu_s N \cos\theta = 0 \\ \sum F_n = ma_n : -N \sin\theta + \mu_s N \cos\theta = 0 \\ F = \mu_s N \theta N \\ M = \sqrt{\frac{9}{r}} \frac{(\mu_s \cos\theta - \sin\theta)}{(\cos\theta + \mu_s \sin\theta)} = \frac{2.73 \text{ rad/s}}{2.73 \text{ rad/s}} \end{cases}$$



$$\frac{3/81}{n} \qquad \text{Treat the child as a particle.}$$

$$\frac{3/81}{n} \qquad \text{Treat the child as a particle.}$$

$$\frac{2F_{t} = ma_{t} : mg \cos\theta = ma_{t} \quad (1)}{\Sigma F_{n} = ma_{n} : N - mg \sin \theta = m\frac{v^{2}}{R} \quad (2)}$$

$$\frac{1}{\Sigma F_{n} = ma_{n} : N - mg \sin \theta = m\frac{v^{2}}{R} \quad (2)}{N} \qquad From (1) : g \cos\theta = v\frac{dv}{ds} = v\frac{dv}{Rd\theta}$$

$$\int_{\theta_{0}}^{\theta} Rg \cos\theta \, d\theta = \int_{U}^{U} du$$

$$\theta_{0} = 20^{\circ} \qquad v_{0} = 0$$

$$\frac{1}{2} = \left[2Rg\left(\sin\theta - \sin 20^{\circ}\right)\right]^{1/2} \quad (2) : N = m\left(g\sin\theta + \frac{v^{2}}{R}\right)$$
Numbers $\left(R = 2.5 \text{ m}, g = 9.81 \text{ m/s}^{2}\right)$

$$\Theta = 30^{\circ} : \left\{\frac{a_{t} = 8.50 \text{ m/s}^{2}}{\frac{v = 2.78 \text{ m/s}}{N} = 280 \text{ N}}\right\}$$

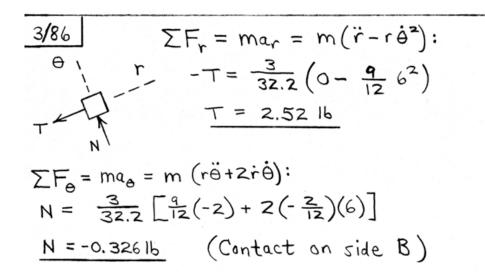
$$\Theta = 90^{\circ} : \left\{\frac{a_{t} = 0}{\frac{v = 5.68 \text{ m/s}}{N} = 795 \text{ N}}\right\}$$

3/82
19
For no slipping tendency,
set F to zero on FBD.
F
N

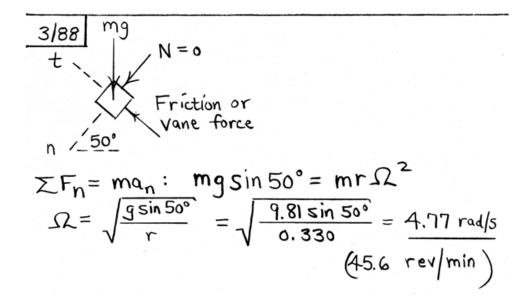
$$\sum F_{y} = 0$$
: N cos 30° - mg = 0
 $\sum F_{n} = m\frac{\nu^{2}}{\Gamma}$: N sin 30° = $m\frac{\nu^{2}}{1200}$
Solve: N = 1.155 mg, $\nu = 149.4 \text{ ft/sec}$
or $\nu = 101.8 \text{ mi/hr}$
 $\frac{\nu_{min} = 0}{\Gamma}$, as $\theta_{max} = \tan^{-1} \mu_{s} = \tan^{-1} (0.9)$
 $= 42.0^{\circ} > 30^{\circ}$
For ν_{max} , set F = Fmax = μ_{s} N:
 $\sum F_{y} = 0$: N cos 30° - mg - μ_{s} N sin 30° = 0
 $\sum F_{n} = m\frac{\nu^{2}}{P}$: μ_{s} N cos 30° + N sin 30° = m
 $\frac{\nu_{max}}{P}$
With $\mu_{s} = 0.9$: N = 2.40mg
 $\nu_{max} = 345 \text{ ft/sec}$ (235 mi/hr)

$$\frac{3/83}{Package:} \begin{cases} \sum F_{\pm} = ma_{\pm} : -\mu_{s}N \cos \Theta - N \sin \Theta = -m \frac{9}{2} \\ \sum F_{n} = ma_{n} : N \cos \Theta - \mu_{s}N \sin \Theta - mg \\ \sum F_{n} = ma_{n} : N \cos \Theta - \mu_{s}N \sin \Theta - mg \\ = m \left(\frac{19.44^{2}}{80}\right) \\ -\frac{1}{2} N = \frac{mg/2}{\sin \Theta + \mu_{s}\cos \Theta} \\ F = \mu_{s}N mg \qquad Second eq. : \end{cases}$$

$$\left(\frac{\eta/g/2}{(sin\Theta + \mu_{s}\cos\Theta)}\right)\left(\cos \Theta - \mu_{s}\sin \Theta\right) - \eta/g = \eta/(4.726) \\ +an \Theta = \left(\frac{1-2.9635 \mu_{s}}{\mu_{s} + 2.9635}\right) \\ For \quad \mu_{s} = 0.2, \qquad \Theta = 7.34^{\circ} \\ For \quad \mu_{s} = 0.4, \qquad \Theta = -3.16^{\circ} \qquad !! \\ (Nate: N>0 \quad for \quad \Theta = -3.16^{\circ}) \end{cases}$$



$$\begin{array}{c} 3/87 \\ n \\ mg \\ t \\ \Sigma F_n = ma_n : \\ N - mg \cos\theta = 60.9 \\ m \\ n \\ \Theta \\ \Sigma F_t = ma_t : \\ F - mg \sin\theta = 0 \\ (1) \\ \Sigma F_t = ma_t : \\ F - mg \sin\theta = 0 \\ (2) \\ Slip impends \\ When \\ F = F_{max} = \mu_s N. \\ From \\ (1) \\ t(Z) : \\ \mu_s = \frac{32.2 \sin\theta}{60.9 + 32.2 \cos\theta} \\ (a) \\ \theta = 50^\circ : \\ \underline{\mu_s} = 0.302 \\ (b) \\ \Theta = 100^\circ : \\ \underline{\mu_s} = 0.573 \\ From \\ (1) \\ N = m(60.9 + g \cos\theta) > 0 \\ for all \\ \Theta \\ So \\ contact \\ is \\ maintained. \\ (Look \\ ahead \\ to \\ solution \\ of \\ Prob. \\ 3/365. \\ \end{array}$$



$$\begin{array}{rcl} 3/91 & \text{The distance traveled from A to C is} \\ (s_{c}-s_{A}) &= 100 + 250 \left(30 \frac{\pi}{180} \right) = 231 \text{ ft} \\ \text{Uniform tangential acceleration} &: \mathbb{V}_{c}^{2} = \mathbb{V}_{A}^{2} + 2a_{t} \left(s_{c}-s_{A} \right) \\ 0^{2} &= \left[60 \frac{5280}{3600} \right]^{2} + 2a_{t} \left(231 \right) , \quad \mathfrak{C}_{t} = -16.77 \text{ ft/sec}^{2} \\ \text{Speed at B} : \mathbb{V}_{B}^{2} = \mathbb{V}_{A}^{2} + 2a_{t} \left(s_{B}-s_{A} \right) \\ \mathbb{V}_{B}^{2} &= \left[60 \frac{5280}{3600} \right]^{2} + 2(-16.77) (100) , \quad \mathbb{V}_{B} = 66.3 \text{ ft/sec} \\ (a) & \Sigma F_{x} = ma_{x} : -F = \frac{3000}{32.2} \left(-16.77 \right) \\ \overline{F} & ---\chi & F = 1562 \text{ lb} \\ (b) & | ^{n} & \Sigma F_{t} = ma_{t} : -F_{t} = \frac{3000}{32.2} \left(-16.77 \right) \\ F_{t} & = 1562 \text{ lb} \\ \hline F_{t} & +F_{n} & \Sigma F_{n} = m\frac{9^{2}}{P} : F_{n} = \frac{3000}{32.2} \frac{66.3^{2}}{250} \\ F_{n} & F_{n} = 1636 \text{ lb} \\ F = \sqrt{F_{t}^{2} + F_{n}^{2}} &= \frac{2260 \text{ lb}}{16} \\ \hline (c) & U \text{ and Therefore } F_{n} & go & to & zero ; \\ F = F_{t} = 1562 \text{ lb} \\ \end{array}$$

(In all FBDs, there is a weight into the paper and a static normal force out of the paper.)

$$\frac{3/92}{\text{rider }!} \text{ FBD of rider at P} (\text{could be any} \\ \text{rider }!), \text{ treated as a particle }: \\ \theta & | 80(9.81)N & 0'P = 6 \text{ m} \\ 0'P = 6 \text{ m} \\ \theta & = 45^{\circ} \\ \theta & = -0.8 \text{ rad}|s \\ \theta & = -0.4 \text{ rad}|s^2 \\ \theta & | (45^{\circ}) \\ N & \theta & = -0.4 \text{ rad}|s^2 \\ \theta & | (45^{\circ}) \\ 0'(\text{Center of circle} \\ \text{traced by P}) \\ \Sigma F_r &= m(\ddot{r} - r\dot{\theta}^2) : -80(9.81)\frac{fz}{2} + N\frac{fz}{2} - F\frac{fz}{2} \\ &= 80\left[0 - 6\left(-0.8\right)^2\right] \quad (1) \\ \Sigma F_{\theta} &= m\left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) : -80(9.81)\frac{fz}{2} + N\frac{fz}{2} + F\frac{fz}{2} \\ &= 80\left[6\left(-0.4\right) + 0\right] \quad (2) \\ \text{Solve (1) } \dot{F}(2) : \left\{ \begin{array}{c} N &= 432 \text{ N} \\ F &= 81.5 \text{ N} \end{array} \right\| \text{Static} : \left\{ \begin{array}{c} N_5 &= 785 \text{ N} \\ F_5 &= 0 \end{array} \right\}$$

$$\frac{3/93}{\sqrt{2}} \sum F_{\frac{1}{2}} = mq_{\frac{1}{2}}; mg sin \theta = mq_{\frac{1}{2}}, q_{\frac{1}{2}} = g sin \theta$$

$$\frac{\sqrt{2}}{\sqrt{2}} \frac{mg}{\sqrt{2}} \int \sqrt{2} \sqrt{2} \sqrt{2} \int \sqrt{2} \sqrt{2} \sqrt{2} \int \frac{\sqrt{2}}{\sqrt{2}} \sqrt{2} gR(1 - \cos \theta)$$

$$\frac{\sqrt{2}}{\sqrt{2}} \int \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} gR(1 - \cos \theta)$$

$$\frac{\sqrt{2}}{\sqrt{2}} \int \frac{\sqrt{2}}{\sqrt{2}} 2mg(1 - \cos \theta)$$

$$= mg(3\cos \theta - \frac{m}{R} \sqrt{2} - 2mg(1 - \cos \theta))$$

$$= mg(3\cos \theta - 2 - \frac{\sqrt{2}}{9R})$$

$$When N=0, \theta = \beta so \quad 3\cos \beta = 2 + \frac{\sqrt{2}}{9R}$$

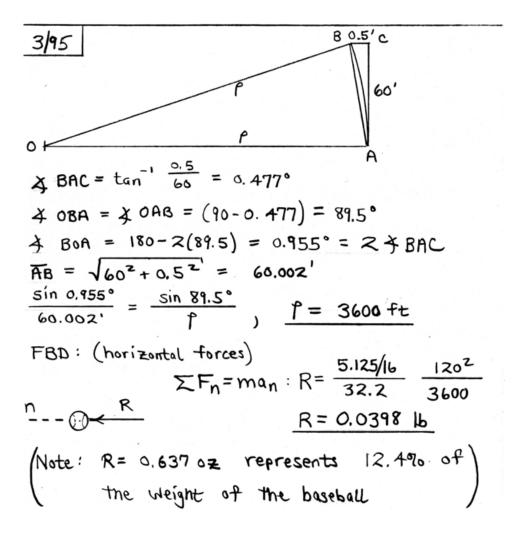
$$\beta = \cos^{-1}(\frac{2}{3} + \frac{\sqrt{2}}{39R})$$
For $\sqrt{2} = 0$, $\beta = \cos^{-1}(\frac{2}{3}) = \frac{48.2^{\circ}}{8}$

$$3/94 \sum F_{n} = ma_{n} = mr\omega^{2}:$$

N N ZN sin 30° = 2.5 (0.150) $\left[\frac{600(2m)}{60}\right]^{2}$

30° N = 1480 N

F = 4N cos 30° = 5130 N



$$\frac{3/96}{4}$$
Acceleration of bucket // r/

$$a_{B} = a_{0} + (a_{B/0})_{n} + (a_{B/0})_{t} /\theta | n/\theta |$$

$$r \ddot{\theta} / r \dot{\theta}^{2} | t / T |$$

$$T = ma_{t} : -mg \sin \theta = m(r \ddot{\theta} - a_{0} \cos \theta)$$

$$\theta = t + \frac{1}{r} (a_{0} \cos \theta - g \sin \theta)$$

$$\theta = tan^{-1} (\frac{a_{0}}{g})$$
With $\ddot{\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta} :$

$$\frac{\theta}{\theta} = tan^{-1} (\frac{a_{0}}{g})$$
With $\ddot{\theta} = \frac{1}{r} (a_{0} \cos \theta - g \sin \theta) d\theta$

$$\theta^{2} = \frac{2}{r} (a_{0} \sin \theta + g \cos \theta - g)$$

$$\Sigma F_{n} = ma_{n} : T - mg \cos \theta = m (r \dot{\theta}^{2} + a_{0} \sin \theta)$$
Substitute expression for $\dot{\theta}^{2}$:

$$T = m (3a_{0} \sin \theta + 3g \cos \theta - 2g)$$

$$\frac{3/97}{9} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{$$

$$\frac{3/98}{2} \sum F_{r} = ma_{r}: 0 = m(\ddot{r} - r\dot{\theta}^{2})$$
Particle:

$$\ddot{r} = r\dot{\theta}^{2} = rw_{0}^{2}$$

$$\overset{i}{r} = r\dot{\theta}^{2} = rw_{0}^{2}$$

$$\overset{i}{r} = r\dot{\theta}^{2} = rw_{0}^{2}$$

$$\overset{i}{r} = w_{0}\sqrt{r^{2} - r_{0}^{2}} = v_{r}$$

$$\frac{dr}{dt} = w_{0}\sqrt{r^{2} - r_{0}^{2}} = v_{r}$$

$$\frac{dr}{dt} = w_{0}\sqrt{r^{2} - r_{0}^{2}}$$

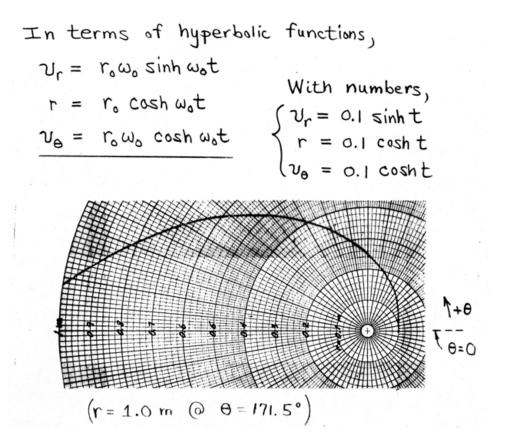
$$\int_{0}^{r} \frac{dr}{\sqrt{r^{2} - r_{0}^{2}}} = w_{0}\int_{0}^{r} dt$$

$$\int_{0}^{r} \frac{dr}{\sqrt{r^{2} - r_{0}^{2}}} = w_{0}\int_{0}^{r} dt$$

$$\int_{0}^{r} \frac{dr}{\sqrt{r^{2} - r_{0}^{2}}} = w_{0}\int_{0}^{r} dt$$

$$\int_{0}^{r} \frac{dr}{\sqrt{r^{2} - r_{0}^{2}}} = \frac{r_{0}\psi_{0}t}{r_{0}} = \frac{r_{0}\psi_{0}t}{r_{0}}$$

$$V_{0} = r\dot{\theta} = rw_{0} = \frac{r_{0}w_{0}t}{2}\left[e^{-w_{0}t} + e^{w_{0}t}\right]$$
As a function of t, $v_{r} = \frac{r_{0}w_{0}}{2}\left(e^{\omega_{0}t} - e^{-\omega_{0}t}\right)$



$$\frac{3/99}{\sqrt{2}} \quad \text{Semi-major axis of ellipse is} \quad \text{is} \quad \frac{7}{2} = \frac{7}{$$

► 3/100

$$\Sigma F_r = ma_r = m(\ddot{r} - r\dot{\theta}^2);$$

$$M = 3^{-2}, \qquad Mg \sin \theta = M(\ddot{r} - rw_0^2)$$

$$\ddot{r} - w_0^2 r = g \sin w_0 t$$

$$F = 0 \qquad Sin w_0 t$$

$$F = 0 \qquad Sin w_0 t$$

$$Mg = 0 \qquad Substitute into equation to obtain
Mg = 0 \qquad Substitute into equation to obtain
S_1 = -w_0, S_2 = w_0. \qquad Also, assume
a particular solution of form $r_p = D \sin w_0 t$,
Substitute, and obtain $D = -g/2w_0^2$.
So $r = r_h + r_p = C_1 e^{-w_0 t} + C_2 e^{w_0 t} - \frac{g}{2w_0^2} \sin w_0 t$
Initial conditions:

$$\begin{cases} r(0) = C_1 + C_2 = 0 \\ \dot{r}(0) = -w_0 C_1 + w_0 C_2 - \frac{g}{2w_0} = 0 \\ \text{Solve for } C_1 \ and \ C_2 \ to \ obtain
r = -\frac{g}{4w_0^2} e^{-\theta} + \frac{g}{4w_0^2} e^{\theta} - \frac{g}{2w_0^2} \sin \theta \\ \text{or } r = \frac{g}{2w_0^2} \left[\sinh \theta - \sin \theta \right]$$$$

$$\frac{|Y|}{|Y|} = \sum F_{y} = 0 : N_{y} = m_{q}$$

$$\frac{n}{r} = \sum F_{n} = ma_{n} : N_{n} = m \frac{\sqrt{2}}{r}$$

$$\frac{1}{r} = \sum F_{n} = ma_{n} : N_{n} = m \frac{\sqrt{2}}{r}$$

$$\frac{1}{r} = \sum F_{n} = ma_{n} : N_{n} = m \frac{\sqrt{2}}{r}$$

$$= \frac{\mu_{k}m}{r} \sqrt{r^{2}g^{2} + \sqrt{4}}$$

$$\sum F_{t} = ma_{t} : - \frac{\mu_{k}m}{r} \sqrt{r^{2}g^{2} + \sqrt{4}} = m\sqrt{\frac{dv}{ds}}$$

$$- \frac{\mu_{k}}{r} \int_{0}^{S} ds = \int_{V_{0}}^{0} \frac{\sqrt{dv}}{\sqrt{\sqrt{4} + r^{2}g^{2}}} = \int_{V_{2}}^{0} \frac{\frac{1}{2} dx}{\sqrt{x^{2} + r^{2}g^{2}}}$$
where $x = \sqrt{2}$, $dx = 2vdv$

$$\sum Integrating$$

$$- \frac{\mu_{k}}{r} s = \frac{1}{2} \ln \left[x + \sqrt{x^{2} + r^{2}g^{2}}\right]_{V_{0}^{2}}^{0}$$
or $S = \frac{r}{2\mu_{k}} \ln \left[\frac{v_{0}^{2} + \sqrt{v_{0}^{4} + r^{2}g^{2}}}{rg}\right]$

$$\frac{\sqrt{3}}{102} \text{ Motion from A to B} : = -7.407 \text{ m/s}^2 + 4(2500) = 1350 \text{ a} = -7.407 \text{ m/s}^2 + \sqrt{8}^2 - \sqrt{4}^2 = 2a(\chi_B^- \chi_A) + \sqrt{8}^2 - 25^2 = 2(-7.407)(10) + \sqrt{8}^2 + \sqrt{8}^2 + \sqrt{10}^2 + \sqrt{10} + \sqrt$$

3/103 State 1 : launch; State 2 : apex

$$T_1 + \overline{V_{1-2}} = T_2 : \pm mv_0^2 - mgh = 0$$

 $p \Rightarrow h = \frac{v_0^2}{2g}$
 mg
For $v_0 = 50 \text{ m/s} : h = \frac{50^2}{2(9.81)} = \frac{127.4 \text{ m}}{127.4 \text{ m}}$

$$\frac{3/104}{(a)} \quad U_{1-2} = \frac{1}{2} k \left(x_{1}^{2} - x_{2}^{2} \right) \\ = \frac{1}{2} (3) (12) \left[\left(\frac{6}{12} \right)^{2} - \left(\frac{3}{12} \right)^{2} \right] = \frac{3.38 \text{ ft} - 16}{3.38 \text{ ft} - 16} \\ (b) \quad U_{1-2} = - \text{mgh} = - 14 \left(\frac{9}{12} \right) \sin 15^{\circ} \\ = -2.72 \text{ ft} - 16$$

$$\frac{3/105}{\Xi} = T_{A} + U_{A-B} = T_{B}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

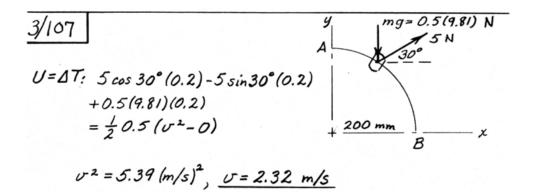
Knowledge of the shape of the track is unnecessary, as long as it is Known that the cart passes the highest point.

$$\frac{3|106}{2} = T_{A} + U_{A-B} = T_{B}$$

$$\frac{1}{2} m v_{A}^{2} + U_{f} + mgh = \frac{1}{2} m v_{B}^{2}$$

$$U_{f} = m \left(\frac{v_{B}^{2}}{2} - \frac{v_{A}^{2}}{2} - gh\right)$$

$$= 3 \left(\frac{6^{2}}{2} - \frac{4^{2}}{2} - 9.81(1.8)\right) = -23.0 \text{ J}$$



$$\frac{3/108}{20'} = T_{1+} = T_{2} = T_{2} = \frac{1}{2} = \frac{1$$

$$\frac{3/109}{MG} \qquad \Theta = \tan^{-1} \frac{6}{100} = 3.43^{\circ}$$

$$T_{A} + U_{A-B} = T_{B}$$

$$\frac{1}{2} m v_{o}^{2} - \mu_{K} m g \cos \theta s - m s \sin \theta$$

$$= 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} - 32.2s \left[+0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} - 32.2s \left[+0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} - 32.2s \left[+0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} + 32.2s \left[-0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} + 32.2s \left[-0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} + 32.2s \left[-0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

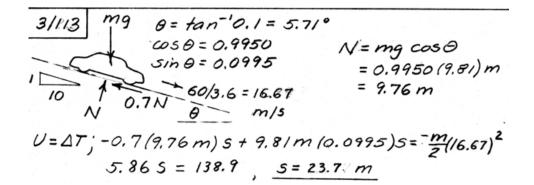
$$\frac{1}{2} \left(65 \frac{5280}{3600}\right)^{2} + 32.2s \left[-0.6 \cos 3.43^{\circ} + \sin 3.43^{\circ}\right] = 0$$

$$\frac{3/110}{U_{1-2}} = 50(\frac{50-30}{12}) - 30 \frac{40}{12} \sin 30^{\circ} - \frac{1}{2} k (\frac{6}{12})^{2} = 0$$

$$k = 267 \quad 1b/ft$$

 $\frac{3/111}{k} = \Delta T; \quad 2\left(\frac{1}{2}k\chi^2\right) = \frac{1}{2}mv^2 = 0$ $k = \frac{1}{2}\frac{mv^2}{\chi^2} = \frac{1}{2}\frac{3500}{32.2}\left(\frac{5}{30}44\right)^2\frac{1}{(6/12)^2}\frac{1}{12} = \frac{974}{16/10}$

 $\frac{3/112}{r} = \frac{1}{F} Power P = F \cdot \dot{r}}$ $P = (40\dot{i} - 20\dot{j} - 36\dot{k}) \cdot (8\dot{i} + 2.4t\dot{j} - 1.5t^{2}\dot{k})$ $P = (40\dot{i} - 20\dot{j} - 36\dot{k}) \cdot (8\dot{i} + 9.6\dot{j} - 24\dot{k})$ $P = (40\dot{i} - 20\dot{j} - 36\dot{k}) \cdot (8\dot{i} + 9.6\dot{j} - 24\dot{k})$ = 320 - 192 + 864 = 992 W or P = 0.992 kW3/112



$$\frac{3/114}{P} = W_{y} \text{ where } y = U_{sin\theta}$$

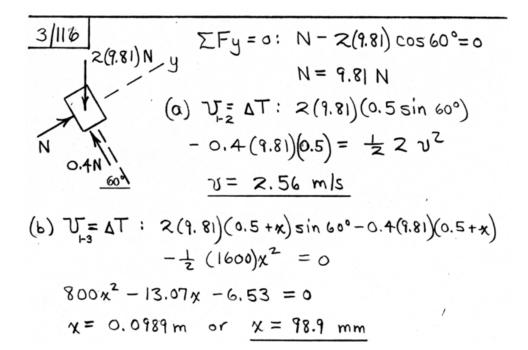
$$\theta = \tan^{-1} 0.05 = 2.86^{\circ}, \text{ sin } \theta = 0.0499$$

$$P = 200 \left(\frac{15}{30}44\right) 0.0499 = 219.7 \text{ ft-16/sec}$$
or
$$P = \frac{219.7}{550} = 0.400 \text{ hp}$$

$$\frac{3/115}{U=\Delta T; (mg \sin\theta - 0.3 mg \cos\theta) \frac{1.5}{\sin\theta}} = \frac{1}{2}m(0.14^2 - 0.40^2)$$

$$I.5 (9.81)(1 - \frac{0.3}{\tan\theta}) = -0.0702$$

$$U = \Delta T; (mg \sin\theta - 0.3 mg \cos\theta) \frac{1.5}{\sin\theta} = 16.62^{\circ}$$



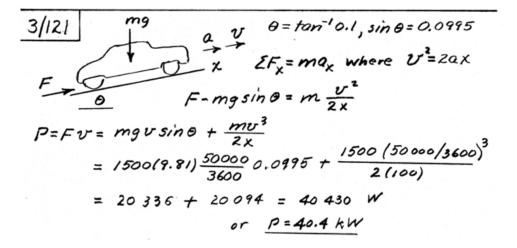
$$\frac{3/117}{9} P = \frac{Wh}{\Delta t}$$

or $P = \frac{120(9)}{5} / 550 = \frac{0.393 \text{ hp}}{5}$
Conversions : $h = 9 \text{ ft} \left(\frac{0.3048 \text{ m}}{\text{ft}}\right) = 2.74 \text{ m}$
 $W = 120 \text{ lb} \left(\frac{4.4482 \text{ N}}{16}\right) = 534 \text{ N}$
 $P = \frac{Wh}{\Delta t} = \frac{534(2.74)}{5} = 293 \text{ wetts}$
Check : $0.393 \text{ hp} \left(\frac{745.7 \text{ wetts}}{\text{hp}}\right) = 293 \text{ wetts}$

$$\frac{3/118}{90 \text{ lb}} \qquad \begin{array}{l} \mathcal{U}_{B} = 5 \frac{5280}{3600} = 7.33 \text{ ft/sec} \\ \mathcal{U}_{B}^{Z} = 2as , a = \frac{7.33^{2}}{2(50)} = 0.538 \frac{\text{ft}}{\text{sec}^{2}} \\ \hline & 0 = \tan^{-1}(0.1) = 5.71^{\circ} \\ \hline & 0 = \tan^{-1}(0.1) = 5.71^{\circ} \\ \hline & 10 \end{array} \qquad \begin{array}{l} \mathcal{U}_{B} = \tan^{-1}(0.1) = 5.71^{\circ} \\ \mathcal{U}_{B} = 76.71^{\circ} = \frac{9^{\circ}}{32.2}(0.538) \\ \hline & F = 10.46 \text{ lb} \\ P = Fv = 10.46(7.33) = 76.7 \frac{\text{ft-lb}}{\text{sec}} \\ \text{or } P = 76.7/550 = 0.1394 \text{ hp} \end{array}$$

3/119 Net power required = 30(140)(24)/33,000= 3.05 hp Mechanical efficiency = $\frac{Power required}{Power supplied} = \frac{3.05}{4.00} = \frac{0.764}{0.764}$

3/120 $U = \Delta T$; $15(18+2) - \frac{1}{2}80(2^2) = \frac{1}{2}\frac{15}{32.2}(12)$ 1516 $300 - 160 = 2.795 U^2$, U = 5100 $U^2 = 50.09$, U = 7.08 ft/sec 80 X



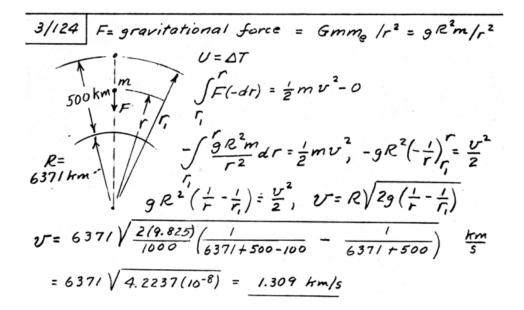
$$\frac{3/122}{12} \quad For \ x = 75 \ mm, \ U = \Delta T \notin \frac{1}{2} (0.075) R_{max} = \frac{1}{2} (0.25)(600)^2, \ R_{max} = 1.2 \ MN$$

$$For \ x = 25 \ mm, \ R = \frac{25}{75} (1.2) = 0.4 \ MN \ or \ 0.4 (10^6) \ N$$

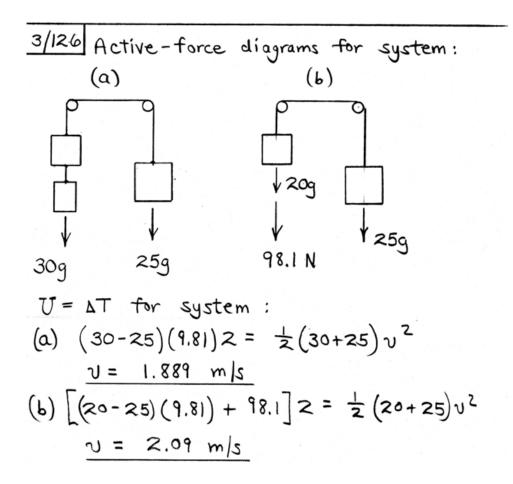
$$U = \Delta T; \ \frac{1}{2} (0.025)(0.4) 10^6 = \frac{1}{2} (0.25)(\overline{600}^2 - U^2)$$

$$U^2 = 320 (10^3) \ (m/s)^2, \ U^2 = 566 \ m/s$$

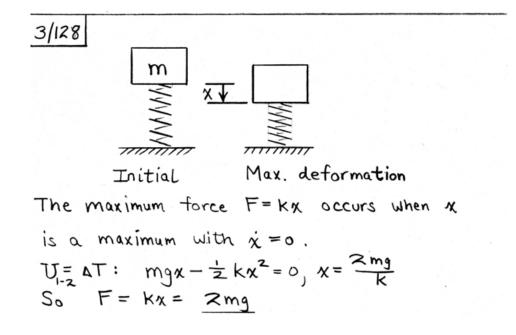
3/123 Power output = rate of doing work = 300(9.81)(2) - 100(9.81)(4)= 1962 J/s (W)= 1.962 KWEfficiency $C = \frac{Power \text{ output}}{Power \text{ input}} = \frac{1.962}{2.20} = 0.892$



 $\frac{3/125}{A^{-0.5} \frac{m}{5}} \frac{mg}{F^{=32} kN} = \frac{13}{150} = 1.146^{\circ}$ $\frac{A^{-0}}{A^{-0}} + \frac{1}{F^{=32} kN} = \frac{13}{5} = 1.146^{\circ}$ $\frac{A^{-0}}{A^{-0}} + \frac{1}{F^{=32} kN} = \frac{1}{5} = \frac$ 2001 - 32 x = 297.5 , X = 53.2 m



 $\overline{AB} = r\theta = 120\frac{\pi}{6} = 62.8 m$ 3/127 mg = 981 N $U = \Delta T = 0 \text{ since } \overline{L} = \overline{L} = 0$ 1500 (62.8) - 981 (16.08 + $\frac{5}{2}$) = 0 1.5 KN C 300 5=2(94248 -15771)/981 120 m s/2 = 160.0 m 30° 120(1-cos 30°)=16.08 m



$$\frac{3/129}{N_{B}} T_{A} + V_{A-B} = T_{B} : 0 + 2mgR = \frac{1}{2}mv_{0}^{2}, v_{B}^{2} = 4gR$$
(a) mg $\Sigma F_{n} = ma_{n} : N_{B} = m \frac{4gR}{R} = \frac{4mg}{R}$
(b) $T_{A} + V_{A-c} = T_{c} : 0 + 3mgR = \frac{1}{2}mv_{c}^{2}, v_{c}^{2} = 6gR$
(b) $T_{A} + V_{A-c} = T_{c} : 0 + 3mgR = \frac{1}{2}mv_{c}^{2}, v_{c}^{2} = 6gR$
(c) $\frac{mg}{N_{c}} = T_{C} = ma_{n} : N_{c} - mg = m \frac{6gR}{R}$
(d) $\frac{N_{c}}{R} = 7mg$

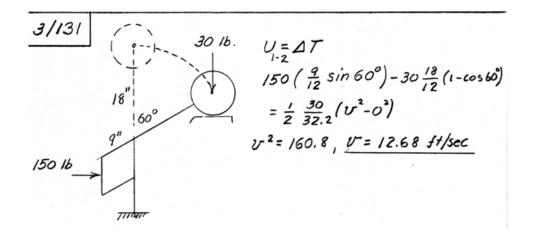
(c) Call stopping point E:

$$T_A + U_{A-E} = T_E$$

 $0 + 2mgR - mg(\frac{1}{2}s) - \mu_k \frac{13}{2}mgs = 0$
 $s = \frac{4R}{1 + \mu_k 13}$
(Note: Normal force on incline is)
 $N = mg \cos 30^\circ = \frac{13}{2}mg$)

 $\frac{3/130}{1-2} \text{ Let } s = \text{distance down incline before} \\ \text{reversal of direction.} \\ U_{1-2} = 110(2)(10+s-s) - 300(10+s-s)\frac{5}{13} = 1046 \text{ ft-lb} \\ \Delta T = \frac{1}{2} \frac{300}{32.2} \left[\nu^2 - (\pm 9)^2 \right] = 4.66\nu^2 - 377 \text{ ft-lb} \\ U_{1-2} = \Delta T : 1046 = 4.66\nu^2 - 377 \\ \underline{\nu} = 17.48 \text{ ft/sec} \\ \text{The initial kinetic energy is positive} \end{cases}$

regardless of the velocity direction.



 $\frac{3/132}{1-2} = \Delta T; \quad m_9(0.8 - 1.2\cos 60^\circ) = \frac{1}{2}m(\mathcal{V}_c^2 - 3^2)$ $9.81(0.20) = \frac{1}{2}(\mathcal{V}_c^2 - 9), \quad \mathcal{V}_c^2 = 12.92, \quad \mathcal{V}_c^c = 3.59 \text{ m/s}$

$$\frac{3/133}{4T} \xrightarrow{4}_{T} + \sum F = 0: 9810 - 4T = 0, T = 2450 \text{ N}$$

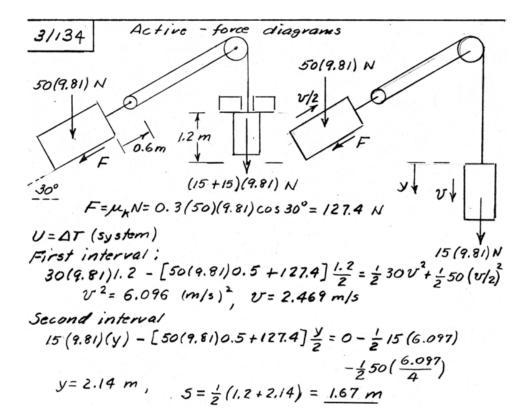
$$4T \xrightarrow{5}_{A} \text{ Length of cable } L = 4S_A + \text{ constants}$$

$$L = 4V_A = 4(-3) = -12 \text{ m/s}$$

$$P_{out} = -TL = -2450(-12) = 29 \text{ 400 watts}$$
or
$$P_{out} = 29.4 \text{ kW}$$

$$e = \frac{P_{out}}{P_{in}}, P_{in} = \frac{P_{out}}{e} = \frac{29.4}{0.8}$$

$$\frac{P_{in} = 36.8 \text{ kW}}{P_{in} = 36.8 \text{ kW}}$$

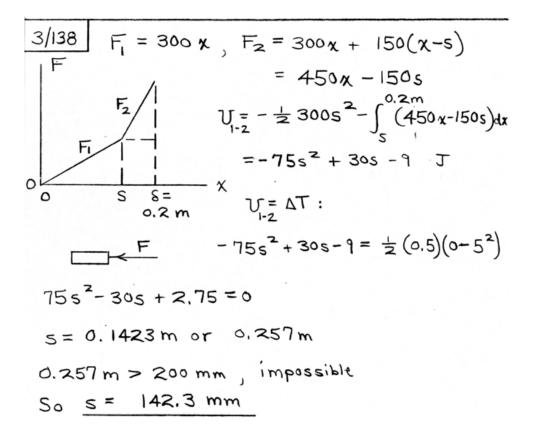


 $\frac{3/135}{135} = \Delta T; -\int_{(3x^2+60x)dx}^{4} = \frac{1}{2} \frac{48}{32.2} (0-v^2) dx$ $\chi^{3} + 30\chi^{2} \Big]^{4} = \frac{288}{32.2} \upsilon^{2}, \quad \upsilon \text{ in ft/sec.}$ $\upsilon^{2} = \frac{32.2}{288} (64 + 480) = 60.82 (\text{ft/sec})^{2}, \quad \underline{\upsilon} = 7.80 \text{ ft/sec}$

$$\frac{3/136}{U_{1-2}} = \Delta T : U_{f} + mgh = \pm m(U_{z}^{2} - v_{i}^{2}) = 0$$

$$U_{f} = -1400(9.81)(200 \sin 3.43^{\circ}) + \pm 1400\left[\left(\frac{20}{3.6}\right)^{2} - \left(\frac{100}{3.6}\right)^{2}\right] = -683\ 000\ \text{J} \text{ or } -683\ \text{kJ}$$
Energy lost $\varphi = 683\ \text{kJ}$

 $\frac{3/137}{P_{out}} = Fv = 560 \left(\frac{90}{3.6}\right) = 14000 W$ The power input to the drivetrain: $P_{in} = \frac{P_{out}}{e} = \frac{14000}{0.70} = 20000 W$ So the motor output P = 20 kW



$$3/139 \qquad S_{A} \qquad Z_{S_{A}} + S_{B} = \text{constant}$$

$$3/139 \qquad Z_{S_{A}} + S_{B} = 0 \qquad (\text{Velocities})$$

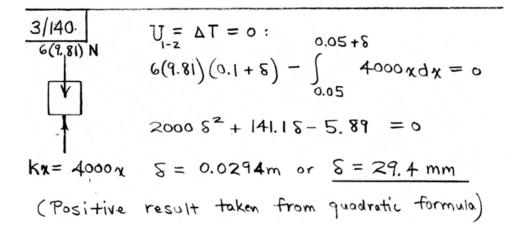
$$2v_{A} + v_{B} = 0 \qquad (\text{Velocities})$$

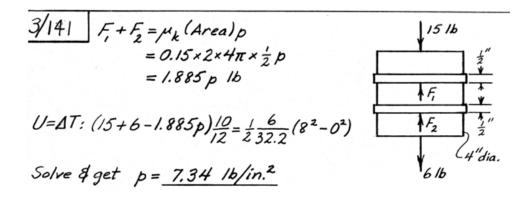
$$V_{B} = T_{2}$$

$$V_{B} = 1.180 \text{ m/s}$$

$$V_{B} = 2v_{A} = 2.36 \text{ m/s}$$

$$Speeds$$





$$\frac{3/142}{R} = \Theta = 0 \text{ or } \Theta = \tan^{-1} \frac{6}{100} = 3.43^{\circ}$$

$$F_{R} + F_{D} = -7^{\circ} F_{D} = Ky^{2}; 50 = K(60)^{2}$$

$$F_{P} \Rightarrow K = 0.01389 \frac{116-hr^{2}}{mi^{2}}$$

$$F_{D} = 0.01389 y^{2}$$

$$\sum F_{\chi} = 0; F_{P} - F_{R} - F_{D} - mg \sin \Theta = 0$$

$$F_{P} = F_{R} + F_{D} + mg \sin \Theta$$

$$(a) \frac{\Theta = 0}{2} = 30 \text{ mi/hr} : F_{D} = 0.01389 (30^{2}) = 12.50 \text{ lb}$$

$$F_{P} = F_{R} + F_{D} = 50 + 12.50 = 62.5 \text{ lb}$$

$$P = F_{V} = 62.5 (30 \frac{5280}{3600}) / 550 = 5 \text{ hp}$$

$$v = 60 \text{ mi/hr} : F_{D} = 50 \text{ lb}, F_{P} = F_{R} + F_{D} = 100 \text{ lb}$$

$$P_{60} = F_{V} = 100 (60 \frac{5280}{3600}) / 550 = 16 \text{ hp}$$

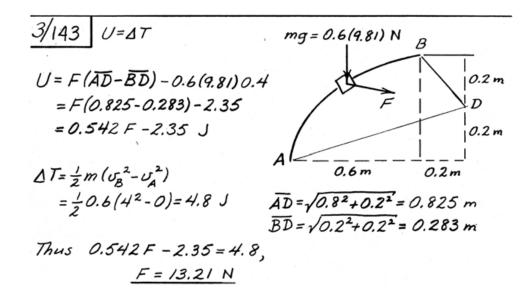
$$(b) \frac{\Theta = 3.43^{\circ}}{3600} F_{P} = 50 + 50 + 2000 \sin 3.43^{\circ} = 220 \text{ lb}$$

$$P_{UP} = 220 (60 \frac{5280}{3600}) / 550 = 35.2 \text{ hp}$$

$$Down: F_{P} = 50 + 50 - 2000 \sin 3.43^{\circ} = -19.78 \text{ lb}$$

$$P_{down} = -19.78 (60 \frac{5280}{3600}) / 550 = -3.17 \text{ hp} (brakes!)$$

$$(c) \sum F_{X} = 0: 50 + kv^{2} - 2000 \sin 3.43^{\circ} = 0, v = 70.9 \frac{mi}{hr}$$



$$\frac{3/144}{5016} \qquad \sum F_{y} = 0: N-50 \cos 60^{\circ} = 0, N=2516$$

$$\frac{5016}{12} \qquad Displacement is 3 + \frac{4}{12} = 3.33 \text{ ft}$$

$$U_{1-2} = (50 \sin 60^{\circ} - 0.5 \cdot 25) 3.33$$

$$N = \frac{1}{12} \int_{0}^{4} (100 x + 9x^{2}) dx$$

$$= 20.0 \text{ ft} - 16$$

$$\frac{60^{\circ}}{12} \qquad U_{1-2} = \Delta T: 20.0 = \frac{1}{2} \frac{50}{32.2} (v^{2} - 2^{2})$$

$$\frac{v = 5.46 \text{ ft/sec}}{12}$$

3/145

$$K = 300 N/m$$

$$P = 0.5 = B = \mu_K N$$

$$= 0.30 (10)(9.81)$$

$$= 29.43 N$$
(a)
$$F = 4T$$

$$= \frac{1}{2}(300)(0.5)^2 - 29.43(0.5) = \frac{1}{2}(10) V^2$$

$$V^2 = 4.557 (m/s)^2, V = 2.13 m/s$$
(b) From A to C', $U_{FZ} = 4T$

$$-\frac{1}{2}(300)\chi^2 - 29.43 \chi = 0 - \frac{1}{2}(10)(4.557)$$

$$\chi^2 + 0.1962\chi - 0.1519 = 0$$

$$\chi = -\frac{0.196}{2} \pm \frac{1}{2}\sqrt{(0.1962)^2 + 4(0.1519)}$$

$$= -0.0981 \pm 0.4019, \chi = 0.304 m (\chi = -0.48)$$

 $\frac{3/146}{2} P = Fv; F = ma, so P = mav$ $\frac{d}{d} a = \frac{P}{mv}$ $But v dv = a ds, so mv^{2} dv = P ds$ $\int mv^{2} dv = \int P ds; \frac{m}{3} (v_{2}^{-3} - v_{1}^{-3}) = Ps$ v_{1} $\frac{V_{2}}{2} = \left(\frac{3Ps}{m} + v_{1}^{-3}\right)^{1/3}$

$$\frac{3/147}{\Delta T} = \frac{1}{2} = 0 = \Delta T + \Delta V_g + \Delta V_e$$

$$\Delta T = \frac{1}{2} = 3(\nu^2 - 0) = \frac{3}{2}\nu^2$$

$$\Delta V_g = -3(9.81)(0.8) = -23.5 \text{ J}$$

$$\Delta V_e = \frac{1}{2} = 200 \left[(\sqrt{0.8^2 + 0.6^2} - 0.4)^2 - (0.8 - 0.4)^2 \right]$$

$$= 20 \text{ J}$$

So $0 = \frac{3}{2}\nu^2 - 23.5 + 20$, $\nu = 1.537 \text{ m/s}$

$$\frac{3/148}{-mg(\frac{18}{12})} + \frac{1}{2}(2m)(v^2 - 0) = 0$$

 $v = 6.95 \text{ ft/sec}$

$$\frac{3/149}{(a)} = \text{Estoblish} \quad \text{datum} \quad \textcircled{O} \quad A.$$
(a) $T_A + V_A = T_B + V_B$
 $0 + 0 = \pm mv_B^2 - mgh_B$
 $v_B = \sqrt{2gh_B} = \sqrt{2(9.81)(4.5)} = \underline{9.40 \text{ m/s}}$
(b) State F : spring fully compressed
 $T_A + V_A = T_F + V_F$
 $0 + 0 = 0 - mgh_f + \pm kS^2$
 $\delta = \sqrt{\frac{2mgh_f}{k}} = \sqrt{\frac{2(1.2)(9.81)(3)}{24000}} = 0.0542 \text{ m}$
or $S = 54.2 \text{ mm}$

$$\frac{3/150}{T_{A} + V_{A}} = T_{C} + V_{C} : 0 + 0 = \frac{1}{2}mv_{c}^{2} - mgh_{c}$$

$$v_{c} = \sqrt{2gh_{c}} = \sqrt{2(9.81)(3 + 1.5\cos 30^{\circ})}$$

$$= 9.18 \text{ m/s}$$

$$\frac{mg}{V_{c}} = (a)\Sigma F_{h} = m\frac{v^{2}}{f} : N_{c} - 1.2(9.81)\cos 30^{\circ} = 1.2\frac{9.18}{1.5}$$

$$\frac{N_{c} = 77.7 \text{ N}}{N_{c}}$$

$$N_{c} (b)\Sigma F_{n} = 0 : N_{c} - 1.2(9.81)\cos 30^{\circ} = 0$$

$$\frac{N_{c} = 10.19 \text{ N}}{N_{c}}$$

$$T_{A} + V_{A} = T_{E} + V_{E} : 0 + 0 = \frac{1}{2}mv_{E}^{2} - mgh_{E}$$

$$v_{E} = \sqrt{2gh_{E}} = \sqrt{2(9.81)(3)} = 7.67 \text{ m/s}$$

$$\int_{R_{E}}^{Mg} \Sigma F_{n} = m\frac{v^{2}}{f} : -N_{E} + 1.2(9.81) = 1.2\frac{7.67}{1.5}$$

$$N_{E} = -35.3 \text{ N} (down)$$

 $3/151 \Delta T + \Delta V_e + \Delta V_g = 0, \Delta T = 0$

 $\Delta V_e = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}500(0.050^2 - 0.100^2) = -1.875 \text{ J}$ $\Delta V_g = mg\Delta h = 2(9.81)h = 19.62h$

Thus 0-1.875+19.62h=0, h=0.0956 m or h=95.6 mm

N= 14,42 N

$$\frac{3/153}{U_{B}} = \sqrt{2gR + \frac{kR^{2}}{m}(3-2\sqrt{2})}$$

$$\frac{3/153}{U_{B}} = \sqrt{2gR + \frac{kR^{2}}{m}(3-2\sqrt{2})}$$

$$\frac{3/153}{U_{B}} = \sqrt{2gR + \frac{kR^{2}}{m}(3-2\sqrt{2})}$$

$$T_{A} + V_{A} = T_{c} + V_{c}, \quad datum @ C$$

$$0 + Z_{mg}R + \pm k [R + \overline{Z} - R]^{2} = \pm m v_{c}^{2} + 0$$

$$v_{c} = \sqrt{4gR + \frac{kR^{2}}{m}(3 - 2\overline{L})}$$

Kinetics at C:

$$\sum_{n=1}^{N} \sum F_n = ma_n: N - mg = m \frac{Vc^2}{R}$$

$$\sum N = m \left[5g + \frac{kR}{m} (3 - 2R) \right]$$

3/154 For the system, $T_1 + V_1 + U_{1-2} = T_2 + V_2$ 之mv,210+ 之Kx,2 + 0= 之mv2+ 之kx2 - mgh, where the datum is the initial position and h is the drop distance. Note that the spring deflection runs at twice that of the Cylinder . Numbers: $\pm 6(12) \left[\frac{3}{12}\right]^2 = \pm \frac{100}{32.2} v^2 + \pm 6(12) \left[\frac{3+2(\pm)}{12}\right]^2 - 100(\frac{1/2}{12})$ v = 1.248 ft/sec

$$\frac{3/155}{2 32.2} (a) \quad \Delta T + \Delta V_{g} = 0$$

$$\frac{1}{2} \frac{5}{32.2} v^{2} + \frac{1}{2} \frac{10}{32.2} (\frac{12}{18}v)^{2} + 5 \frac{18}{12} \sin 60^{\circ} - 10 \frac{12}{12} \sin 60^{\circ} = 0$$

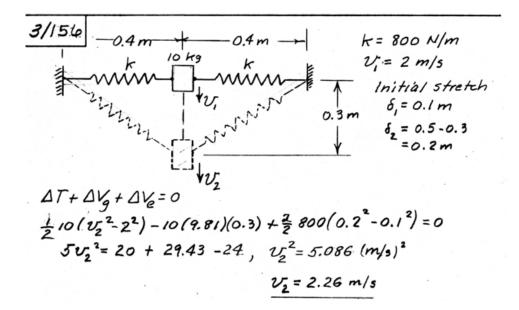
$$0.1467v^{2} = 2.165, v^{2} = 14.76 (ft/sec)^{2}$$

$$\frac{V = 3.84 ft/sec}{2 + 12}$$

$$(b) \quad For \ entire \ interval \ \Delta T = 0, \ \Delta V_{g} + \Delta V_{e} = 0$$

$$-2.165(12) + \frac{1}{2}(200)x^{2} = 0, \ \chi^{2} = 0.2598(in)^{2}$$

$$\chi = 0.510 \ in.$$



 $\Delta T + \Delta V_{g} = 0; \quad \Delta T = \frac{1}{2} \frac{3}{32.2} \left(\frac{9}{12} \dot{\theta}\right)^{2}$ 3/157 316 $+\frac{i}{2}\frac{2}{32.2}\left(\frac{4.5}{i2}\left[2\Theta\right]\right)^2$ 2 16 -4.5" 9" $= 0.04367 \dot{\theta}^{2} f f - 16$ $\Delta V_{g} = -3\left(\frac{9}{12}\right) - 2\left(\frac{4.5 + 4.5}{12}\right)$ -V=0 9 θ 20 $2\dot{\theta} = -\frac{15}{4} = -3.75 \text{ ft} - 16$ 0.04367 $\dot{\theta}^2 - 3.75 = 0$, $\dot{\theta}^2 = 85.87 \text{ (rad/sec)}^2$ Thus 0 = 9.27 rad/sec

3/158 Let m be the mass of the car $U_{1-2} = \Delta T + \Delta V_{g}: O = \frac{1}{2}m(v^{2}-v_{0}^{2}) + mgy$ $q_{n} = \frac{v^{2}}{\rho}; \quad \frac{v_{o}^{2}}{\rho_{o}} = \frac{v_{o}^{2} - 2gy}{\rho}, \quad \rho = \rho_{o}\left(1 - \frac{2gy}{v^{2}}\right)$ For car to remain in contact with the track at the top, $a_n > g$, so for constant a_n , $\frac{\sqrt{2}}{\rho_0} > g$ so $U = \sqrt{\rho_0 g}$

$$\frac{3/159}{2} \text{ For the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{3/159}{5} \text{ For the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

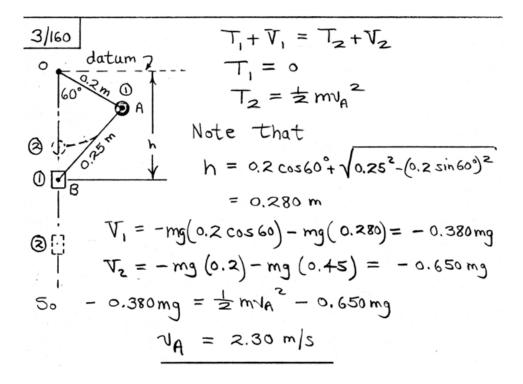
$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

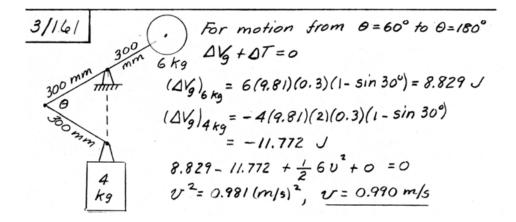
$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval from } \theta = 60^{\circ} \text{ to } \theta = 90^{\circ},$$

$$\frac{500}{5} \text{ for the interval for the in$$





$$\frac{3/162}{T_{A} + V_{A}} = T_{B} + V_{B}$$

$$0 + \frac{1}{2}k_{A}\chi_{A}^{2} = 0 + mg(\chi_{A} + d + \chi_{B}) + \frac{1}{2}k_{B}\chi_{B}^{2}$$

$$\frac{1}{2}(48)(12)(\frac{5}{12})^{2} = 14(\frac{5+14+\chi_{B}}{12}) + \frac{1}{2}(10)(12)(\frac{\chi_{B}}{12})^{2}$$

$$\frac{\chi_{B}}{2} = 6.89 \text{ in }.$$

The fact that $\chi_B > \chi_A$ is due to The difference in spring stiffnesses (along with the particular Value d = 20-6 = 14"). Note that d = 14" is the distance which the collar moves when out of contact with the springs.

 $\frac{3/163}{2} A \text{ force analysis reveals that } A \text{ will} \\ \text{move down } \notin B \text{ will move up.} \\ \text{Kinematics : } 3V_A = ZV_B \quad (\text{speeds}) \\ T_1 + V_1 = T_2 + V_2, \text{ datum } (@ \text{ initial position} \\ 0 + 0 = \pm m_A V_A^2 + \pm m_B \left(\frac{3}{2} V_A\right)^2 + m_B g h_B \\ - m_A g h_A \\ 0 = \pm (40) V_A^2 + \frac{1}{2} 8 \frac{9}{4} V_A^2 + 8(9.81)(1) \\ - 40(9.81)(\frac{2}{3}(1) \sin 20^\circ) \\ \frac{V_A = 0.616}{2} \text{ m/s}, \quad \frac{V_B = \frac{3}{2} V_A = 0.924 \text{ m/s}}{2} \end{aligned}$

 $\frac{3/164}{2} | \underline{st} \text{ interval of motion (0.4 m) } \Delta T + \Delta V_g = 0 \text{ for system} \\ \frac{1}{2}(4+6+8) \sigma^2 + 9.81 \times 0.4(8-4-6) = 0, \sigma^2 = 0.872 \text{ (m/s)}^2 \\ \sigma = 0.934 \text{ m/s}$

 $\frac{2 n d}{2} \text{ interval for } 6- \frac{4}{8} \frac{8 - kg}{kg} \frac{cy}{inders} \Delta T + \Delta V_g = 0$ $0 - \frac{1}{2} (6+8)(0.872) + 9.81(h-0.4)(8-6) = 0, h = 0.711 \text{ mm}$ or <u>h = 711 mm</u>

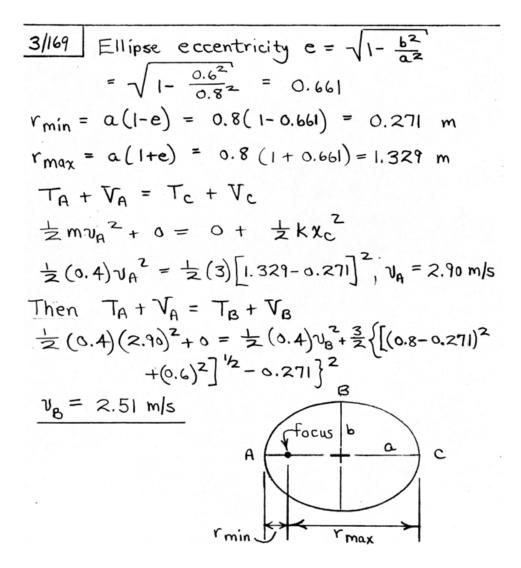
Kinetic energy of collar is dissipated into heat & sound during impact with bracket.

 $\frac{3/165}{2} Constant \ total \ energy is \ E = T_{A} + V_{g} = T_{p} + V_{g}$ $Thus \ \frac{1}{2}mv_{A}^{2} - \frac{mgR^{2}}{r_{A}} = \frac{1}{2}mv_{p}^{2} - \frac{mgR^{2}}{r_{p}}$ $v_{A}^{2} = v_{p}^{2} - 2gR^{2}(\frac{1}{r_{p}} - \frac{1}{r_{A}}), \ v_{A}^{2} = \sqrt{v_{p}^{2} - 2gR^{2}(\frac{1}{r_{p}} - \frac{1}{r_{A}})}$

 $\frac{3/166}{U_{1-2}} U_{1-2} = \Delta T + \Delta V_{e} + \Delta V_{g} \text{ for system}$ $U_{1-2}' = 50(1.5)\cos 30^{\circ} = 64.95 \text{ J}$ $\Delta T = \frac{1}{2} 2 \text{ U}^{2} = \text{ U}^{2}$ $\Delta V_{e} = \frac{1}{2} 30 \left[(\sqrt{2^{2} + 1.5^{2}} - 1.5)^{2} - (2 - 1.5)^{2} \right] = 11.25 \text{ J}$ $\Delta V_{g} = 2(9.81)/.5 = 29.43 \text{ J}$ $50 \quad 64.95 = \text{U}^{2} + 11.25 + 29.43, \text{ U}^{2} = 24.27, \text{ U} = 4.93 \frac{m}{5}$

$$\frac{3/16.7}{I} \Delta T + \Delta V_{g} = 0 , V_{g} = -\frac{m_{g}R^{2}}{r}$$
Mean radius of earth is $R = 637/km$
 $g = 9.825 (3600)^{2}/1000 = 127.3 (10^{3}) km/h^{2}$
Thus
 $\frac{1}{2}m (V_{g}^{2} - [24000]^{2}) + 127.3 (10^{3}) (6371)^{2}m (-\frac{1}{6500} + \frac{1}{7000}) = 0$
 $\frac{1}{2}V_{g}^{2} - 288(10^{6}) + 5/67 (10^{9})(-0.01099)(10^{-3}) = 0$
 $V_{g}^{2} = 2 [288 + 56.8] 10^{6} = 690 (10^{6}), V_{g}^{2} = 26 300 km/h$

 $\frac{3/168}{5} \Delta T + \Delta V_g + \Delta V_e + U_f = 0$ $\frac{3}{168} \int_{a} T + \Delta V_g + \Delta V_e + U_f = 0$ $\frac{3}{168} \int_{a} T + \Delta V_g + \Delta V_e + U_f = 0$ $\frac{3}{168} \int_{a} T + \Delta V_g + \Delta V_e + U_f = 0$ $\frac{3}{168} \int_{a} T + \frac{1}{168} \int_{a} T + \frac{$



$$\frac{3/170}{\Delta T} = \frac{1}{2} m \left[\nu^2 - (2000 \frac{44}{30})^2 \right]$$

$$\Delta T = \frac{1}{2} m \left[\nu^2 - (2000 \frac{44}{30})^2 \right]$$

$$\Delta V_g = -m_g R^2 \left(\frac{1}{R} - \frac{1}{2R} \right) = -\frac{m_g R}{2}$$

$$= -\frac{1}{2} m 5.32 (1080) (5280)$$

$$5_0 \nu^2 - (2000 \frac{44}{30})^2 = 5.32 (1080) (5280)$$

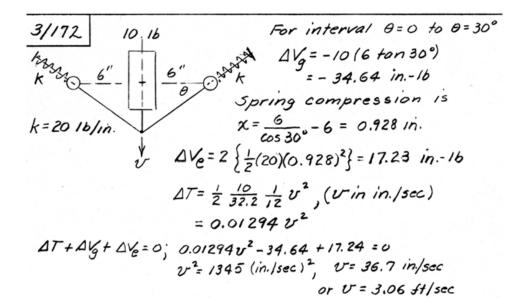
$$\nu = 6240 \text{ ft/sec} \text{ or } 4250 \text{ mi/hr}$$

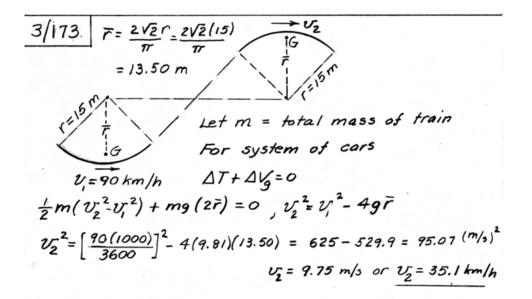
$$\frac{3/171}{U_{1-2}} = 0 \quad \text{so} \quad T_1 + V_{g_1} = T_2 + V_{g_2}$$
Take datum $V_g = 0$ at ground level.

$$T_1 = \frac{1}{2} \frac{175 + 10}{32.2} \quad v^2 = 2.87 \, v^2 , \quad T_2 = 0$$

$$V_{g_1} = (175 + 10) \frac{42}{12} = 648 \text{ ft-1/b}$$

$$V_{g_2} = 175(18) + 10(8) = 3230 \text{ ft-1/b}$$
So $2.87 \, v^2 + 648 = 0 + 3230$
 $v = 30.0 \text{ ft/sec} \quad \text{or} \quad 20.4 \text{ mi/hr}$





$$\frac{3/174}{2} \qquad U' = \Delta T + \Delta V_g = 0 \quad \text{where} \quad V_g = -\frac{mgR^2}{r}$$

$$\frac{\Delta V_g = -9.825 \, m \left[6371 \, (10^3) \right]^2 \left(\frac{1}{(2500 + 6371) \cdot 10^3} - \frac{1}{(2200 + 6371) \cdot 10^3} \right)$$

$$= 1.573 \, (10^6) \, m$$

$$\Delta T = \frac{1}{2} \, m \left(\upsilon_B^2 - \left[\frac{25 \, 000 \times 10^3}{3600} \right]^2 \right)$$

$$Thus \quad \frac{1}{2} \, \upsilon_B^2 - \frac{1}{2} \left[\frac{25 \, 000}{3.6} \right]^2 + 1.573 \, (10^6) = 0$$

$$\upsilon_B^2 = 45.08 \, (10^6) \, \left(\frac{m}{s} \right)^2, \quad \upsilon_B = 6714 \, \text{m/s}$$
or
$$\upsilon_B = 24 \, 170 \, \text{km/h}$$

$$\frac{3/175}{O+0.6(9.81)(0.5)} + \frac{1}{2} |z_0| \left[\sqrt{0.25^2 + 0.5^2} - 0.2 \right]^2}{= \frac{1}{2} (0.6) v_8^2 + \frac{1}{2} |z_0| \left[0.25 - 0.20 \right]^2}$$

$$\frac{v_8 = 5.92 \text{ m/s}}{\text{Kinetics at B:}} \qquad \text{mg} = \left[\sum_{i=120}^{i} \sum_{i=$$

$$\frac{3/176}{\Delta T} = \frac{1}{2}m\dot{y}^{2}; \quad \Delta V_{g} = -mgy$$

$$\Delta V_{e} = 2\left\{\frac{1}{2}kx^{2}\right\} = k(ysin\theta)^{2} = ky^{2}(1-cos^{2}\theta)$$

$$= ky^{2}(1-c^{2}/6^{2})$$

$$\frac{1}{2}m\dot{y}^{2} - mgy + ky^{2}(1-c^{2}/6^{2}) = 0$$

$$\dot{y} = \sqrt{2y(g - \frac{k}{m}y}\frac{b^{2}-c^{2}}{b^{2}})$$

$$y_{max} = y \text{ for } \dot{y} = 0, \text{ so } 2gy - \frac{2k}{m}y^{2}(1-c^{2}/6^{2}) = 0$$

$$Hence(y_{min} = 0), \quad y_{max} = \frac{mg}{k}\frac{b^{2}}{b^{2}-c^{2}}$$

$$\frac{3/177}{\sqrt{2}} = \chi^{2} + y^{2} = 0.9^{2}, \quad \chi \dot{x} + y \dot{y} = 0, \quad \mathcal{V}_{A} = -\dot{y} = \frac{\chi}{y} \dot{x} = \frac{\chi}{y} \mathcal{V}_{B}$$

$$\Delta T + \Delta V_{g} = 0; \quad \frac{1}{2} m (\dot{x}^{2} + \dot{y}^{2}) + m_{g} (y - \frac{0.9}{\sqrt{2}}) = 0$$

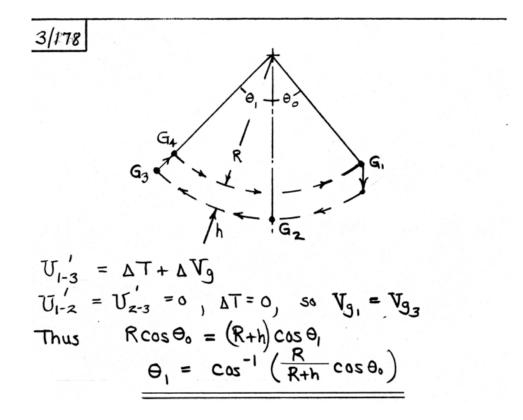
$$\dot{x}^{2} (1 + \frac{\chi^{2}}{y^{2}}) = 2(9.81) (\frac{0.9}{\sqrt{2}} - y), \quad \dot{x}^{2} \frac{\chi^{2} + y^{2}}{y^{2}} = 19.62 (\frac{0.9}{\sqrt{2}} - y)$$

$$0.9^{2} \dot{x}^{2} = 19.62 (\frac{0.9}{\sqrt{2}} y^{2} - y^{3})$$
For max. $\dot{x}, \quad \frac{d(\dot{x}^{2})}{dy} = \frac{19.62}{0.81} (\frac{1.8}{\sqrt{2}} y - 3y^{2}) = 0$

$$so \quad y (\frac{1.8}{\sqrt{2}} - 3y) = 0, \quad y = 0.6/\sqrt{2} m$$

$$\notin \quad \dot{\chi}^{2} = \frac{19.62}{0.81} (\frac{0.9}{\sqrt{2}} - \frac{0.36}{2} - \frac{0.108}{\sqrt{2}}) = \frac{19.62\sqrt{2}}{30}$$

$$\mathcal{V}_{Bmax} = \dot{\chi} = \sqrt{\frac{19.62\sqrt{2}}{30}} = 0.962 m/s$$



$$\begin{array}{c} 3/179 \qquad \qquad \underline{L-b} \\ p=mass per \qquad \qquad \underline{dF} \\ unit length \qquad \qquad \underline{dF} \\ \gamma = \frac{dF}{unit length} \qquad \underline{dF} \\ pgb = \mu_{R}pg(L-b), b = \frac{\mu_{R}L}{1+\mu_{R}} \\ U = \Delta T + \Delta V_{g} \\ U = \Delta T + \Delta V_{g} \\ U = -\int dF \cdot x = -\int \mu_{R}pgx dx \\ = -\mu_{R}pg(L-b)^{2}/2 \\ \Delta T = \frac{i}{2}\rho L V^{2} \\ \Delta V_{g} = -pg(L-b)(\frac{L+b}{2}) \\ Thus - \mu_{R}pg(L-b)^{2}/2 = \frac{i}{2}\rho L V^{2} - pg \frac{L^{2}-b^{2}}{2} \\ v^{2} = g(1-\frac{b}{L})(L+b-\mu_{R}[L-b]); Now substitute b \\ so v^{2} = g(1-\frac{M_{R}}{1+\mu_{R}})(L[1+\frac{\mu_{R}}{1+\mu_{R}}]-\mu_{R}[L-\frac{\mu_{R}L}{1+\mu_{R}}]) \\ = \frac{gL}{1+\mu_{R}}, \qquad \frac{V=\sqrt{\frac{gL}{1+\mu_{R}}}}{V^{2}} \end{array}$$

$$3/180$$

$$G_{10} \xrightarrow{\chi} sin\theta \qquad h_{i} = (L-\chi)sin\theta$$

$$h = (L-\chi)sin\theta + \frac{\chi}{2}sin\theta + \frac{\chi}{2}$$

$$= Lsin\theta + \frac{\chi}{2}(1-sin\theta)$$

$$h \qquad Let \ \rho = mass \ per \ unit \ length$$

$$\Delta V_{g} + \Delta T = 0$$

$$G_{2} \xrightarrow{\chi/2} \qquad \Delta V_{g} \ is \ that \ of \ the \ length \ \chi$$

$$dropping \ a \ distance \ h$$

$$\Delta V_{g} = -pg \times h = -pg[L\chi \ sin\theta + \frac{\chi^{2}}{2}(1-sin\theta)]$$

$$\Delta T = \frac{1}{2}\rho L \ U^{2}$$

$$Thus \ -pg[Lx \ sin\theta + \frac{\chi^{2}}{2}(1-sin\theta)] + \frac{1}{2}\rho L \ U^{2} = 0$$

$$V = \sqrt{2g \chi} [sin\theta + \frac{\chi}{2L}(1-sin\theta)]$$

►3/181 Vg=0 $\mathcal{T}_{1-2} = \Delta T + \Delta V$ U1 = M 7 $\Delta V_e = 0$ $V_{g_z} = -g \left[m(L-x) + mx + f(L-x) \frac{L-x}{2} + fx \frac{x}{2} \right] \sin\theta$ $= -g \sin \theta \left\{ mL + \frac{f}{2} \left[\left(L - X \right)^2 + X^2 \right] \right\}$ $V_{g_1} = -g \sin \theta \left\{ mL + lL \frac{L}{2} \right\}$ $\Delta V_{g} = -g \sin \theta \left\{ mL + \frac{l}{2} \left[(L-x)^2 + x^2 \right] - mL - \frac{lL^2}{2} \right\}$ = $-g\sin\theta\left\{\frac{f}{2}\left[2\chi^2-2L\chi\right]\right\}$ $\Delta T = \frac{1}{2} (Zm + fL) v^2$: $M \stackrel{x}{=} = \frac{1}{2} (2m + PL) v^2 - g \sin \theta \left\{ \frac{f}{2} \left[2x^2 - 2Lx \right] \right\}$ Solving, $U = \sqrt{\frac{2}{2m+PL}} \sqrt{\frac{Mx}{r}} - fgx(L-x)\sin\theta$

$$\frac{3}{82} \text{ For the unit } U' = \Delta T + \Delta V_g = 0$$

$$\Delta V_g = (-2mgr \sin\theta - mgr \cos\theta) - (-mgr + 0)$$

$$= mgr (-2\sin\theta - \cos\theta + 1)$$

so $\frac{1}{2} 3mv^2 - 0 + mgr (-2\sin\theta - \cos\theta + 1) = 0$
or $v^2/gr = \frac{2}{3} (2\sin\theta + \cos\theta - 1)$
(a) Rod is horiz, when $\theta = 45^\circ$
 $v^2/gr = \frac{2}{3} (2\sin 45^\circ + \cos 45^\circ - 1) = 0.748$, $v_{45^\circ} = 0.865 \sqrt{gr'}$
(b) $\frac{d}{d\theta} (\frac{v^2}{gr}) = \frac{2}{3} (2\cos\theta - \sin\theta) = 0$ for max $v^2 \notin$ hence max v
 $tan \theta = 2$, $\theta = tan^{-1}2 = 63.4^\circ$
so $v_{max}^2/gr = \frac{2}{3} (2\sin 63.4^\circ + \cos 63.4^\circ - 1) = 0.824$
 $v_{max} = 0.908 \sqrt{gr'}$

(c) $\theta = \theta_{max}$ when $T = \Delta T = 0$ so $2\sin\theta + \cos\theta - 1 = 0$ $2\sqrt{1 - \cos^2\theta} = 1 - \cos\theta$, $5\cos^2\theta - 2\cos\theta - 3 = 0$ $\cos\theta = 0.2 \pm 0.8 = 1$ or -0.6, $\theta = 0$ or $\theta_{max} = 126.9^\circ$

$3/183$ $\int \Sigma F dt = \Delta G$	20 KN
(20 000)(3×60) = 30 000 (v - 24 000)) <u>1000</u> 3600
v = 24400 km/h	

3/184 SEFdt = MAU $\frac{7}{6} \frac{48(10^{3})N}{5}$ $[48(10^{3}) - R] = 6450 \left(\frac{250\times1000}{3600} - 0\right)$ R = 3208 N or R = 3.21 kN

$$\frac{3/185}{2(26)10^{3}t} = 90(10^{3})[28100 - 28000]/3.6$$

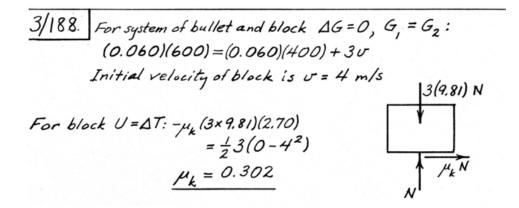
$$t = 48.1 \text{ s}$$

$$\frac{3/186}{2!} \begin{cases} \underline{v} = 1.5t^{3}\underline{i} + (2.4 - 3t^{2})\underline{j} + 5\underline{k} \quad (m/s) \\ \underline{v} = 4.5t^{2}\underline{i} - 6t\underline{j} \quad (m/s^{2}) \end{cases}$$
At $t = 2s$: $\begin{cases} \underline{v} = 12\underline{i} - 9.6\underline{j} + 5\underline{k} \quad m/s \\ \underline{v} = 18\underline{i} - 12\underline{j} \quad m/s^{2} \end{cases}$
Then $\underline{G} = \underline{m}\underline{v} = 1.2(\underline{l}\underline{2}\underline{i} - 9.6\underline{j} + 5\underline{k}) \\ = 14.40\underline{i} - 11.52\underline{j} + 6\underline{k} \quad \underline{k}\underline{g} \cdot \underline{m}\underline{k}\underline{s}$

$$G = \sqrt{14.40^{2} + 11.52^{2} + 6^{2}} = \underline{19.39} \quad \underline{k}\underline{g} \cdot \underline{m}\underline{s}$$

$$\Sigma \underline{F} = \underline{G} : \underline{R} = \underline{m}\underline{v} = 1.2(\underline{18}\underline{i} - 12\underline{j}) \\ = 21.6\underline{i} - 14.4\underline{j} \quad N \end{cases}$$

 $\frac{3/187}{+} \quad \text{Conservation of System linear momentum:} \\ \xrightarrow{+} 0.075(600) = 50.075 \, \text{Uf}, \, \text{Vf} = 0.899 \, \text{m/s} \\ \text{Initial energy } T_1 = \frac{1}{2}(0.075)(600)^2 = 13 500 \, \text{J} \\ \text{Final energy } T_2 = \frac{1}{2}(50.075)(0.899)^2 = 20.2 \, \text{J} \\ \text{Absolute energy loss } |\Delta E| = T_1 - T_2 = 13 \, 480 \, \text{J} \\ \text{Percent lost:} n = \frac{|\Delta E|}{T_1} (1007_0) = \frac{99.9}{70}$

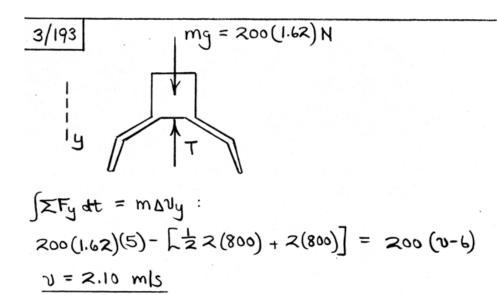


 $\frac{3/189}{|\Delta E|} \Delta G = 0; \quad 150,000 \times 2 + 120,000 \times 3$ $= (150,000 + 120,000) v , \quad v = 2.44 \text{ mi/hr}$ $|\Delta E| = \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 - \frac{1}{2} (m_A + m_B) v^2$ $= \frac{1}{2(32.2)} (\frac{44}{30})^2 [150,000 \times 2^2 + 120,000 \times 3^2 - 270,000 \times \overline{2.44}^2]$ $= 2230 \quad \text{ft} - 16 \quad \text{loss}$

 $\frac{3/190}{U} \Delta G = 0; \quad 100 (15) = 120 U; \quad U = 12.5 H/sec}{U = 120 lb} \rightarrow a \quad U^2 = 2as; \quad a = F/m = \frac{120 \mu_k}{120 |g|} = \mu_k g$ $\frac{120 \mu_k}{120 lb} = \frac{32.2 \mu_k}{32.2 \mu_k} = \frac{12.5^2}{2(80)}; \quad \mu_k = 0.030$

 $\frac{3/191}{G_1 = G_2} : mv = (3m)v', \quad \frac{v' = \frac{v}{3}}{\sqrt{1 + \frac{v}{3}}} = \frac{1}{2}mv^2, \quad T' = \frac{1}{2}(3m)(\frac{v}{3})^2 = \frac{1}{6}mv^2$ $n = \frac{T - T'}{T} = \frac{\frac{1}{2}mv^2 - \frac{1}{6}mv^2}{\frac{1}{2}mv^2} = \frac{2}{3}$

3/192 $\int 2F_{X} dt = m \Delta v_{X}$ $\frac{13}{12} 5 W(\frac{5}{13})t = \frac{W}{32.2}(30 - [-10])$ t = 3.23 secΡ W ft/sec



$$3/195 \qquad \int \sum_{c=2}^{t} F_{c}dt = m\Delta U$$

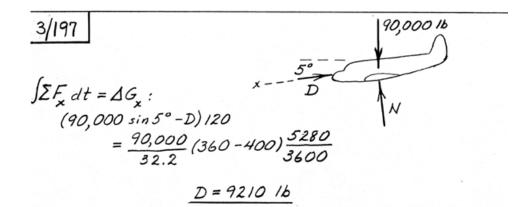
$$F = 0.3(20) = 6.16 \qquad U = 5.86 \quad ft/sec$$

$$\frac{3/196}{M} \frac{mg}{5} = \frac{mg}{5} = \frac{mg}{5} - R = \frac{mg}{5} - R = 0$$

$$R = \frac{m}{5} \left(\frac{v}{\Delta t} + g\right)$$

Initial energy:
$$\frac{1}{2} \frac{6m}{5} v^2 = \frac{3}{5} m v^2$$

Final energy: $\frac{1}{2} m v^2$
 $n = \frac{\frac{3}{5} - \frac{1}{2}}{\frac{3}{5}} (100\%) = \frac{16.67\%}{100\%}$



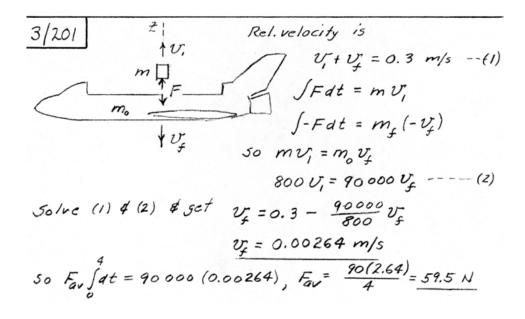
$$\frac{3/198}{2} \Delta G = 0; \quad (0.140)(600) - [0.140 + 3 \times 0.100] v = 0$$

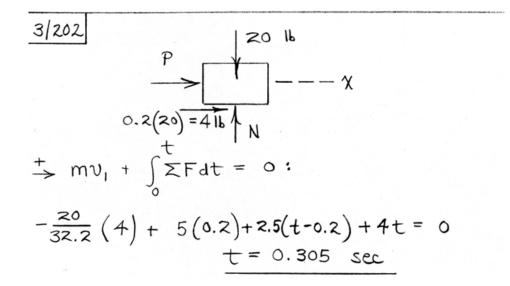
$$\frac{v = 190.9 \text{ m/s}}{\frac{1}{2}(0.140)(600)^2 - \frac{1}{2}(0.140 + 0.300)(190.9)^2}{\frac{1}{2}(0.140 + 0.300)(190.9)^2}$$

$$= 25.2(10^3) - 8.018(10^3) = 17.18(10^3) \text{ J} \text{ loss}$$

 $\frac{3/199}{(50,000\cos 20^{\circ})t} = \frac{150,000\times2240}{32.2} \frac{1\times1.151}{1} \frac{44}{30}$ $46,985t = 17.62\times10^{6}$ $t = 375 \ sec \ or \ t = 6.25 \ min$

 $\frac{3/200}{100} \Delta G = 0; \quad 320(28) - (320 + 20x/8) v = 0$ Initial velocity of chain is v = 13.18 m/s $\int 2F_{at} = m\Delta v; \quad (20x18)9.81(0.7)t = (320 + 20x18)(13.18)$ t = 3.62 s





$$3|203| 15,000 \ 16 \qquad \theta = \tan^{-1}0.1 = 5.71^{\circ}, \ \sin \theta = 0.0995$$

$$15,000 \ 16 \qquad \int \Sigma F_{X} dt = m \Delta U_{X}$$

$$1F 1 \quad 1F \quad -\chi \quad [35,000 \times 0.0995 - 2F]5$$

$$= \frac{35,000}{32.2} (0 - 20\frac{44}{30})$$

$$F = 4930 \ 16$$

$$F = 4930 \ 16$$

$$F = 4930 \ 16$$

$$F = \frac{15,000}{32.2} (0 - 20\frac{44}{30})$$

$$F = \frac{15,000}{32.2} (0 - 20\frac{44}{30})$$

$$P = 704 \ 16 \ (tension)$$

$$\frac{3/204}{N} \xrightarrow{mg} F$$

$$\xrightarrow{+} mv_{1} + \int \Sigma F dt = mv_{2} :$$

$$0 + \int^{t} F_{0} e^{-bt} dt = mv$$

$$\frac{v = \frac{F_{0}^{\circ}}{mb} (1 - e^{-bt}), \quad v \ge \frac{F_{0}}{mb} \quad q_{3} \quad t \ge \infty$$

$$\frac{ds}{dt} = \frac{F_{0}}{mb} (1 - e^{-bt})$$

$$\int^{s} ds = \int \frac{F_{0}}{mb} (1 - e^{-bt}) dt$$

$$s = \frac{F_{0}}{mb} [t + \frac{1}{b} (e^{-bt})]$$

~

$$\frac{3/205}{\int ZF_{y} dt = \Delta G_{y}} : \int_{0}^{4} (2 + \frac{3t^{2}}{4}) dt = 2.4 (\upsilon_{y} - [-\frac{3}{5}5])$$

$$2t + \frac{t^{3}}{4} \Big|_{0}^{4} = 2.4 (\upsilon_{y} + 3), \quad \upsilon_{y} = 7 \text{ m/s}$$

$$\int ZF_{x} dt = \Delta G_{x} : \quad O = 2.4 (\upsilon_{x} - \frac{4}{5}5), \quad \upsilon_{x} = 4 \text{ m/s constant}$$

$$\upsilon = \sqrt{4^{2} + 7^{2}} = \frac{8.06 \text{ m/s}}{6}, \quad \theta = \tan^{-1}\frac{7}{4} = \frac{60.3^{\circ}}{\upsilon_{y}} \quad \bigcup_{x}^{0}$$

3/206 Impact velocity $v_0 = \sqrt{2gh} = \sqrt{2(9.81)(1.4)}$ = 5.24 m/s $\Delta G=0; 450(5.24) + 0 = (450+240)v$ v = 3.42 m/sImpulse of weights is negligible compared with impulse of impact forces.

$$\frac{3/207}{\nu'} = \frac{m_{A}}{m_{A} + m_{B}} \nu_{A} = \frac{4000/g}{(4000 + 2000)/g} = 20$$

$$= \frac{13.33 \text{ mi/hr}}{13.33 \text{ mi/hr}} (19.56 \text{ ft/sec})$$
(c) Car B:

$$\frac{m_{B}g}{R} + R\Delta t = m_{B}\nu' : 0 + R(0.1) = \frac{2000}{32.2} (19.56)$$

$$\frac{R = 12,150 \text{ lb}}{32.2} (19.56)$$
(The force which Car B exerts on car A
is 12,150 lb to the left, by Newton's
Third Law.)
(b) $a_{A} = \frac{\Delta \nu}{\Delta t} = \frac{19.56 - 20(\frac{5280}{3600})}{0.1} = -97.8 \frac{\text{ft}}{\text{sec}^{2}}$

$$a_{B} = \frac{\Delta \nu}{\Delta t} = \frac{19.56 - 0}{0.1} = 195.6 \frac{\text{ft}}{\text{sec}^{2}}$$

$$\frac{3/208}{\sqrt{30}} N(y) \qquad \Delta G_{\chi} = 0; \quad \frac{3200}{9}/30) = \frac{(3200+3400)}{9} v_{\chi}^{2}$$

$$\frac{V_{\chi}}{\sqrt{30}} = \frac{14.55}{10.30} \frac{1}{\sqrt{9}} v_{\chi}^{2}$$

$$\frac{V_{\chi}}{\sqrt{10}} = \frac{14.55}{9} \frac{1}{\sqrt{10}} v_{\chi}^{2}$$

$$\frac{V_{\chi}}{\sqrt{10}} = \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}}$$

$$\frac{3/209}{R} = \frac{x}{25 \text{ lb}} = \frac{x}{7}$$

$$F = b + 10 \sin 6t$$

$$F = mv_{X_2}$$

$$F = b + 10 \sin 6t$$

$$F = mv_{X_2}$$

$$\frac{3/210}{9} \quad G_{1} = G_{2} : m_{5}v_{5} + m_{m}v_{m} = (m_{5}+m_{m})v_{1}$$

$$1000 (2000)j + 10 (5000) \left[\frac{+5i - 4j - 2k}{\sqrt{5^{2} + 4^{2} + 2^{2}}} \right] = (1000 + 10)v_{1}$$

$$\frac{v_{1}}{2} = 36.9i + 1951j - 14.76k m/s$$

The angle between
$$\underline{v}_{s}$$
 and \underline{v}_{s} is

$$\beta = \cos^{-1} \frac{\underline{v} \cdot \underline{v}_{s}}{\underline{v} \underline{v}_{s}}$$

$$= \cos^{-1} \left[\frac{(36.9\underline{i} + 1951\underline{j} - 14.76\underline{k}) \cdot 2000\underline{j}_{s}}{\sqrt{36.9^{2} + 1951^{2} + 14.76^{2}}} \right]$$

$$= 1.167^{\circ}$$

$$\frac{3/211}{\int E dt} = Ft = m \Delta v$$

$$F = \frac{0.20}{0.04} \left([18\cos 20^{\circ}]i + [18\sin 20^{\circ}]j - [-12i] \right)$$

$$= 5 \left(18 \times 0.9397i + 18 \times 0.3420j + 12i \right)$$

$$= 30(4.819i + 1.026j) N$$

$$F = 30\sqrt{4.819^{2} + 1.026^{2}} = 147.8 N$$

$$\beta = \tan^{-1} \frac{v_{y}}{v_{x}} = \tan^{-1} \frac{1.026}{4.819} = 12.02^{\circ}$$

3/212 Force F AIB С F/2 - tíme 0 o $\frac{1}{4}$ $\frac{1}{2}$ $\frac{31}{4}$ t Solid area is $\frac{5}{8}$ of nominal area, so n = 62.5%In order to compensate, areas $A, B, \ddagger C$ must be added after time t, so the extra time $t' = \frac{3}{4}t$.

$$\frac{3/213}{(mg sin 10^{\circ})} \int F_{\chi} dt = m \Delta U_{\chi} : mg / Z$$

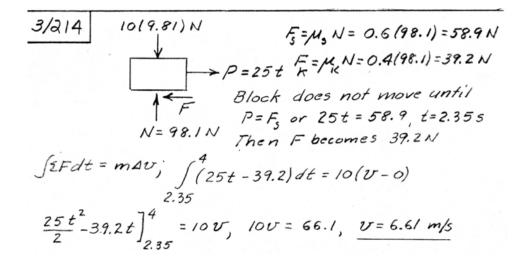
$$\frac{mg sin 10^{\circ}}{(mg sin 10^{\circ})} = m [V_{\chi} - (-3 sin 15^{\circ})] + \sqrt{---\chi}$$

$$V_{\chi} = 2.63 m/s$$

$$\int F_{y} dt = m \Delta U_{y} : 0 = m [V_{y} - 3 cos 15^{\circ}]$$

$$U_{y} = 2.90 m/s$$

$$U = \sqrt{U_{\chi}^{2} + U_{y}^{2}} = 3.91 m/s$$



$$\frac{3/215}{\sqrt{3}} \int F_{\chi} dt = m \Delta V_{\chi} : 0.2t = \frac{1.2}{32.2} \left[V_{\chi} - (-10 \sin 30^{\circ}) \right]$$

$$V_{\chi} = \frac{d\kappa}{dt} = 5.37t - 5$$

$$\int_{0}^{0} d\kappa = \int_{0}^{t} (5.37t - 5) dt , \quad \underline{t} = 1.863 \text{ sec}$$

$$\frac{3/216}{R} = my : R(0.001) = \frac{1.62/16}{32.2} (150)$$

$$\frac{R = 472}{R} = ma : 472 = \frac{1.62/16}{32.2} a$$

$$\frac{a = 150,000 \text{ ft/sec}^{2} (4660g)}{150^{2} - v_{0}^{2}} = 2ad : 150^{2} - 0^{2} = 2(150,000) d$$

$$\frac{d = 0.075 \text{ ft or } 0.900 \text{ in.}}{150^{2} - 0^{2}} = 2(150,000) d$$



$$\frac{3/218}{(\frac{2/16}{32.2} + 0)^{2000}} = \frac{2/16 + 50}{32.2} \sigma_{2}, \quad \sigma_{2} = 4.99 \quad ft/sec} \\ (\frac{2/16}{32.2} + 0)^{2000} = \frac{2/16 + 50}{32.2} \sigma_{2}, \quad \sigma_{2} = 4.99 \quad ft/sec} \\ U = \Delta T: \quad \sigma_{2} = \sqrt{2gh'}, \quad 4.99^{2} = 2(32.2)(6)(1 - \cos\theta) \quad where \quad h = 6(1 - \cos\theta) \\ \cos\theta = 0.936, \quad \theta = 20.7^{\circ}} \\ \frac{7}{6} \text{ energy } \log s = \frac{\frac{1}{2}m_{1}\sigma_{1}^{2} - (m_{1} + m_{2})gh}{\frac{1}{2}m_{1}\sigma_{1}^{2}} \times 100\% = \left(1 - \frac{m_{1} + m_{2}}{m_{1}} \frac{2gh}{\sigma_{1}^{2}}\right) 100\% \\ = \left[1 - \frac{2/16 + 50}{2/16} \frac{2(32.2)6(1 - 0.936)}{2000^{2}}\right] 100\% = \frac{99.8\%}{100\%}$$

 $\frac{3/219}{R=R_0+Kv} \xrightarrow{\to v} x$ $\begin{aligned} \Sigma F dt &= m dv, \quad (F - R_{o} - kv) dt = m dv \\ \int_{0}^{t} dt &= \int_{0}^{v} \frac{m dv}{F - R_{o} - kv}; \quad t = -\frac{m}{\kappa} \ln (F - R_{o} - kv) \Big]_{0}^{v} \\ t &= -\frac{m}{\kappa} \ln \frac{F - R_{o} - kv}{F - R_{o}} \end{aligned}$ $t = \frac{m}{K} \ln \frac{F - R_o}{F - R_o - Kv}$

 $\frac{3/220}{v} \quad For plug: \Delta T + \Delta V_g = 0; \quad \frac{1}{2}m_A v^2 - m_A gr = 0$ $v = \sqrt{2gr}$ Plug & block: DG=0; mAV2gr = (mA+mC)v' where v'= velocity of block & plug after impact Friction force F= u (mA + mc)g Deceleration a = F/(mA+mC) = Mkg $v'^{2} = 2as, \quad s = \left(\frac{m_{A}}{m_{A} + m_{c}}\right)^{2} 2gr \frac{1}{2\mu_{K}g} = \frac{r}{\mu_{K}} \left(\frac{m_{A}}{m_{A} + m_{c}}\right)^{2}$

$$\frac{3/221}{R_{x}at}$$

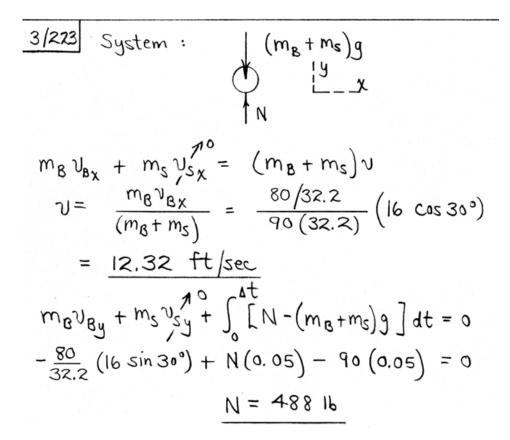
$$\frac{19}{M_{y}at}$$

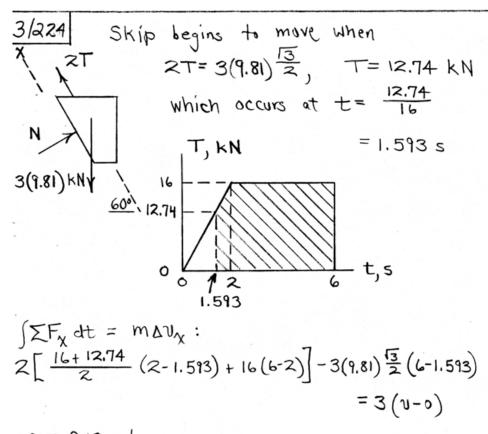
$$\frac{35^{\circ}}{35^{\circ}}$$

$$\frac{1}{35^{\circ}}$$

$$\frac{1}{35$$

$$\frac{3/222}{R_{\chi}\Delta t} \xrightarrow{IJ}_{M_{\chi}\Delta t} \xrightarrow{U_{\chi}}_{M_{\chi}\Delta t} \xrightarrow{U_{\chi}}$$





$$v = 9.13 \text{ m/s}$$

 $\frac{3/225}{\sqrt{7}} T_{y} = 600 \cos \theta ; \quad \dot{\theta} = \frac{\pi}{10} \operatorname{rad/s}, \text{ so } dt = \frac{10}{\pi} d\theta$ $\int \mathcal{Z}F_{y} dt = m \, \Delta \mathcal{V}_{y}; \quad \int 600 \cos \theta \left(\frac{10}{\pi} d\theta\right) = 260 \, (\mathcal{V}_{y} - 0)$ $\frac{6000}{\pi} \sin \theta \Big|_{0}^{\pi/2} = 260 \, \mathcal{V}_{y}, \quad \mathcal{V}_{y} = \frac{6000}{260 \pi} = \frac{7.35 \, m/s}{2.35 \, m/s}$

$$\frac{3/224}{\sqrt{4}} (a) \Delta G = 0; \quad m(4) \neq 0 = m \sqrt{4} + m \sqrt{6}$$

$$\frac{\sqrt{4}}{\sqrt{4}} + \frac{\sqrt{6}}{8} = 4$$

$$\Delta T = 0.4T; \quad \frac{1}{2}m(4^{2}) - \left[\frac{1}{2}m\sqrt{4}^{2} + \frac{1}{2}m\sqrt{6}^{2}\right] = 0.4\left[\frac{1}{2}m(4^{2})\right]$$

$$\frac{\sqrt{4}^{2}}{\sqrt{4}} \sqrt{6}^{2} = 9.6$$
Solve simultaneously & get $(4 - \sqrt{6})^{2} + \sqrt{6}^{2} = 9.6$
or $\sqrt{6}^{2} - 4\sqrt{6} + 3.2 = 0$, $\sqrt{6} = \frac{4}{2} \pm \frac{1}{2}\sqrt{16 - 4(3.2)}$

$$= 2\pm 0.894$$
(Sol. I) $\sqrt{6} = 2.894$ ft/sec, $\sqrt{4} = 4 - 2.894 = 1.106$ ft/sec
(Sol. I) $\sqrt{6} = 1.106$ ft/sec, $\sqrt{4} = 4 - 2.894 = 1.106$ ft/sec
(Sol. II) $\sqrt{6} = 1.106$ ft/sec, $\sqrt{4} = 4 - 1.106 = 2.894$ ft/sec
Sol. II is ruled out since distance between $4 \approx 8$
would be decreasing so that $\sqrt{6} > \sqrt{6}$
Thus $\sqrt{6} = 2.89$ ft/sec
(b) For initial to final condition
 $\Delta G = 0; \quad m(4) \neq 0 = 2m \sqrt{6}, \quad \frac{\sqrt{6}}{2} = 2 \text{ ft/sec}$

$$\frac{3/227}{H_{0}} = (a) \quad H_{0} = \underline{r} \times \underline{m} \underline{v}$$

$$\frac{H_{0}}{H_{0}} = (-6\underline{i} + 8\underline{j}) \times 2(7) (-\sin 30^{\circ}\underline{i} - \cos 30^{\circ}\underline{j})$$

$$= 128.7 \underline{k} \quad \underline{kg} \cdot \underline{m}^{2}/\underline{s}$$
So
$$\frac{H_{0}}{H_{0}} = 128.7 \quad \underline{kg} \cdot \underline{m}^{2}/\underline{s}$$

$$d_{1} = 6 \tan 30^{\circ} \qquad 7 \underline{m}\underline{s} \cdot \underline{l} \cdot 30^{\circ}$$

$$d_{2} = 8 - d_{1} \qquad 8 \underline{m} \times \underline{l} \cdot \underline{l} \cdot \underline{l} \cdot 30^{\circ}$$

$$d_{2} = 8 - d_{1} \qquad 8 \underline{m} \times \underline{l} \cdot \underline$$

$$\frac{3/228}{(a)} = mv = 3 \cdot 5 \left(-\cos 30^{\circ} i - \sin 30^{\circ} j \right)$$
$$= -12.99 i - 7.5 j \quad kg \cdot m/s$$

(b)
$$\underline{H}_{o} = \underline{r} \times \underline{m} \underline{v} = \underline{r} \times \underline{G}$$

= $2(\cos 15^{\circ} \underline{i} - \sin 15^{\circ} \underline{j}) \times (-12.99 \underline{i} - 7.5 \underline{j})$
= $-21.2 \underline{k} \quad \underline{kg \cdot m^{2} / s}$

(c)
$$T = \pm mv^2 = \pm (3)(5)^2 = 37.5 J$$

$$\frac{3/229}{H_0} = \underline{r} \times \underline{mv}$$

$$= (\underline{a}\underline{i} + \underline{b}\underline{j} + \underline{c}\underline{k}) \times \underline{mv}\underline{k}$$

$$= \underline{mv} (\underline{b}\underline{i} - \underline{a}\underline{j})$$

$$\dot{H}_0 = (\underline{a}\underline{i} + \underline{b}\underline{j} + \underline{c}\underline{k}) \times \underline{F}\underline{j}$$

$$= F(-\underline{c}\underline{i} + \underline{a}\underline{k})$$

3/230 Angular momentum about 0 is conserved: $H_{o_1} = H_{o_2}$: $3mv(L) + Zmv(L) = 3mL^2 \omega$ $\omega = \frac{5}{3}\frac{v}{L}$

$$\frac{3/231}{P_{B}} = \frac{1}{P_{B}} = 0, \text{ so } H_{0} = \text{ const.}$$

$$\frac{1}{P_{0}} = \frac{1}{P_{0}} = \frac{1}{P$$

$$\frac{3/232}{H_0} = mr \sqrt{2gr}$$

$$H_0 = mr \sqrt{g} = mr \sqrt{2gr}$$

$$(b) v_c = \sqrt{2g(2r)} = 2\sqrt{gr}$$

$$H_0 = mr v_c = 2mr \sqrt{gr}$$

$$H_0 = 0$$

$$\frac{3/233}{0 + 20(0.1) t} = 4(3)(0.4)^{2} \left[150 \left(\frac{1}{60} \right) (2\pi) \right]$$

$$t = 15.08 s$$

 $\sum M_0 = H_0; \quad 0 = \frac{d}{dt} (mr\dot{\theta} \times r)$ or $\frac{d}{dt} (r^2\dot{\theta}) = 0$ so $r^2\dot{\theta} = const.$ 3/234 rø Θ Ö

$$\frac{3/235}{235} T_{A} + U_{A-c} = T_{c}$$

$$\frac{19}{2} m u_{A}^{2} + mgh_{A-c} = \frac{1}{2} m u_{c}^{2}$$

$$u_{c}^{2} = u_{A}^{2} + 2gh_{A-c}$$

$$= 6^{2} + 32.2 \left(\frac{20}{12}\right)(2)$$

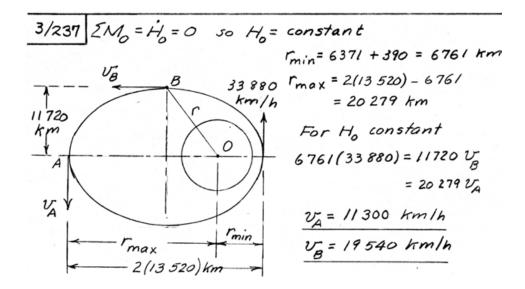
$$= 143.3 \text{ ft}^{2}/\text{sec}^{2}$$

$$\sum F_{y} = ma_{y} : N-0.25 = \frac{0.25}{32.2} \frac{143.3}{10/12}$$

$$N = 1.585 \text{ lb}$$

$$\frac{1}{2}B = M_{B} = (1.585 - 0.25) \frac{10}{12} \text{ k} = 1.113 \text{ k} \text{ lb-ft}$$

3/236 Velocity of plug upon impact is
$v = \sqrt{2gh} = \sqrt{2(9.81)(0.6)} = 3.43 \text{ m/s}$
For system, DH=0. Take C.W. positive
Initial $H_{c} = -4(0.5)^{2}(2) - 6(0.3)^{2}(2) + 2(3.43)(0.5)$
= -2 - 1.08 + 3.43 = 0.351 N·m·s
Final Ho = [(4+2)(0.5)2 + 6(0.3)2] cu
$= 2.04 \omega$
50 0.351=2.04W, W= 0.1721 rad/s CW



$$\frac{3/238}{50}$$
 For the entire system, $\sum M_0 = H_0 = 0$,
So angular momentum is conserved.
 $H_{0_1} = H_{0_2}$: $2mr^2\omega_0 + 0 = 2mr^2\omega + 2m(2r)^2\omega$
 $\omega = \omega_0/5$

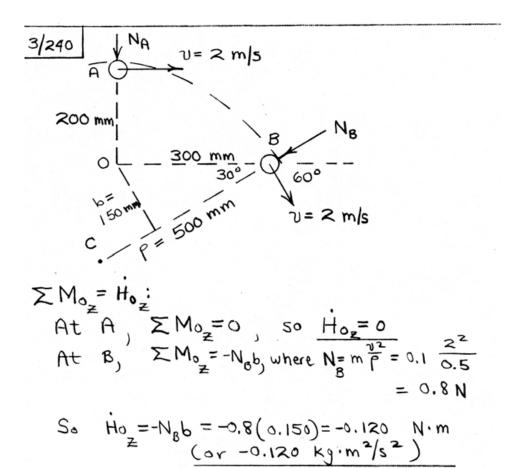
Kinetic energy loss
$$\Delta Q = T_1 - T_2$$

 $\Delta Q = 2(\frac{1}{2}mr^2\omega_0^2) - \{2(\frac{1}{2}mr^2\omega^2) + 2(\frac{1}{2}m(2r)^2\omega^2)\}$
 $= mr^2\omega_0^2 - mr^2(5(\frac{\omega_0}{5})^2) = \frac{4}{5}mr^2\omega_0^2$
So $n = \frac{\Delta Q}{T_1}(100\%) = \frac{\frac{4}{5}mr^2\omega_0^2}{2(\frac{1}{2}mr^2\omega_0^2)}(100\%) = \frac{80\%}{2}$

$$\frac{3/239}{\Delta H = 0} \Delta H = 0, \ 2m \ rw_{o}(r) - 2m(2r)w(2r) = 0$$

$$\frac{\omega = \omega_{o}/4}{\Delta T = 2\left(\frac{1}{2}m[rw_{o}]^{2}\right) - 2\left(\frac{1}{2}m[2r\frac{\omega_{o}}{4}]^{2}\right) = mrw_{o}^{2}(3/4)$$

$$n = \Delta T/T = \frac{3}{4}mrw_{o}^{2}/mr^{2}w_{o}^{2} = \frac{3/4}{4}$$



 $\frac{3/241}{\Sigma} \sum M_{0} = \dot{H}_{0} = 0, \text{ so angular momentum is}$ conserved : $H_{0_{1}} = H_{0_{2}}$ (0: any point on axis) $0.2 (0.3 \cos 30^{\circ})^{2} 4 = 0.2 (0.2 \cos 30^{\circ})^{2} \omega$ $\frac{\omega = 9 \text{ rod}/s}{\sqrt{1-2}}$ $U_{1-2} = \Delta T + \Delta V_{g}$ $\Delta T = \pm (0.2) [(0.2 \cos 30^{\circ} \cdot 9)^{2} - (0.3 \cos 30^{\circ} \times 4)^{2}]$ = 0.1350 J $\Delta V_{g} = 0.2 (9.81) (0.1 \sin 30^{\circ}) = 0.0981 \text{ J}$ So $U_{1-2} = 0.1350 + 0.0981 = 0.233 \text{ J}$

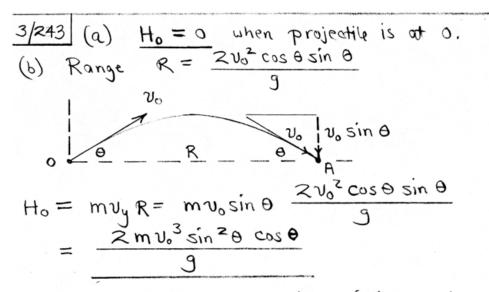
$$\frac{3/242}{M_{o_{A}}} \int \sum M_{o} dt = \Delta H_{o} = H_{o_{B}} - H_{o_{A}}$$

$$H_{o_{A}} = 0.02(4)(0.090)sin 30^{\circ} = 0.0036 \text{ kg} \cdot \text{m}^{2}/\text{s}$$

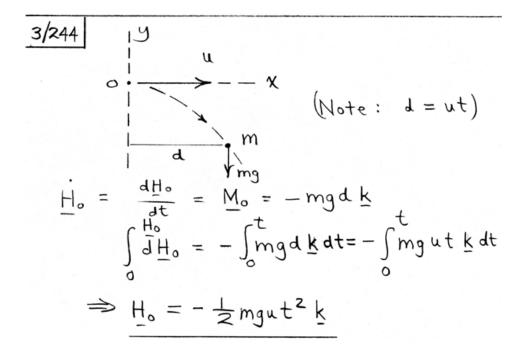
$$H_{o_{B}} = 0.02(6)(0.180)sin 60^{\circ} = 0.01871 \text{ kg} \cdot \text{m}^{2}/\text{s}$$

$$\Delta H_{o} = 0.01871 - 0.0036 = 0.01511 \text{ kg} \cdot \text{m}^{2}/\text{s}$$

$$M_{o_{AV}} \times 0.5 = 0.01511, \quad M_{o_{AV}} = 0.0302 \text{ N} \cdot \text{m}$$



The moment of the projectile weight about point 0 is always increasing the angular momentum about 0.



$$\frac{3/245}{(m r v_{\theta})_{A}} = (m r v_{\theta})_{B}$$

$$50(10^{6})(188,500) = 75(10^{6}) v_{\theta}$$

$$\frac{v_{\theta}}{16} = 125,700 \text{ ft} \text{sec} \quad (@ B)$$
Energy conservation $T_{A} + V_{A} = T_{B} + V_{B}$

$$\frac{1}{2}m v_{A}^{2} - \frac{Gm_{S}m}{r_{A}} = \frac{1}{2}m v_{B}^{2} - \frac{Gm_{S}m}{r_{B}}$$

$$\frac{1}{2}(188,500)^{2} - \frac{1}{2}v_{B}^{2} = 3.439(10^{-8})(333,000)(4.095)10^{23} \left[\frac{1}{50(10^{6})} - \frac{1}{75(10^{6})}\right] \frac{1}{5280}$$

$$v_{B} = 153,900 \text{ ft} \text{sec}$$

$$v_{\Gamma} = -(v_{B}^{2} - v_{\theta}^{2}) = \sqrt{153,900^{2} - 125,700^{2}} = 88,870 \frac{\text{ft}}{\text{sec}}$$

$$\frac{3/246}{\Sigma M_{o} = \dot{H}_{o}: mgl\cos\theta = \frac{d}{dt}(ml^{2}\dot{\theta}) = ml^{2}\ddot{\theta}$$

$$\frac{\ddot{\theta} = \frac{g}{l}\cos\theta}{\ddot{\theta} = \frac{1}{l}\cos\theta}$$
From $\int \dot{\theta} d\dot{\theta} = \int \ddot{\theta} d\theta, \frac{\dot{\theta}^{2}}{2} \Big|_{o}^{\dot{\theta}} = \int_{o}^{\theta} \frac{g}{l}\cos\theta d\theta,$

$$\dot{\theta}^{2} = \frac{2g}{l}\sin\theta, \dot{\theta}_{\theta=90^{\circ}} = \sqrt{\frac{2g}{l}}$$
so at $\theta = 90^{\circ}, \ \sigma = l\dot{\theta} = \sqrt{2gl}$
By work-energy $U = \Delta T, mgl = \frac{l}{2}m\sigma^{2}, \ \sigma = \sqrt{2gl}$

3/247 Forces on particle exert no moment about the central axis, so angular momentum is conserved about this axis. Thus DHz=0 & MUCOSB(r) = MUCOSO(r), UCOSB = UCOSO Also energy is conserved so that ΔT+ΔY=0; 1mv2-1mv2-mgh=0 Eliminate, $v \notin get$ $cos \theta = \frac{v_c cos \beta}{\sqrt{v_c^2 + 2gh}}$ or $\theta = \cos^{-1} \frac{\cos \beta}{\sqrt{1 + \frac{2gh}{U^2}}}$

$$\frac{3/248}{4} \text{ System angular momentum conserved} during impart: $f + H_{0_1} = H_{0_2}$:
0.050 (300) (0.4 cos 20°) - 3,2(0.2)²6 - 3.2 (0.4)²6
= (0.050 + 3,2)(0.4)²ω' + 3.2(0.2)²ω'
 $\frac{\omega' = 2.77 \text{ rad/s}}{\sqrt{2}} (\text{CCW})$
Energy considerations after impart:
 $T' + V' = T + V$, choose datum @ 0:
 $\frac{1}{2}(0.05 + 3.2) [0.4(2.77)]^2 + \frac{1}{2}(3.2) [0.2(2.77)]^2$
 $+ [3.2(0.2) - (3.2 + 0.05)(0.4)] 9.81 = 0 + [3.2(0.2) - (3.2 + 0.05)(0.4)] 9.81 \cos \theta$
 $\theta = 52.1^{\circ}$$$

т

,

$$\frac{3/249}{|X_{2}|} Path form: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \quad \left(\substack{a=5 \text{ ft} \\ b=4 \text{ ft}}\right)$$
Angular momentum about 0 is conserved:
$$mr_{A}v_{A} = mr_{B}v_{B}: v_{B} = \frac{r_{A}}{r_{B}}v_{A} = \frac{a}{b}v_{A}$$

$$= \frac{5}{4}(8) = 10 \text{ ft/sec}$$

$$\frac{dy}{dx} = \frac{1}{2}b\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{1/2} \cdot \left(-\frac{2x}{a^{2}}\right) = -\frac{bx}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}}$$

$$\frac{d^{2}y}{dx^{2}} = -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} \cdot \left(-\frac{2x}{a^{2}}\right) = -\frac{bx}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}}$$

$$\frac{d^{2}y}{dx^{2}} = -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx}{a^{2}}\left(-\frac{1}{2}\right)\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(-\frac{1}{2}\right)\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{bx^{2}}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(1 - \left(\frac{x}{a}\right)^{2}\right)^{-\frac{3}{2}} \cdot \left(-\frac{2x}{a^{2}}\right)$$

$$= -\frac{b}{a^{2}}\left[1 - \left(\frac{x}{a}\right)^{2}\right]^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(1 - \frac{x}{a^{2}}\right)^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} + \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} + \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} - \frac{b}{a^{2}}\left(\frac{x}{a^{2}}\right)^{-\frac{1}{2}} - \frac$$

► 3/250
$$\omega_0 = 40(2\pi)/60 = 4.19 \text{ rad/s}$$

 $\alpha = 0.1 \text{ m}, b = 0.3 \text{ m}$
 $for \theta = 90^\circ, r_0 = 0.1 + 2(0.3)\cos 45^\circ = 0.524 \text{ m}$
 $\omega = 0^\circ, r = 0.1 + 2(0.3)\cos 30^\circ = 0.620 \text{ m}$
 $\omega = 0^\circ, r = 0.1 + 2(0.3)\cos 30^\circ = 0.620 \text{ m}$
 $\omega = 0^\circ, r = 0.1 + 2(0.3)\cos 30^\circ = 0.620 \text{ m}$
 $\Delta H = 0^\circ, 2mr_0^2\omega_0 - 2mr^2\omega = 0$
 $m = 5 \text{ kg}$ $\omega = \frac{f_0^2}{r^2}\omega_0 = (\frac{0.524}{0.620})^2(4.19)$
 $= 3.00 \text{ rad/s}$
 $(\text{or } 3.00 \text{ fo} = 28.6 \text{ rev/min})$
 $U = \Delta T + \Delta V_g = 2(\frac{1}{2}\text{ m})(r^2\omega^2 - r_0^2\omega_0^2) + 2mg \Delta h$
 $where \Delta h = 26(5in 45^\circ - 5in 30^\circ)$
 $= 2(0.3)(0.707/-0.5) = 0.1243 \text{ m}$
 $U = 5([0.620 \times 3.00]^2 - [0.524 \times 4.19]^2] + 2(5)(9.81)(0.1243))$
 $= -6.850 + 12.190 = 5.34 \text{ J}$

$$\frac{3/251}{2} \quad v = \sqrt{2gh}, \quad v' = \sqrt{2gh'}$$

$$e = \frac{v'}{v} = \sqrt{\frac{h'}{h}} = \sqrt{\frac{1100}{2100}} = 0.724$$

$$n = \frac{mgh - mgh'}{mgh} (100\%) = \frac{2100 - 1100}{2100} (100\%)$$

$$= 47.6\%$$

$$\frac{3/252}{3/252} = 5$$
System linear momentum:

$$m_{1}U_{1} + m_{2}U_{2} = m_{1}U_{1}' + m_{2}U_{2}'$$

$$\frac{1.5}{32.2} (0.8) + \frac{2}{32.2} (-2.4) = \frac{1.5}{32.2} v_{1}' + \frac{2}{32.2} v_{2}'$$
Restitution: $e = \frac{v_{2}' - v_{1}'}{v_{1} - v_{2}} : 0.5 = \frac{v_{2}' - v_{1}'}{0.8 - (-2.4)}$
Solve the two equations to obtain

$$v_{1}' = -1.943 \text{ ft/sec}$$

$$\frac{v_{2}' = -0.343 \text{ ft/sec}}{T_{1}} = \frac{1}{2} m_{1}v_{1}'^{2} + \frac{1}{2} m_{2}v_{2}'^{2}$$
T₁ = $\frac{1}{2} \frac{1.5}{32.2} (0.8)^{2} + \frac{1}{2} \frac{2}{32.2} (2.4)^{2}$
= 0.1938 ft-1b
T₂ = $\frac{1}{2} \frac{1.5}{32.2} (1.943)^{2} + \frac{1}{2} \frac{2}{32.2} (0.343)^{2}$
= 0.0916 ft-1b
n = $\frac{T_{1} - T_{2}}{T_{1}} (1007_{0}) = \frac{0.1938 - 0.0916}{0.1938} (1007_{0})$
= 52.7 7₀

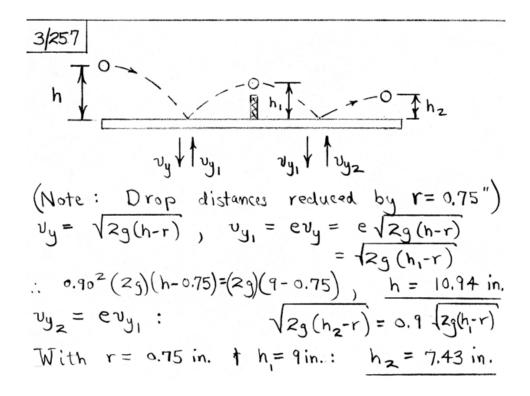
$$\frac{3/253}{32.2}$$
 System momentum:

$$\frac{1.5}{32.2}(0.8) + \frac{2}{32.2} U_2 = \frac{1.5}{32.2} U_1' + 0$$
Restitution: $\frac{-U_1'}{0.8 - U_2} = 0.5$
Solve to obtain $\begin{cases} U_1' = -1.120 \text{ ft/sec} \\ U_2 = -1.440 \text{ ft/sec} \end{cases}$
(Note: U_2 assumed totally unknown above-
no leftward direction assumed.)

 $\frac{3/254}{\sqrt{254}} Consider the case v_2' = v_1. Conservation$ of system linear momentum: $<math display="block">m_1v_1 + m_2v_2' = m_1v_1' + m_2v_2' = m_1v_1' + m_2v_1$ $v_1' = (\frac{m_1 - m_2}{m_1})v_1$ $Restitution : e = \frac{v_2' - v_1'}{v_1 - v_2} = \frac{v_1 - (\frac{m_1 - m_2}{m_1})v_1}{v_1}$ $= \frac{m_1}{m_2} = \frac{1}{e}$ So for $v_2' > v_1$, $\frac{m_1}{m_2} > \frac{1}{e}$

 $\frac{3/255}{N_{A}} = \frac{3}{255} = \frac{3}{255}$

 $\frac{3|256}{2} \text{ Impact velocity } \mathcal{V} = \sqrt{2gh} = \sqrt{2(32.2)(4)}$ = 16.05 ft/sec $\Delta G = 0; 500(16.05) + 0 = 0 + 800 \text{ v'}$ $\frac{v'=10.03 \text{ ft/sec}}{v'=10.03 \text{ ft/sec}}$ $C = \frac{v'}{v} = \frac{10.03}{16.05} = 0.625$



$$\frac{3/258}{C} \Delta G = 0; \quad m_{A} v_{A} + 0 = m_{A} v_{A}' + m_{B} v_{B}'$$

$$e=0; \quad v_{A}' = v_{B}'$$

$$Thus \quad m_{A} v_{A} = (m_{A} + m_{B}) v_{A}'$$

$$\left|\Delta T\right| = -\frac{1}{2} m_{A} v_{A}'^{2} - \frac{1}{2} m_{B} v_{B}'^{2} + \frac{1}{2} m_{A} v_{A}^{2}$$

$$= -\frac{1}{2} m_{A} \left(\frac{m_{A}}{m_{A} + m_{B}} v_{A}\right)^{2} - \frac{1}{2} m_{B} \left(\frac{m_{A}}{m_{A} + m_{B}} v_{A}\right)^{2} + \frac{1}{2} m_{A} v_{A}^{2}$$

$$= -\frac{1}{2} \left(\frac{m_{A}}{m_{A} + m_{B}} v_{A}\right)^{2} (m_{A} + m_{B}) + \frac{1}{2} m_{A} v_{A}^{2}$$

$$= \frac{1}{2} \frac{m_{A} m_{B}}{m_{A} + m_{B}} v_{A}^{2} (loss)$$

$$\frac{|\Delta T|}{T} = \frac{1}{2} \frac{m_{A} m_{B}}{m_{A} + m_{B}} v_{A}^{2} - \frac{1}{2} m_{A} v_{A}^{2}$$

$$\frac{3/259}{3/259} = \sqrt{2gH} = \sqrt{2\times32.2\times3}$$

$$= 13.90 \text{ ft/sec}$$
At impact $\sum F_x = 0$ so $\Delta G_x = 0$ so
 $v'\cos(\beta+10^\circ) - 13.90 \sin 10^\circ = 0$ --(a)
$$e = 0.7 = \frac{v'\sin(\beta+10^\circ)}{13.90\cos 10^\circ} - - - - (b)$$
Combine $\frac{4}{9}$ get $\tan(\beta+10^\circ) = 3.97$
 $\beta+10^\circ = 75.9^\circ, \beta=65.9^\circ$
From Eq. (a) $v' = \frac{13.90\sin 10^\circ}{\cos 75.9^\circ} = 9.88 \text{ ft/sec}$
From Sample Prob. $2/6, h = \frac{v'^2\sin^2\beta}{2g} = \frac{9.88^2\sin^265.9^\circ}{2\times32.2} = \frac{1.263 \text{ ft}}{2\times32.2}$

$$S = \frac{v'^2\sin 2\beta}{2g} = \frac{9.88^2\sin 131.7^\circ}{2\times32.2} = \frac{1.132 \text{ ft}}{2\times32.2}$$

$$\frac{3/261}{v_{0}=24 \text{ m/s}!} \begin{array}{c} n \\ v_{1}' \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 10 \hline$$

$$\frac{3/262}{\sqrt{2}} \quad \begin{array}{c} (2) \\ (2) \\ (2) \\ (2) \\ (1) \\$$

Restitution: $v_2 - v_1 \sin \theta = e v_1 \cos 45^\circ$

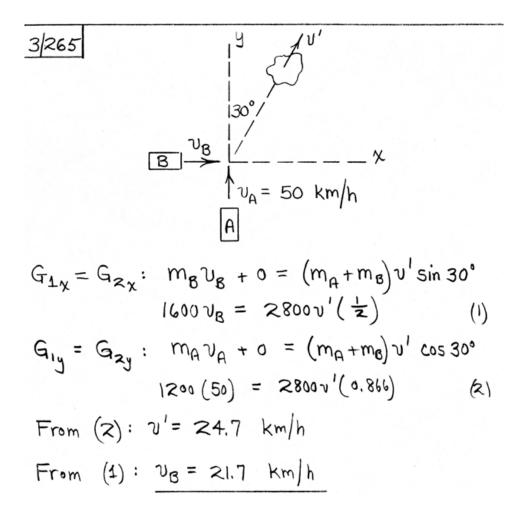
or
$$v_2 - v_1 \sin \theta = 0.9 v_1 / 2 (3)$$

$$\begin{array}{l} (1) \stackrel{e}{=} (3): \ \nu_{1}' \sin \theta = 0.0354 \ \nu_{1} \ j \end{array} \begin{array}{l} \text{Divide by } (2): \ \theta = 2.86^{\circ} \\ n = \ \frac{T_{1} - T_{2}}{T_{1}} = 1 - \ \frac{T_{2}}{T_{1}} = 1 - \ \frac{1}{2} \ \frac{1}{2} \ m \nu_{1}'^{2} \\ = 1 - \ \frac{\nu_{2}'^{2} + \nu_{1}'^{2}}{\nu_{1}^{2}} \ j \end{array} \begin{array}{l} \text{where} \ \nu_{1}' = 0.708 \ \nu_{1} \ j \\ 0.0475 \end{array}$$

$$\frac{3|2b3}{Before} \begin{array}{c} U_{1} \\ \end{array} \\ \begin{array}{c} \Delta G = 0; & mU_{1} = -mU_{1}' + mU_{2}' \\ U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{2}' = U_{1} + U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' = U_{2}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\ U_{1}' \\ U_{1}' \\ U_{1}' \\ \end{array} \\ \end{array} \\ \begin{array}{c} U_{1}' \\ U_{1}' \\$$

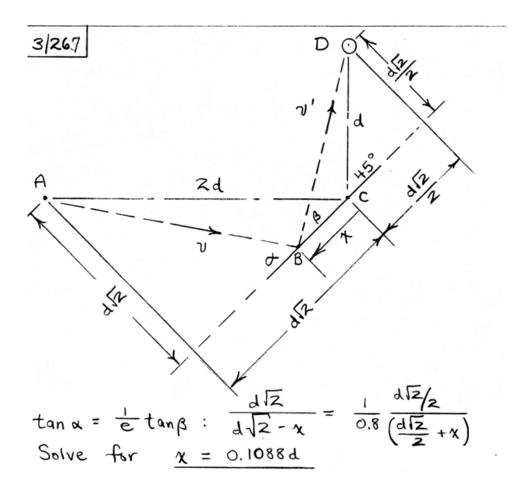
$$\frac{3/264}{9}$$
 Let The launch conditions at A
be speed v_0 , launch angle θ_0 :
$$\frac{1}{9}$$
 The range L_1 is
$$L_1 = \frac{2v_0^2 \sin \theta_0 \cos \theta_0}{9}$$

A and the velocity components
coming into B are $\{v_{\chi} = v_0 \cos \theta_0 \\ v_y = -v_0 \sin \theta_0\}$
The velocity components after impact at B
are $v_{\chi} = v_0 \cos \theta_0$, $v_y = ev_0 \sin \theta_0$, which
result in the range $L_2 = \frac{2ev_0^2 \sin \theta_0 \cos \theta_0}{9}$
So $L_2 = eL_1$.



$$\frac{3/266}{9!} \text{ System linear momentum is Conserved}:} \frac{3/266}{9!} \text{ System linear momentum is Conserved}:} \frac{3/266}{9!} \text{ System linear momentum is Conserved}:} \frac{3/266}{9!} \frac{3/266}{9!} \text{ System linear momentum is Conserved}:} \frac{9}{9!} \frac{100}{9!} \frac{100}{100} \frac{100}{9!} \frac{100}{9$$

7



3/268 Let v_s and v_b stand for rebound velocities from steel and brass plates. Impact speed = $\sqrt{2gh} = \sqrt{2(9.81)(0.15)} = 1.716$ m/s $0.6 = \frac{v_s}{1.716}$, $v_s = 1.029$ m/s $\omega = \frac{1.029 - 0.686}{0.60}$ $0.4 = \frac{v_s}{1.716}$, $v_b = 0.686$ m/s $\omega = 0.572$ rad/s CCW

3/269 = U_{Au} y = 10 sin 30° 6 m/s UR= 10 m/s $m_{A}v_{A_{\chi}} + m_{B}v_{B_{\chi}} = m_{A}v_{A_{\chi}} + m_{B}v_{B_{\chi}}$ $6 - 10\cos 30^{\circ} = v_{A_{X}} + v_{B_{X}}$ (1) $e = \frac{v_{B_{\chi}} - v_{A_{\chi}}}{v_{A_{\chi}} - v_{B_{\chi}}} : 0.75 = \frac{v_{B_{\chi}} - v_{A_{\chi}}}{6 - (-10\cos 30^{\circ})}$ (ス) Solve Eqs. (1) ξ (2) : $\begin{cases} v_{A\chi}' = -6.83 \text{ m/s} \\ v_{B\chi}' = 4.17 \text{ m/s} \end{cases}$ Magnitudes and $v_{A}' = 6.83 \frac{m}{5} @ \Theta_{A} = 180^{\circ}$ directions $v_{B}' = 6.51 \frac{m}{5} @ \Theta_{B} = 50.2^{\circ}$ Initial: $T_1 = \frac{1}{2}m(6^2 + 10^2) = 68m$ Final : $T_2 = \pm m (6.83^2 + 6.51^2) = 44.5 m$ $n = \frac{68 - 44.5}{68} (100\%) = 34.6\%$

Relative to the + x - axis, the directions of the final velocities are $\begin{cases} \theta_{\rm A} = 77.2 - 36.9 = 40.3^{\circ} \\ \theta_{\rm B} = -51.8 - 36.9 = -88.7^{\circ} \end{cases}$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

$$\frac{3/271}{2} = \frac{1}{2} =$$

$$\frac{3/272}{V_{2}} | Y \text{ For system, } \Delta G_{y} = 0 \text{ so}}{V_{2}' | V_{2} = 4 \frac{ft}{sec}} [m(6\cos 30^{\circ}) - m(4)]}$$

$$\frac{V_{2}' | V_{2} = 4 \frac{ft}{sec}}{(m(-v'_{1}sin\theta'_{1}) + mv'_{2}] = 0}$$

$$e = 0.60 \qquad m - --x \text{ or } v'_{2} - v'_{1}sin\theta'_{1} = 1.196 \qquad (1)$$

$$V_{1} = 6 \frac{ft}{sec} \int_{30^{\circ}}^{1} v'_{1} \quad v'_{1}cos\theta'_{1} = 6(\frac{t}{2}), \quad v'_{2} = 0$$
Also
$$e = 0.60 = \frac{V_{2}' + v'_{1}sin\theta'_{1}}{4 + 6\cos 30^{\circ}}, \quad v'_{2} + v'_{1}sin\theta'_{1} = 5.518 \quad (2)$$

$$combine (1) \notin (2) \notin get 2v'_{2} = 1.196 + 5.518, \quad v'_{2} = 3.36 \frac{ft}{sec}$$

$$\notin v'_{1}sin\theta'_{1} = 2.16; \quad Divide \quad by \quad v'_{1}cos\theta'_{1} = 3$$

$$\notin get \quad \theta'_{1} = tan^{-1}0.7203 = 35.8^{\circ} \notin v'_{1} = \frac{3}{cos 35.8^{\circ}} = 3.70 \frac{ft}{sec}$$
Initial kinetic energy $= \frac{t}{2}m(6^{2} + 4^{2}) = \frac{t}{2}m(52)$

$$Final \qquad " = \frac{t}{2}m(3.70^{2} + 3.36^{2}) = \frac{t}{2}m(24.9)$$

$$\frac{\theta}{10ss} = \frac{52 - 24.9}{52} = 0.520 \text{ or } \frac{52.076}{52.076}$$

$$\frac{3/273}{3} \quad \text{Conservation of } n-\text{momentum}: \\ m(-v_1\cos 60^\circ) + m(v_2\cos \alpha) = \\ mv_{1n}' + mv_{2n}' \quad (a) \\ mv_{1n}' + mv_{2n}' \quad (b) \\ mv_$$

$$\frac{3/274}{\alpha = \tan^{-1} \frac{10.268}{13.144}} \xrightarrow{t} \frac{h}{\beta} = \frac{24''}{13.856''} = B$$

$$= 38.0^{\circ}$$

$$\Theta_{1} = \alpha + 30^{\circ} = 68.0^{\circ} \xrightarrow{1} 22 \sin 30^{\circ} = 1''$$

$$= 2\cos 30^{\circ} = 1.732''$$

$$= 28-13.856-1 = 13.144$$

$$(2') - - \frac{1}{2} = 10.268''$$
Mom. : $\eta_{1}(U_{1})_{n} + \eta_{2}(U_{2})_{n} = \eta_{1}(U_{1}')_{n} + \eta_{2}(U_{2}')_{n}$

$$= 10.268''$$
Mom. : $\eta_{1}(U_{1})_{n} + \eta_{2}(U_{2})_{n} = \eta_{1}(U_{1}')_{n} + \eta_{2}(U_{2}')_{n}$

$$= \frac{(U_{2}')_{n} - (U_{1}')_{n}}{(U_{1})_{n} - (U_{2})_{n}}$$

$$= \frac{(U_{2}')_{n} - (U_{1}')_{n}}{(U_{1})_{n} - (U_{2})_{n}}$$

$$= \frac{(U_{1}')_{n} - (U_{2})_{n}}{(U_{1}')_{n} - (U_{2})_{n}}$$

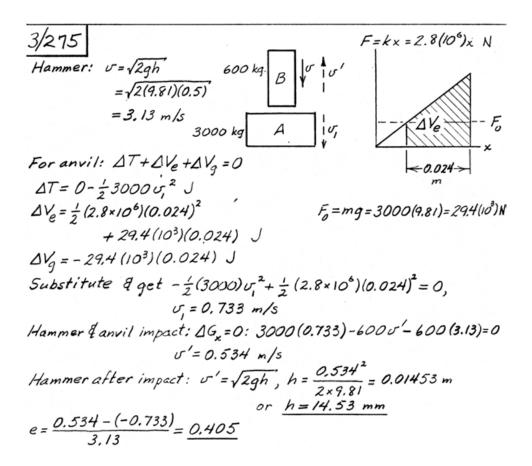
$$= \frac{(U_{1}')_{n} - (U_{1}')_{n}}{U_{1}\sin 68.0^{\circ} - 0}$$
Solving, $(U_{1}')_{n} = 0.0464U_{1}$

$$Also_{1} = (U_{1}')_{1} = (U_{1})_{1} = U_{1}\cos 68.0^{\circ} = 0.375U_{1}$$

$$+ \tan \Theta_{1}' = \frac{(U_{1}')_{n}}{(U_{1}')_{1}} = \frac{0.0464U_{1}}{0.375U_{1}}, \quad \Theta_{1}' = 7.05^{\circ}$$

$$\beta = 30^{\circ} - \Theta_{1}' = 22.95^{\circ}, \ \tan \beta = \frac{h}{13.856-1+1} = 0.423$$

$$h = 5.87''. Then x = 24 - 1.732 - 5.87' = 16.40$$
 in.



$$\frac{3/276}{t_{AB}} = \frac{50 \cos \alpha}{v_{XA}} \quad v_{YA} = 50 \sin \alpha \qquad y_{A} = \frac{10}{50 \cos \alpha} = \frac{1}{5 \cos \alpha} \qquad A^{L--\chi}$$

$$\frac{t_{AB}}{t_{AB}} = \frac{10}{v_{XA}} = \frac{10}{50 \cos \alpha} = \frac{1}{5 \cos \alpha} \qquad A^{L--\chi}$$

$$\frac{v_{XB}}{v_{XB}} = v_{XA} = 50 \cos \alpha$$

$$\frac{v_{YB}}{v_{YB}} = v_{YA} - gt = 50 \sin \alpha - \frac{3}{5\cos \alpha}$$

$$\frac{v_{YB}}{v_{B}} = v_{YA} - gt = 50 \sin \alpha - \frac{3}{5\cos \alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = 10 \tan \alpha - \frac{3}{50\cos^{2}\alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = 10 \tan \alpha - \frac{3}{50\cos^{2}\alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = 10 \tan \alpha - \frac{3}{50\cos^{2}\alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = \frac{10 \tan \alpha - \frac{3}{50\cos^{2}\alpha}}{v_{IX} - v_{ZX}} = \frac{0 - v_{IX}}{50\cos^{2}\alpha} = 0.5$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = \frac{2}{5\cos^{2}\alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) = \frac{2}{5\cos^{2}\alpha}$$

$$\frac{1}{2} \left(\frac{1}{25\cos^{2}\alpha}\right) + (50\sin^{2}\alpha - \frac{3}{5\cos^{2}\alpha})\left(\frac{2}{5\cos^{2}\alpha}\right)$$

$$-\frac{9}{2} \left(\frac{2}{5\cos^{2}\alpha}\right)^{2}$$

Collect terms: $30 \tan \alpha - \frac{99}{50} \frac{1}{\cos^2 \alpha} = 0$ Use $\frac{1}{\cos^2 \alpha} = (\tan^2 \alpha + 1)$ to obtain 5.796 $\tan^2 \alpha - 36 \tan \alpha + 5.796 = 0$ Quodratic Solution : $\tan \alpha = 0.201, 4.97$ $\Rightarrow \alpha = 11.37^{\circ} \text{ or } 78.6^{\circ}$

$$\frac{3/2}{TT} = \frac{1}{T} = \frac{1}{T} \frac{1}{$$

$$\begin{array}{c} 3|278 \\ \hline 3|278 \\ \hline & & \\ & \\ & & \\$$

 $Eq.(3) is 5.196 = 0.866 v_{0} + 0.866 v \cos \theta + 0.5 v \sin \theta$ Sub. Eq.(1) to eliminate $v_{0} \notin get$ $5.196 = 0.866(2 + 0.2 v \cos \theta) + 0.866 v \cos \theta + 0.5 v \sin \theta$ or 1.039 v \cos \theta + 0.5 v \sin \theta = 3.464 (4) Eq.(2) becomes 0.866 v \sin \theta - 0.5 v \cos \theta = 5 (5) solve (4) \$\$ (5) \$\$ get $v = 6.04 \text{ m/s}, \theta = 85.9^{\circ}$ From Eq.(1) v = 2.087 m/s

For carriage
$$\Delta T + \Delta V = 0; -\frac{1}{2} - 10(2.087)^2 + \frac{1}{2} - 1600 \delta^2 = 0$$

 $\delta^2 = 0.02722, \ \delta = 0.1650 \ m \ or \ \delta = 165.0 \ mm$

$$\frac{3/279}{V} = \sqrt{\frac{Gm_s}{r}} = \sqrt{\frac{(3.439 \times 10^{-8})(333,000)(4.095 \times 10^{23})}{(93 \times 10^{6})(5280)}}$$
$$= 97,725 \text{ ft/sec} = 18.51 \text{ mi/sec}$$

$$\frac{3|280}{2} \text{ For a circular orbit, } r_{min} = r_{max}$$

and a= R+h, so Eq. 3/48 becomes
 $U = R\sqrt{\frac{9}{R+h}} = 6371(10^3) \sqrt{\frac{9.825}{(6371+590)10^3}}$
= 7569 m/s or 27250 km/h

$$\frac{3/281}{R} = \frac{1}{2} + \frac{3/47}{R} + \frac{3/47}{R} + \frac{3/47}{R} + \frac{3/47}{R} + \frac{3/47}{R} + \frac{3/476}{R} + \frac{3/476}{$$

$$\frac{3/282}{Moon m} = \frac{F_s}{F_e} = \frac{Gm_sm/d_{m-s}^2}{Gm_em/d_{m-e}^2}$$

$$\frac{F_s}{F_e} = \left(\frac{d_{m-e}}{d_{m-s}}\right)^2 \frac{m_s}{m_e}$$

$$= \left(\frac{384 \ 398}{149.6(10^6) - 384 \ 398}\right)^2 333 \ 000 = 2.21$$
Therefore, the acceleration of the moon is toward the sun, and thus the poth is concave toward the sun!

$$\frac{3/284}{min} \int_{min}^{min} = 6371 + 240 = 6611 \text{ km}$$

$$\int_{max}^{max} = 6371 + 400 = 6771 \text{ km}$$
From Eq.3/43 $\frac{fmin}{fmax} = \frac{1-e}{1+e}$
So (1+e)6611 = (1-e)6771, $e=0.01196$
From Eq.3/44 with $a = \frac{1}{2}(fmax + fmin) = 6691 \text{ km}$

$$T = 2\pi \frac{(6691 \times 10^3)^{3/2}}{(6371 \times 10^3)\sqrt{9.824}} = 5446 \text{ s or}$$

$$T = 1 \text{ h 30 min } 46 \text{ s}$$

$$\frac{3/285}{2} = G \frac{m_1 m_2}{r^2}$$

$$= 6.673 (10^{-11}) \frac{1.490 (10^{23}) (1.900) (10^{27})}{(1.070 \times 10^9)^2} = 16.50 (10^{21})N$$

$$F = mrw^2, \quad \omega = \sqrt{\frac{F}{mr}} = \sqrt{\frac{16.50 (10^{21})}{1.490 (10^{23})/.070 (10^9)}}$$

$$= 1.017 (10^{-5}) \text{ rod}/s$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{1.017 (10^{-5})} = \frac{6.18 (10^5)s}{6.18 (10^5)s} \text{ or } \frac{7.17 \text{ days}}{1.070 (10^{-3})}$$

$$a_n = \frac{F}{m_1} = \frac{16.50 (10^{21})}{1.490 (10^{23})} = \frac{110.7 (10^{-3}) \text{ m/s}^2}{10.70 (10^{-3})}$$

$$\frac{3/286}{a} r_{min} = 2R, r_{max} = 3R$$

$$a = \frac{r_{min} + r_{max}}{2} = 2.5R$$

$$v_{p} = R\sqrt{\frac{9}{a}} \sqrt{\frac{r_{max}}{r_{min}}} = R\sqrt{\frac{9}{2.5R}} \sqrt{\frac{3R}{2R}} = \sqrt{\frac{3qR}{5}}$$
The velocity in the original circular orbit
is
$$v_{c} = R\sqrt{\frac{9}{a}} = R\sqrt{\frac{9}{2R}} = \sqrt{\frac{1}{2}gR}$$

$$\Delta v = v_{p} - v_{c} = \sqrt{gR} \left(\sqrt{\frac{3}{5}} - \sqrt{\frac{1}{2}}\right) = 0.0675\sqrt{gR}$$
Numbers: $\Delta v = 0.0675\sqrt{9.825(6371)(1000)}$

$$= 534 \text{ m/s}$$
(Δv to occur opposite B)

$$\frac{3/287}{R} r = a = 6371 + 300 = 6671 \text{ km} = 6.671(10^6) \text{ m}$$

$$T = \frac{2m a^{3/2}}{R \sqrt{g}} = \frac{2\pi (6.671 \times 10^6)^{3/2}}{6.371 \times 10^6 \sqrt{9.825}}$$

$$= 5421 \text{ s}$$
Speed of ground point on equator

$$v_e = R_e w_e = (6378)(7.292 \times 10^{-5}) = 0.4651 \text{ km/s}$$
Required distance $d = v_e T = (0.4651)(5421)$

$$= 2520 \text{ km}$$

3/288 (i) On ground, speed
$$V_1 = (R \cos 28.5)\omega$$

= 6371 (1000) $\cos 28.5^{\circ}$ (0.7292 · 10⁻⁴)
= 408 m/s
T₁ = $\pm mV_1^2 = \pm (80 \ 0.05) \ 408^2$
= 6.67 (10⁹) J
 $V_1 = -\frac{mgR^2}{R} = -80 \ 0.00 \ (9.825) \ (6371 \cdot 1000) = -5.01 \ (10^{12}) J$
(2) In circular orbit: $V_2 = R\sqrt{\frac{9}{r}}$
= 6371 (10³) $\sqrt{\frac{9.825}{(6371 + 300)(1000)}} = -7.73 \ (10^3) \ m/s$
T₂ = $\pm mV_2^2 = \pm 80 \ 0.00 \ [7.73 \ (10^3)]^2 = 2.39 \ (10^{12}) \ J$
 $V_2 = -\frac{mgR^2}{R} = -\frac{80 \ 0.00 \ (9.825) \ (6371 \cdot 1000)}{(6371 + 300) \cdot 1000} = -4.78 \ (10^{12}) \ J$
 $\Delta E = T_2 + V_2 - (T_1 + V_1) = \frac{2.61 \ (10^{12}) \ J}{2}$

$$\frac{3/289}{(a)} = R\sqrt{\frac{9}{r}} = 6371(1000)\sqrt{\frac{9.825}{(6371+637)(1000)}} = \frac{7544 \text{ m/s}}{1-6}$$
(b) From $r_{\min} = a(1-6), a = \frac{r_{\min}}{1-6} = \frac{1.1(6371)}{1-0.1}$

$$= 7787 \text{ km}$$

$$v_{p} = R\sqrt{\frac{9}{a}}\sqrt{\frac{1+6}{1-6}} = 6371(1000)\sqrt{\frac{9.825}{7787(1000)}}\sqrt{\frac{1+0.1}{1-0.1}}$$

$$= \frac{7912 \text{ m/s} = v}{1-6}$$
(c) $a = \frac{r_{\min}}{1-6} = \frac{1.1(6371)}{1-0.9} = 70.081 \text{ km}$

$$v_{p} = 6371(1000)\sqrt{\frac{9.825}{70.081(1000)}}\sqrt{\frac{1+0.9}{1-0.9}}$$

$$= \frac{10.398 \text{ m/s} = v}{1-6}$$
(d) Eq. 3/47 with $a \Rightarrow \infty$: $v = R\sqrt{\frac{29}{r}}$
This is $\sqrt{2}$ times answer for part (0), so $v = \sqrt{2}$ (7544) = 10.668 m/s

$$\frac{3/290}{\sqrt{4759}} v_{A} = R\sqrt{\frac{9}{r}} = (3959)(5280) \sqrt{\frac{32.23}{(4759)(5280)}} = 23,676 \text{ ft/sec}$$

$$v_{B} = R\sqrt{\frac{9}{a}} \sqrt{\frac{r_{max}}{r_{min}}} = (3959)(5280) \sqrt{\frac{32.23}{(2(3959) + 1800)(5280)}} \sqrt{\frac{4959}{4759}} = 23,917 \text{ ft/sec}$$
Momentum conservation during impact:

$$m_{R}v_{A} + m_{B}v_{B} = (m_{R} + m_{B})v_{C} \cdot But m_{A} = m_{B}, so$$

$$v_{C} = \frac{1}{2} (v_{A} + v_{B}) = 23,796 \text{ ft/sec}$$
From $v_{p} = R\sqrt{\frac{9}{a}} \sqrt{\frac{r_{max}}{r_{min}}}$

$$r_{max} = \frac{r_{min}}{(\frac{29R^{2}}{v_{Fmin}} - 1)} = 2.5652 \times 10^{7} \text{ ft}$$

$$(4858 \text{ mi})$$

$$h_{max} = r_{max} - R = 4858 - 3959 = 899 \text{ mi}$$

3/291

Radius of actual orbit around the sun is a, which is the major Sun axis 2a' of the degenerate ellipse.

a R=radius of sun g=gravitational accel.on surface of sun

Earth

Orbital period Eq. 3/44
For actual orbit
$$\tau = 2\pi \frac{a^{3/2}}{R\sqrt{g}}$$

For degenerate ellipse $\tau' = 2\pi \frac{(a/2)^{3/2}}{R\sqrt{g}}$

so
$$\frac{T}{T} = \frac{\left(\frac{1}{2}\right)^{3/2}}{1}$$

But time t to fall is $t = \frac{1}{2}\tau' = \frac{1}{2}\left(\frac{1}{2}\right)^{3/2}\tau = \frac{1}{4\sqrt{2}}$ 365.26 = <u>64.6 days</u>

$$\frac{3/292}{U_{a}} = R\sqrt{\frac{9}{a}} \sqrt{\frac{r_{min}}{r_{max}}}$$

$$= 6371(10^{3}) \sqrt{\frac{9.825}{(2.6371+240+32^{0})1000/2}} \sqrt{\frac{6371+240}{6371+320}}$$

$$= 7697 \text{ m/s}$$
The circular orbit speed at h= 320 km is
 $V_{circ} = R\sqrt{\frac{9}{r_{max}}} = 7720 \text{ m/s}$
 $\Delta V = V_{circ} - V_{a} = 7720 - 7697 = 23.25 \text{ m/s}$
Fat = mav: $2(30000)(at) = 85000(23.25)$
 $\Delta t = 32.9 \text{ s}$

The burn to increase speed is at C.

$$\frac{3/293}{\text{The linear impulses from drag and}}$$
from the thruster must be equal
in magnitude, or

$$Dt = \sum Tt_{burn}$$

$$t = 10T, \text{ where } T = 2\pi \frac{a^{3/2}}{R\sqrt{g}}$$
or
$$T = 2\pi \frac{(6.571 \times 10^6)^{3/2}}{6.371 \times 10^6 \sqrt{9.825}} = 5300 \text{ s}$$

$$t = 10T = 53,000 \text{ s}$$

$$D = \frac{\sum Tt_{burn}}{t} = \frac{2(300)}{53,000} = 0.01132 \text{ N}$$

$$\frac{3/294}{7959} = [4000 + 3959 + 16,000](1-e), e = 0.668$$

$$b = a\sqrt{1-e^2} = 23,959\sqrt{1-0.668^2} = 17,833 \text{ mi}$$

At B, $r = \sqrt{16,000^2 + 17,833^2} = 23,959 \text{ mi}$

$$v_B^2 = 2gR^2 \left(\frac{1}{r} - \frac{1}{2a}\right)$$

$$= 2(32.23)3959^2 (5280) \left[\frac{1}{23959} - \frac{1}{2(23,959)}\right]$$

$$v_B = 10,551 \text{ ft/sec}$$

$$\frac{3/295}{3/295} = \frac{2\pi a^{3/2}}{R_{15}} = \frac{2\pi a^{3/2}}{\sqrt{G_{m_{R}}}} = \frac{2\pi a^{3/2}}{\sqrt{G_{m_{R}}}}$$

$$= 2\pi \frac{\left[200(10^{9})\right]^{3/2}}{\sqrt{6.673(10^{-11})} 10^{31}} = \frac{21,760,000 \text{ s}}{\sqrt{G(m_{R}+m_{R})}}$$

$$= 2\pi \frac{2\pi a^{3/2}}{\sqrt{G(m_{R}+m_{R})}}$$

$$= 2\pi \frac{\left[200(10^{9})\right]^{3/2}}{\sqrt{6.673(10^{-11})(10^{31}+10^{30})}} = \frac{20,740,000 \text{ s}}{(-4.7 \text{ percent difference})}$$

 $\frac{3/296}{V} = R\sqrt{\frac{3}{a}} = (3959)(5280)\sqrt{\frac{32.23}{(1459)(5280)}} = 24,458 \text{ ft/see}$ Time required for B to return to C's burn position: $t = \frac{2\pi r - 1000(5280)}{V}$ = 5832 s $T = \frac{2\pi a \frac{3/2}}{R\sqrt{g}}$, $a = (\frac{TR\sqrt{g}}{2\pi})^{2/3} = 2.29799$ (10)⁷ ft At apogee, $v_c = \sqrt{2gR^2[\frac{1}{r} - \frac{1}{2a}]} = 24,156$ ft/sec $\Delta v = v - v_c = 24,458 - 24,156 = 302 \text{ ft/sec}$ (Can check to ensure that C does not strike the earth by finding $r_{min} = 2.242 \times 10^7 \text{ ft}$

$$\frac{3/297}{297}$$
 From previous solution, the circular
orbit speed is $v = 24,458$ ft/sec.
Time required for B to return to C's
burn position over almost two circular orbits:
$$t = \frac{4\pi r - (1000)(5280)}{v} = 11,881 s$$
$$a = \left(\frac{TR\sqrt{g}}{2\pi}\right)^{2/3} = \left[\frac{(\frac{11,881}{2})(3959)(5280)\sqrt{32.23}}{2\pi}\right]^{2/3}$$
$$= 2.32626 (10^7) \text{ ft}$$
At apogee, $v_c = \sqrt{2gR^2(\frac{1}{r} - \frac{1}{2q})} = 24,309 \text{ ft/sec}$
$$\Delta v = v - v_c = 24,458 - 24,309 = 148 \text{ ft/sec}$$

$$\frac{3/298}{v_0} \quad \text{Circular orbit speed}$$

$$v_0 = R\sqrt{\frac{9}{a}} = R\sqrt{\frac{9}{3R}} = \sqrt{\frac{1}{3}gR}$$
Speed at A (apogee) in elliptical orbit:

$$v_A = R\sqrt{\frac{9}{a}}\sqrt{\frac{r_{min}}{r_{max}}} = R\sqrt{\frac{9}{2R}}\sqrt{\frac{R}{3R}} = \sqrt{\frac{1}{6}gR}$$

$$v_r = v_0 - v_A = \sqrt{gR}\left[\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{6}}\right] = 0.1691\sqrt{gR}$$
Numbers: $v_r = 0.1691\sqrt{1.62} - \frac{3476}{2}$ (1000)

$$= \frac{284}{m/s} \text{ (directed rearward)}$$
Call the circular orbit period τ_0 and the elliptical orbit period τ_0 and the $\frac{1}{R\sqrt{g}} = \frac{2\pi (3R)^{3/2}}{R\sqrt{g}}; \tilde{\tau}_{AB} = \frac{2\pi (2R)^{3/2}}{R\sqrt{g}}$

$$\Theta = \left(\frac{\chi_{AB}/2}{\chi_{o}/2}\right) \pi = \left(\frac{2}{3}\right)^{3/2} \pi = 1.710 \text{ rod or}$$
98.0°

$$\frac{3/299}{V} \ (ircular orbit : V = R \sqrt{\frac{9}{r}} \\ V = (3959)(5280) \sqrt{\frac{32.23}{(4159)(5280)}} = 25,324 \ ft/sec \\ During burn : $\alpha_t = \frac{F}{m} = \frac{2(6000)}{(175,000)/32.2} = 2.208 \frac{ft}{sec} \\ V_a = V - a_t t = 25,324 - 2.208(150) = 24,993 \frac{ft}{sec} \\ V^2 = 2gR^2 \left[\frac{1}{r} - \frac{1}{2a}\right] \\ Substitute \ conditions \ at B \ to \ find \ a = 2.1403(10^7) \ ft \\ Use \ V_A = R \sqrt{\frac{9}{a}} \sqrt{\frac{1-c}{1+c}} \ to \ obtain \ e = 0.02599 \\ r = \frac{a(1-e^2)}{1+e\cos\theta} \ u \ ilized \ at \ point \ C : \\ (3959)(5280) = \frac{(2.1403 \times 10^7)(1-0.02599^2)}{1+0.02599 \ \cos\theta} \\ \theta = 26.7^{\circ} \\ \rho = 180 - \theta = \frac{153.3^{\circ}}{153.3^{\circ}} \\ \end{array}$$$

$$\frac{3/301}{V_{B}} = \frac{V\cos \alpha}{1732} = 2000 \cos 30^{\circ}$$

$$= 1732 \text{ m/s}$$

$$T_{F} = \frac{1}{1732} = 12000 \sin 30^{\circ}$$

$$= 1000 \text{ m/s}$$

$$V_{F} = \frac{1}{1000} = 1000 \text{ m/s}$$

$$V_{F} = \frac{1}{1000} = 1000 \text{ m/s}$$

$$V_{F} = \frac{1}{1000} = 1000 \text{ m}$$

$$T_{F} = \frac{1}{2} \text{ mv}_{F}^{2} = \frac{1}{2} \text{ m} (2000)^{2} = 2 \times 10^{\circ} \text{ m}$$

$$T_{F} = \frac{1}{2} \text{ mv}_{F}^{2} = \frac{-\text{m} (9.825)(6.371 \times 10^{\circ})^{2}}{6.371 \times 10^{\circ}}$$

$$= -6.2595 \times 10^{7} \text{ m}$$

$$E = T_{F} + V_{F} = -6.0595 \times 10^{7} \text{ m}$$

$$H = rv_{0} = 6.371 (10^{\circ})(1732) = 1.1035 \times 10^{10}$$

$$Now \text{ use } e = \sqrt{1 + \frac{2Eh^{2}}{mg^{2}R^{4}}} + 0 \text{ get } e = 0.9525$$

$$Finally_{1} r_{max} = \alpha (1+e) = 3.2906(10^{\circ})(1+0.9525)$$

$$= 6.4249 \times 10^{6} \text{ m}$$

$$\frac{3/302}{Now} = \frac{3(1 - e^2)}{1 + e \cos \theta}; \text{ At B } = \frac{1}{2} = a(1 + e).$$

$$r = \frac{a(1 - e^2)}{1 + e \cos \theta}; \text{ At B } = \frac{a(1 - e^2)}{1 + e \cos(135^{\circ})}$$
Solving, $e = 0.6306$, $a = 0.9199R$
Now, $v_8^2 = 2gR^2(\frac{1}{r} - \frac{1}{2a})$
At $A : v_8^2 = 2(9.825)(6.371 \times 10^6)^2 \times (\frac{1}{6.371 \times 10^6} - \frac{1}{2(0.9191)(6.371)(10^6)})$
 $v_8 = 7560 \text{ m/s}$

$$\frac{3/303}{V_{A}} = R\sqrt{\frac{9}{a}} \sqrt{\frac{1-e}{1+e}} = R\sqrt{\frac{9.825}{0.9199R}} \sqrt{\frac{1-0.6306}{1+0.6306}} \\ = 1.555\sqrt{R} \\ h = r_{A}v_{A} = \frac{3}{2}R(1.555\sqrt{R}) = 2.3332R^{3/2} \\ Conservation of angular momentum requires \\ h = r_{B}v_{B0} = Rv_{B0} = 2.3332R^{3/2} \\ v_{B0} = 2.3332R^{3/2} \\ v_{B0} = 2.3332R^{3/2} \\ = 2.3332(6.371\times10^{6})^{1/2} = 5889 m/s \\ v_{B0} = v_{B}Cas \propto \\ x = Cas^{-1}(\frac{v_{B0}}{v_{B}}) = Cas^{-1}(\frac{5889}{7560}) = 38.8^{\circ} \\ e^{1}a^{10}B + r \qquad (Value of v_{B} from previous solution) \\ R^{-1}B = Solution \\ N = Soluti$$

۵

$$\frac{3/304}{3} = \frac{1}{2} \left[2(6371) + 150 + 1500 \right] = 7196 \text{ km}}$$

$$Eq. 3/47 \text{ at perigee } P:$$

$$v^{2} = 2(9.825) \left[6371 (10^{3}) \right]^{2} \times$$

$$v^{2} = 2(9.825) \left[6371 (10^{3}) \right]^{2} \times$$

$$v^{2} = 8179 \text{ m/s}$$

$$R\omega = 6371 (10^{3}) (0.7292 \cdot 10^{-4}) = 465 \text{ m/s}$$

$$Absolute \text{ dish angular velocity } P_{a} = \frac{v - R\omega}{H}$$

$$Relative \text{ dish angular velocity } P = P_{a} - \omega$$

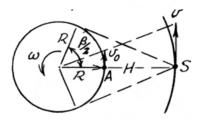
$$P = \frac{v - R\omega}{H} - \omega = \frac{8179 - 465}{150(10^{3})} - 0.7292 (10^{-4})$$

$$= 0.0514 \text{ rad/s}$$

$$\frac{3/3as}{At \text{ perigee}}, \quad a \text{pogee}, \quad a \text{pogee}, \quad p \text{ periger}, \quad a \text{pogee}, \quad p \text{ periger}, \quad p$$

3/306

Path is limited to an equatorial orbit in order to remain above a point A on the equator.



 $\frac{\sigma}{R+H} = \omega \notin \text{for circular orbit} \qquad \omega = 0.7292 \times 10^{-4} \text{ rad/s}$ $\frac{\sigma}{R+H} = \frac{3}{47} \text{ with } a = r = R+H \qquad R = 6371 \text{ km}$ gives $\sigma = R \sqrt{\frac{9}{R+H}}$

Combine & get $R+H=\frac{3}{4}\sqrt{\frac{gR^2}{4t^2}}, H=\frac{3}{4}\sqrt{\frac{9.825(6371\times10^3)^2}{(0.7292\times10^{-4})^2}}-6371\times10^3$

 $=(42 170 - 6371) 10^3 = 35.8 \times 10^6 m$ or H= 35 800 km

 $\frac{\beta}{2} = \cos^{-1}\frac{R}{R+H} = \cos^{-1}\frac{6371}{42\,170} = 81.3^{\circ}, \ \beta = 162.6^{\circ} \text{ of longitude}$

$$\begin{array}{l} 3/307 \\ \hline For \ circular \\ orbit, \ U = RV9/a, \\ = 6371/10^{3})\sqrt{\frac{9.825}{12371(10^{3})}} \\ = 5678 \ m/s \\ \hline For \ clliptical \ orbit \ at \ abogce \ A \\ U_{A} = R\sqrt{\frac{9}{a_{2}}}\sqrt{\frac{r_{min}}{r_{max}}} \\ where \ r_{min} = 637/+3000 = 9371 \ hm \\ r_{max} = 637/+6000 = 12371 \ hm \\ \hline So \ U_{A} = 6371/+6000 = 12371 \ hm \\ = 5271 \ m/s \\ \hline Thus \ \Delta U = 5678 - 5271 = 406 \ m/s \\ \hline So \ 2000 \ t = 800 \ (406) \\ t = 162 \ s \end{array}$$

$$F_{s}: \text{ force exerted on}$$

$$F_{s}: \text{ for earth}$$

 $\frac{Gm_{s}m'}{(D-h)^{2}} - \frac{Gmem'}{h^{2}} = m'(D-h)(\frac{2\pi}{T})^{2}$ With $G = 3.439(10^{-8})\frac{ft^{4}}{16-sec^{4}}$, $m_{s} = 333,000$ me, $m_{e} = 4.095(10^{23})$ slugs, $D = 92.96(10^{6})(5280)$ ft, and T = 365.26(24)(3600) sec, Solve numerically for $h^{\alpha s} = 4.87(10^{9})$ ft or 922,000 mi

$$\frac{>3/309}{\text{For 1}} \quad \forall_{1} = R \sqrt{9/r_{1}}; \quad \text{for 2}, \quad \forall_{2} = R \sqrt{9/r_{2}} \\ \text{For transfer ellipse at A}, \quad \forall_{1}' = R \sqrt{9/a} \sqrt{\frac{r_{2}}{r_{1}}} a = \frac{r_{1}+r_{2}}{2} \\ \text{For transfer ellipse at B}, \quad \forall_{2}' = R \sqrt{9/a} \sqrt{\frac{r_{1}}{r_{2}}} (\text{Eq. 3/48}) \\ \text{At A}, \quad \Delta \forall_{A} = \forall_{1}' \cdot \forall_{1} = R \sqrt{9/a} \sqrt{\frac{r_{2}}{r_{1}}} - R \sqrt{9/r_{1}} = R \sqrt{9/r_{1}} (\sqrt{\frac{2r_{2}}{r_{1}}-1}) \\ \text{At B}, \quad \Delta \forall_{B} = \forall_{2} - \forall_{2}' = R \sqrt{9/r_{2}} - R \sqrt{9/a} \sqrt{\frac{r_{1}}{r_{2}}} = R \sqrt{9/r_{2}} (1 - \sqrt{\frac{2r_{1}}{r_{1}+r_{2}}}) \\ \Delta \forall_{A} = 6371 (10^{3}) \sqrt{\frac{9.825(10^{3})}{42.171}} (\sqrt{\frac{2(42.171)}{6871+42.171}} - 1) = \frac{1447}{10}$$

$$\frac{3}{310} = E_{q} \cdot 3/47 : \quad \forall^{2} = 2gR^{2}(\frac{1}{r} - \frac{1}{2a})$$

$$7400^{2} = 2(9.825)(6371 \cdot 1000)^{2} \begin{bmatrix} \frac{1}{7371 \cdot 1000} - \frac{1}{2a} \end{bmatrix}$$

$$\frac{a = 7462 \text{ km}}{T = \frac{1}{2} \text{ mv}^{2}} = \frac{1}{2} \text{ m} (7400)^{2} = 27.38(10^{6}) \text{ m}}$$

$$V = -\frac{mgR^{2}}{r} = -\frac{m(9.825)(6371 \cdot 1000)^{2}}{7371(1000)} = -54.1(10^{6}) \text{ m}}$$

$$E = T + V = -26.7(10^{6}) \text{ m} \quad (\text{in Joules})$$

$$h = V \vartheta_{\theta} = 7371(10^{3})(7400 \text{ cas } 2^{4}) = 5.45(10^{14}) \frac{m^{2}}{\text{s}}$$

$$e = \sqrt{1 + \frac{2Eh^{2}}{mg^{2}R^{4}}} = \sqrt{1 + \frac{2(-26.7)10^{6} \text{ m} 5.45^{2}10^{2^{6}}}{(6371 \cdot 1000)^{4}}}$$

$$= 0.0369$$
From $r = \frac{a(1 - e^{2})}{1 + e \cos \theta} : 7371 = \frac{7462(1 - 0.0369^{2})}{1 + 0.0369 \cos \theta}$

$$\Theta = \frac{1}{72.8^{\circ}} \qquad S_{0} \quad \frac{\alpha' = 72.8^{\circ}}{r}$$

$$r_{min} = a(1 - e) = 7462(1 - 0.0369)$$

$$= 7186 > R = 6371 \text{ m}$$

$$\frac{1}{\alpha} = 72.8^{\circ}$$

$$I = Does not strike earth$$

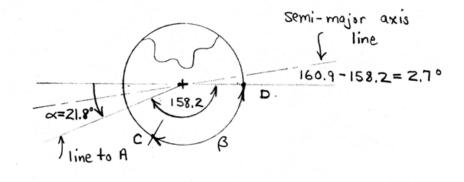
►3/3/1
At B,
$$r = \sqrt{29} R$$

 $\alpha = \tan^{-1} \left(\frac{2R}{5R}\right)$
 $= 21.8^{\circ}$
 $u^{2} \stackrel{!}{=} 2gR^{2} \left(\frac{1}{r} - \frac{1}{2a}\right)$
At B : $320\delta^{2} = 2(9.825)(6.311 \times 10^{6})^{2} \left[\frac{1}{\sqrt{29} \cdot 6.311(10^{6})} - \frac{1}{2a}\right]$
 $\alpha = 3.066 \times 10^{7} \text{ m}$
 $T_{B} = \frac{1}{2} mv_{B}^{2} = \frac{1}{2} m (320s)^{2} = 5.120 \times 10^{6} \text{ m}$
 $v_{B}^{2} - \frac{m_{9}R^{2}}{r_{B}} = -m \frac{(9.825)(6.371 \times 10^{6})^{2}}{\sqrt{29} \cdot (6.371 \times 10^{6})^{2}} = -1.162 \times 10^{7} \text{ m}$
 $E = T_{B} + V_{B} = -6.504 \times 10^{6} \text{ m}$
 $v_{\theta} = 3200 \sin \alpha = 1188.5 \text{ m/s}$
 $h = rv_{\theta} = \sqrt{29} \left((5.371 \times 10^{6})(1188.5) = 4.077 \times 10^{10} \text{ kg} - \text{m}^{3}/\text{s}$
 $e = \sqrt{1 + \frac{2Eh^{2}}{mg^{2}R^{4}}}$

$$\begin{aligned} e &= \sqrt{1 + \frac{2(-6.504 \text{ m})(4.077 \times 10^{10})^2}{\text{m}(9.825)^2 (6.371 \times 10^{10})^4}} \\ &= 0.9295 \\ r &= \frac{a(1-e^2)}{1+e\cos\theta} \\ \text{At B : } \sqrt{29} (6.371 \times 10^6) = \frac{(3.066 \times 10^7)(1-0.9295^2)}{1+0.9295 \cos\theta} \\ &= 160.9^{\circ} \end{aligned}$$

At C: 6371(106)=
$$\frac{(3.066 \times 10^7)(1-0.9295^2)}{1+e\cos\theta}$$

$$\Theta = 111.8^{\circ}$$



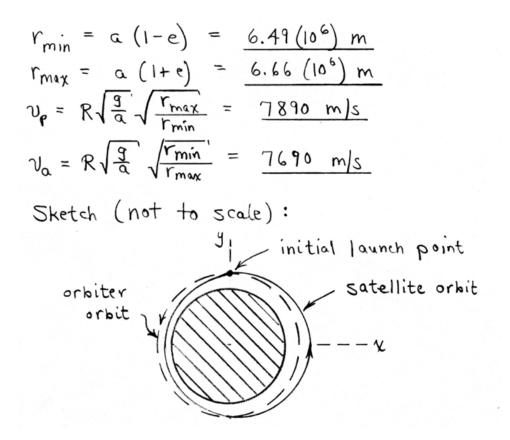
 $\beta = 111.8 - 2.7 = 109.10$

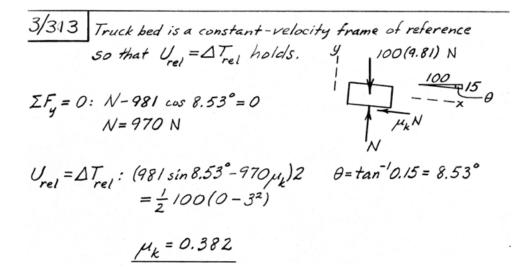
$$\frac{53/312}{v_0} \text{ The speed of the orbiter is}} = \sqrt{\frac{6.673(10^{-11})(5.976)(10^{24})}{(63711+200)(1000)}} = 7790 \text{ m/s}}$$
The speed of the satellite is
$$v = \sqrt{v_0^2 + v_{s/0}^2} = 7791 \text{ m/s}$$
Eq. 3/47:
$$v^2 = 2gR^2(\frac{1}{r} - \frac{1}{2a})$$

$$(7791)^2 = 2(9.825)(6371\cdot100d^2\left[\frac{1}{6571}(1000) - \frac{1}{2a}\right]$$

$$\frac{a = 6572 \text{ km}}{R\sqrt{g}}$$
Energy $E = \frac{1}{2}mv^2 - \frac{Gmem}{r} = -30.3m(10^6) \text{ J}$

$$h = rv_{\theta} = 6571(100d)7790 = 5.12(10^{10}) \text{ m}^2/\text{s}$$
Eq. 3/45: $e = \sqrt{1 + \frac{2Eh^2}{mg^2R^4}} = \frac{0.01284}{2.001284}$
From $\frac{1}{r} = \frac{1 + e\cos\theta}{a(1-e^2)}, \quad \frac{\theta = 90^{\circ}}{r} \text{ exactly}$
(semimajor axis is parollel to $\chi - axis$)





$$\begin{array}{c} 3/314 \\ \hline SF_{\chi} = ma_{\chi} : KS = m_{1}a_{\chi_{1}} \\ -KS = m_{2}a_{\chi_{2}} \\ \hline m_{1}} \\ \hline m_{1} \\ -KS = m_{2}a_{\chi_{2}} \\ \hline m_{1} \\ -KS = m_{1}a_{\chi_{2}} \\ \hline m_{1} \\ -KS = m_{2}a_{\chi_{2}} \\ \hline m_{2} \\ -KS = m_{2}a_{\chi_{2}} \\ \hline m_{2}$$

$$\frac{3/315}{U_{rel}} = l\dot{\theta} = 0.5(z) = lm/s \rightarrow$$

$$U = V + V_{rel} = Z + l = 3 m/s \rightarrow$$

$$G = m \underline{v} = 3(3\underline{i}) = \underline{9\underline{i}} \underline{k}\underline{9} \cdot \underline{m}\underline{s}$$

$$Grel = m \underline{v}_{rel} = 3(l\underline{i}) = \underline{3\underline{i}} \underline{k}\underline{9} \cdot \underline{m}\underline{s}$$

$$T = \underline{1} m v^{2} = \underline{1} \underline{2}(3)(3)^{2} = \underline{13.5 J}$$

$$T_{rel} = \underline{1} m v^{2}_{rel} = \underline{1} \underline{2}(3)(1)^{2} = \underline{1.5 J}$$

$$H_{o} = -lm v \underline{k} = -(0.5)(3)(3) \underline{k} = -4.5 \underline{k} \frac{\underline{k}\underline{9} \cdot \underline{m}^{2}}{5}$$

$$H_{Brel} = -lm v_{rel} \underline{k} = -(0.5)(3)(1) \underline{k} = -1.5 \underline{k} \frac{\underline{k}\underline{9} \cdot \underline{m}^{2}}{5}$$

 $\frac{3|316}{(22+P)(10^3)75} = \frac{1}{2}(3)(10^3)[(240/3.6)^2 - 0]$ 22+P = 88.9 kN, P = 66.9 kN

$$\frac{3/317}{v^{2}} = v_{0}^{2} + 2a (s-s_{0}) : (15 \frac{5280}{3600})^{2} = 2a (80)$$

$$a = 3.03 \text{ ft/sec}^{2} = a_{rel}$$

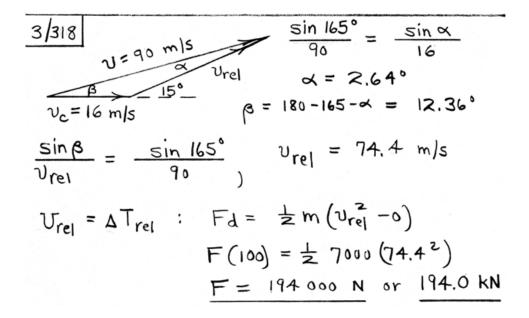
$$4000 \text{ lb}$$

$$F = \frac{4000}{32.2} (3.03)$$

$$F = \frac{1}{N}$$

$$F = \frac{1}{N}$$

$$F = \frac{376 \text{ lb}}{16}$$

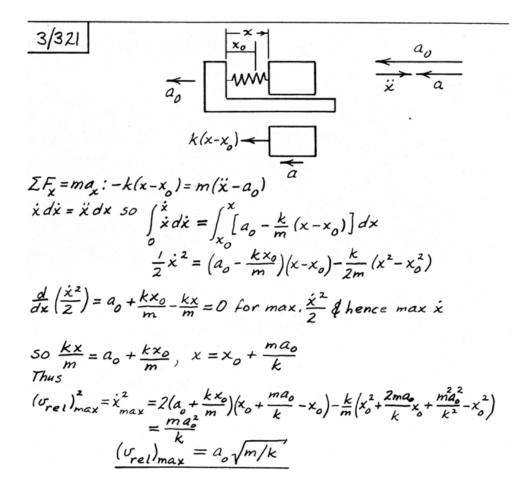


T

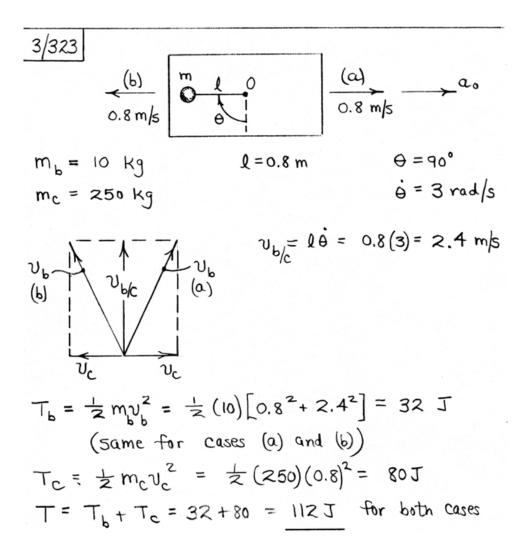
3/320 F= constant
A
A

$$x_0$$

 x_0
 x_0



For accel. a vertically down, 3/322 y $a_0 = a_{rel} \cos 30^\circ$ 90 $a_{rel} = 0 \quad so \quad \Sigma F_{\chi} = 0$ $a_{rel} = -R \sin 30^{\circ} = 0, R = 0$ $a \quad \Sigma F_{\chi} = ma_{\chi}, mg = ma$ $a = g \notin q = a\sqrt{3} = g\sqrt{3}$ $= 9.8/\sqrt{3} = 16.99\frac{m}{s^{2}}$ a mg



$$\frac{3/324}{\sum F} = m \left(\frac{q_0}{q_0} + \frac{q_{rel}}{q_{rel}} \right). \quad \text{In t-dir.}, \quad \sum F_t = 0, \\ So \quad q_t = 1\ddot{\theta} - q_0 \cos\theta = 0 \\ \vec{n'i} \qquad 1\dot{\theta}^2 \qquad \vec{\theta} = \frac{\alpha_0}{1} \cos\theta \quad (i) \\ T \quad \vec{\theta} \mid 1 \qquad \vec{\theta} \qquad \text{In n-dir.}, \quad \sum F_n = ma_n \\ \vec{T} = m \left(1\dot{\theta}^2 + \alpha_0 \sin\theta \right) (z) \\ \text{Integrate (i):} \quad \vec{\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta} = \frac{\alpha_0}{1} \cos\theta \\ \int \dot{\theta} d\dot{\theta} = \int \frac{q_0}{1} \cos\theta \, d\theta \\ \frac{1}{2} \dot{\theta}^2 = \frac{\alpha_0}{1} \sin\theta \\ \text{From (2):} \quad T = m \left[2a_0 \sin\theta + \alpha_0 \sin\theta \right] \\ \text{or } T = 3ma_0 \sin\theta \\ \text{For } \theta = \frac{\pi'}{2}, \quad T_{m/2} = 3ma_0 = 3(10)(3) = 90 \text{ N} \\ \end{array}$$

$$\frac{3/325}{9} \frac{1}{10} \frac{1}{10} \frac{1}{10} \sum_{i=1}^{n} \frac{1}{10} \sum_{i=1}^{n$$

$$\frac{3/326}{\text{Absolute: } U_{abs}' = \Delta T + \Delta V_g :}$$

$$F(\Delta x_0 + s) = \pm m (v_r + u)^2 \qquad --F \qquad N$$

$$- \pm m u^2 + mg (\Delta x_0 + s) \sin \theta$$

$$= \pm m v_r^2 + m v_r u + mg (\Delta x_0 + s) \sin \theta$$
Relative:
$$U_{rel}' = \Delta T_{rel} + \Delta V_{grel} : F_s = \pm m v_r^2 + mg \sin \theta$$
Work done by Walkway:
$$U_{abs}' - U_{rel}' = m v_r u + mg \Delta x_0 \sin \theta$$

$$m v_r u \text{ represents the work done by the belt due}$$
only to the motion of the Walkway.
For $m = \frac{150}{32.2}$ slugs, $v_r = 2.5$ ft/sec, $u = 2$ ft/sec,
 $\theta = 10^\circ$, $s = 30$ ft:
 $\Sigma F_x = ma_{xrel}$: $a_{xrel} = \frac{v_r^2}{zs} = \frac{2.5^2}{z(30)} = 0.1042 \frac{\text{ft}}{\text{Sec}^2}$

$$F - 150 \sin 10^\circ = \frac{150}{32.2} (0.1042)$$
, $F = 26.5$ Ib
Power by bay: $P_{rel} = Fv_r = 26.5 (2.5) = 66.3 \frac{\text{ft} - 1b}{\text{Sec}}$
or $P_{rel} = \frac{66.3}{550} = \frac{0.1206 \text{ hp}}{550}$

, elevator is Newtonian frame (a) a = 0 $v' = ev = e\sqrt{2gh_1} = \sqrt{2gh_2}$ Sβ. $a = \frac{9}{4}$ $h_z = e^z h_i$ - Ø (b) $a = \frac{g}{4} up$ Sf Vo Let B = ball, E = elevator, V At impact, SB=SE: SBo+UBot+ = gt2= SEo+VEot-===t2=t2 $s_{B_0} + v_0 t + \frac{1}{2}gt^2 = (s_{B_0} + h_1) + v_0 t - \frac{1}{8}gt^2, t = 2\sqrt{\frac{2h_1}{5q}}$ $v_{B/E} = v_B - v_E = \left(v_0 + g 2\sqrt{\frac{2h_1}{5q}}\right) - \left(v_0 - \frac{g}{4}2\sqrt{\frac{2h_1}{5q}}\right)$ = $\sqrt{\frac{5h_{g}}{2}}$ After collision, UB/E=-ev 5h,g (UP) $v'_{B/E} = v'_{B/E} + q_{B/E} t = -e \sqrt{\frac{5h_{.9}}{2}} + \frac{5}{4}gt$ When $u'_{B/E} = 0$, $t = 2e\sqrt{\frac{2h_1}{5q}}$ SBIE = SBE + UBE t + 2 = gt2 $= 0 - e \sqrt{\frac{5h_{19}}{2}} 2 e \sqrt{\frac{2h_{1}}{5a}} + \frac{5}{8}g 4 e^{2} \frac{2h_{1}}{5q}$ $= -e^2h_1 \Rightarrow h_2 = e^2h_1$

$$\frac{\sqrt{3}}{328} | mg \qquad \forall rel = \Delta Trel mg lsin $\Theta = \frac{1}{2} m v_{rel}^2 - 0$
N/ $\Theta = \frac{\sqrt{rel}}{2} = 2g lsin \Theta$
$$\frac{\sqrt{9}}{2} = \frac{\sqrt{rel}}{2g lsin \Theta + (N sin \Theta)} d = \frac{1}{2} m v_0^2 - \frac{1}{2} m v_0^2$$

where d is the horizontal distance traveled
by the block.
Time to slide from B to C : $l = \frac{1}{2} a t^2 = \frac{1}{2} g sin \Theta^2$
 $t = \left(\frac{2l}{g sin \Theta}\right)^{1/2}$ So $d = v_0 t = v_0 \sqrt{\frac{2l}{g sin \Theta}}$
Also, N = mg cos Θ
Solving the work-energy equation for v^2 :
 $\frac{v_A = (v_0^2 + Zg l sin \Theta + Zv_0 cos \Theta \sqrt{2lg sin \Theta})^{1/2}}{Check: \frac{v_A}{\Theta} = \frac{v_0 + v_{rel}}{1} = v_0 \underline{i} + (Zg l sin \Theta (cos \Theta \underline{i} - sin \Theta \underline{j}))$
 $v_{rel} = v_0^2 + Zg l sin \Theta cos \Theta \underline{j} - \sqrt{Zg l sin^3} \Theta \underline{j}$
 $v_A^2 = (v_0 + \sqrt{2g l sin \Theta cos \Theta}) \underline{i} - \sqrt{Zg l sin^3} \Theta \underline{j}$$$

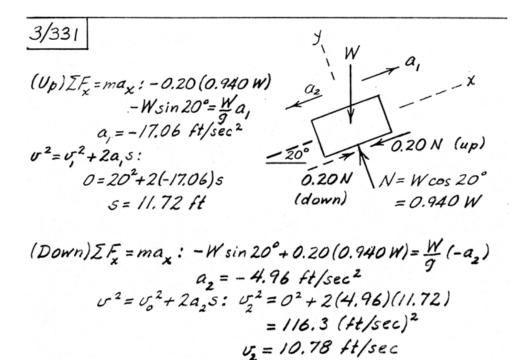
► 3/329 From law of cosines

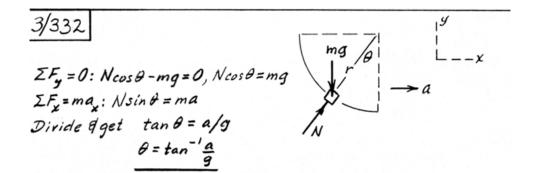
$$a_{g} = Rw^{2}\cos \gamma \qquad g_{re1}^{2} = g^{2} + a_{g}^{2} - 2g q_{g}\cos \gamma \\
= g^{2} \left(1 + \left[\frac{a_{B}}{g}\right]^{2} - 2 \frac{a_{B}}{g}\cos \gamma \right) \\
= g^{2} \left(1 + \left[\frac{a_{B}}{g}\right]^{2} - 2 \frac{a_{B}}{g}\cos \gamma \right) \\
g'' = J' g_{re1} \qquad g_{re1} = g \left[1 + \frac{a_{g}}{g} \left(\frac{a_{g}}{g} - 2\cos \gamma \right) \right]^{1/2} \\
g'' = 0 \text{ binomial expansion for } 151 \text{ two terms} \\
(1 + \chi)^{n} = 1 + n\chi + \cdots \qquad & get \\
g_{re1} = g \left[1 + \frac{a_{g}(a_{g}}{g} - \cos \gamma) + \cdots \right] \\
= g + a_{g} \left(\frac{a_{B}}{2g} - \cos \gamma \right) + \cdots - \\
g_{re1} = g - Rw^{2}\cos^{2} \chi \left(1 - \frac{Rw^{2}}{2g} \right) + \cdots - \\
Rw^{2} = 6.371(10^{6})(0.7292 \times 10^{-4})^{2} = 0.03388 \text{ m/s}^{2} \\
g_{re1} = 9.825 - 0.03382 \cos^{2} \chi \text{ m/s}^{2}$$

•3/330

Case (a): Orbital speed is constant so that x is both the absolute and relative acceleration in the x-direction. Hence F=mx holds.

Case (b): Orbital speed is decreasing in the position shown so that a component of acceleration in the negative x-direction exists so that the true (absolute) acceleration in the x-direction is x minus the tangential orbital deceleration. Consequently F±mx. Only at the perigee and apogee positions where v = 0 would F=mx be true.





3/333 Critical condition Will occur when
Weight is at bottom position.

$$F_{r,n} = Nra_{n}; F-mg = Mrw^{2}$$

 $F_{r,n} = Nra_{n}; F-mg = Mrw^{2}$
 $F_{r,n} = 80-0.030(9.81) = 0.030(0.175)w^{2}$
 $F_{r,n} = 123.2 \frac{rod}{5}$
 $N = \omega(\frac{60}{2\pi}) = 1177 rev/min$

$$\frac{3/334}{3/334} v^{2} = 2gh = 2(9.81)(0.4+0.4\cos 30^{\circ}) A$$

$$= 14.64 m^{2}/s^{2}$$

$$\frac{14.64}{7}m^{2}/s^{2}$$

$$\frac{14.64}{7}m^{2}/s^{2}$$

$$\frac{14.64}{7}m^{2}/s^{2}$$

$$\frac{14.64}{7}m^{2}/s^{2}$$

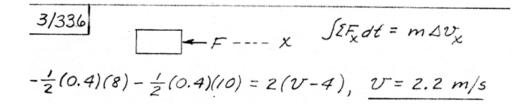
$$\frac{1}{7}m^{2}/s^{2}/T$$

$$R = 27\cos 75^{\circ}$$

$$= 2(90.2)(0.259)$$

$$= 46.7 N$$

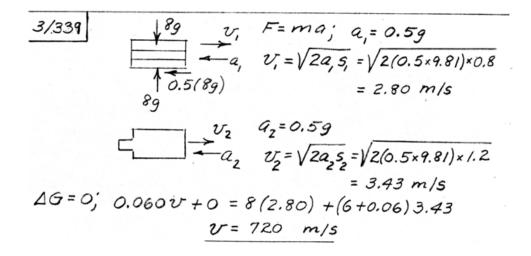
$$\frac{1}{7}m^{2}/s^{2$$



3/337 Dynamics at B (top of loop)

$$\downarrow N \Rightarrow o$$
 $\Sigma F_n = ma_n : mg = m \frac{\gamma u_B^2}{R}$
 $\nu_B^2 = gR$
 mg
Nork- kinetic energy from A to B:
 $T_A + V_{A-B} = T_B: 0 + \frac{1}{2}kS^2 - mgA_kR - mg(2R)$
 $= \frac{1}{2}m(gR)$
 $S = \sqrt{\frac{mgR(5+2\mu_k)}{k}}$

3/338 Possibilities
$$\begin{cases} (a) \ 2 \text{ masses with speed } v_1 \\ \text{considered} \end{cases}$$
 (b) 1 mass with speed $2v_1$
Both (a) and (b) conserve system momentum
Since $2(1mv_1) = 1(2m)v_1$.
But with $e=1$, kinetic energy must
also be conserved.
Initial: $T = 2(\frac{1}{2}mv_1^2) = mv_1^2$
Final : $\begin{cases} T'_a = 2(\frac{1}{2}mv_1^2) = mv_1^2 \\ T'_b = 1(\frac{1}{2}m(2v_1)^2) = 2mv_1^2 \end{cases}$
So choice (b) is ruled out.



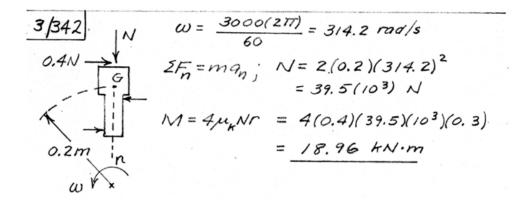
$$\frac{3/340}{D} | \frac{y}{mg} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} - \frac{1}{2} \sqrt{\frac{1}{2}} = \frac{1}{2} (a_x \underline{i} + a_y \underline{j})$$

$$\sum F = m\underline{a} : -C_D \neq f \sqrt{2} \cdot \frac{1}{2} - m\underline{g} \cdot \underline{j} = m(a_x \underline{i} + a_y \underline{j})$$

$$-C_D \neq f \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{\frac{1}{2}} - \underline{mg} \cdot \underline{j} = m(a_x \underline{i} + a_y \underline{j})$$

$$So \begin{cases} a_x = -C_D \neq f \cdot \sqrt{2} \cdot \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$$

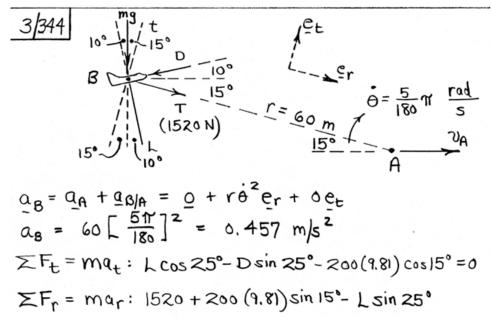
The two acceleration expressions are coupled through the speed term. And The expressions are nonlinear.



$$\frac{3/343}{9} = 4c + y_{c} t - \frac{1}{2}gt^{2} ;$$

$$0 = 2R + 0(t) - \frac{1}{2}gt^{2} + t = 2\sqrt{R/g}$$

$$A = \frac{3R}{8} - \frac{3}{8} - \frac{3}{8$$



$$-D\cos 25^\circ = 200(0.457)$$

Solve the above two equations to obtain

<u>D = 954 N</u> L = 2540 N

$$\frac{3/345}{\sqrt{2gh}} \frac{\sqrt{2(3c,1)} \circ f}{\sqrt{2gh}} \frac{p}{\sqrt{2(3c,2)6}} = 19.66 \text{ ft/sec}}{19.66 \text{ ft/sec}}$$

$$\Delta G = 0; \frac{2(19.66)}{g} - \frac{(2+4)}{g} = 0, \frac{\sqrt{2}}{6.55} \frac{5}{5} \frac{5}{5$$

3/346 The method of work-energy cannot handle forces which are functions of time; the impulse-momentum method cannot accept forces which vary with displacement. Newton's Second Law gives the acceleration as $a=-\frac{k}{m}\chi + \frac{F(t)}{m}$ Which is not easily integrated by standard (non-numerical) methods.

$$\frac{3/347}{(Prime denotes -\mu_{k}mgd = 0 - \frac{1}{2}mu'^{2})}$$
(Prime denotes -\mu_{k}mgd = 0 - \frac{1}{2}mu'^{2})
speed after impact) $u' = \sqrt{2\mu_{k}gd}$

$$A: V_{A}' = \sqrt{2(0.9)(32.2)(50)} = 53.8 \text{ ft/sec}$$

$$B: V_{B}' = \sqrt{2(0.9)(32.2)(100)} = 76.1 \text{ ft/sec}$$
Collision: $m_{A}V_{A} + m_{B}V_{B} = m_{A}V_{A}' + m_{B}V_{B}'$

$$\frac{4000}{3}V_{A} + 0 = \frac{4000}{9}(53.8) + \frac{2000}{9}(76.1)$$

$$V_{A} = 91.9 \text{ ft/sec}$$
Initial Skidding: $U_{I-2} \Delta T$

$$-\mu_{k}mgd = \frac{1}{2}m(V_{A}^{2}-V_{A0}^{2})$$

$$-(0.9)(32.2)(50) = \frac{1}{2}(91.9^{2}-V_{A0}^{2}), V_{A0} = 106.5 \frac{\text{ft}}{\text{sec}}$$
(Speed limit was exceeded!)

$$\frac{3/348}{(a) U_{1-2}' = 0} = \Delta V_g + \Delta V_e : 0 = 80(9.81)(-44) + \frac{1}{2}k(44-20)^2, k = 119.9 N/m$$

$$(b) U_{1-2}' = 0 = \Delta T + \Delta V_g + \Delta V_e : 0 = \frac{1}{2}80\sigma^2 - 80(9.81)(20+g) + \frac{1}{2}119.9 g^2 where $g = e \log a t ion of bungee cord.$

$$40 \frac{d(\sigma^2)}{dg} = 80(9.81) - 119.9 g = 0 \text{ for max } \sigma^2, g = 6.55 \text{ m}$$

$$\frac{3}{2}\sigma_{max}^2 = \frac{1}{40} \left\{ 80(9.81)(20+6.55) - \frac{1}{2}119.9(6.55)^2 \right\} = 457 \text{ m}^2/s^2$$

$$\frac{\sigma_{max}}{2} = 21.4 \text{ m/s}$$$$

(c) Max. acceleration occurs at bottom where tension is greatest

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = Ky = 119.9 (444-20) = 2880 \text{ N}$$

$$T_{max} = 26.2 \text{ m/s}^2 \text{ or } \frac{8}{3}g$$

$$80(9.81) \text{ N}$$

$$\frac{3/349}{N_{y}}(a) = n \qquad \sum F_{y} = 0: \qquad N_{y} = mg$$

$$\frac{N_{y}}{p} = \frac{m_{y}}{y} = \sum F_{n} = m \frac{v^{2}}{p}: \qquad N_{n} = m \frac{v^{2}}{p}$$

$$N_{tot} = \sqrt{N_{y}^{2} + N_{n}^{2}} = m\sqrt{g^{2} + \frac{v^{4}}{p^{2}}}$$

$$N_{n} = \sqrt{N_{y}^{2} + N_{n}^{2}} = m\sqrt{g^{2} + \frac{v^{4}}{p^{2}}}$$

$$\sum F_{t} = ma_{t}: -\mu_{k} m \sqrt{g^{2} + \frac{v^{4}}{p^{2}}} = ma_{t}, \qquad a_{t} = -10.75 \frac{m}{s^{2}}$$

$$(b) = n \qquad n \qquad As in part(a), \qquad Ny = mg$$

$$N_{y} = \frac{m_{y}}{v_{t}} = \frac{m_{x}}{v_{t}} = ma_{t} = ma_{t} = ma_{t} = ma_{t}$$

$$N_{n} = m = \frac{m_{x}}{v_{t}} = ma_{t} = -\mu_{k}g - \mu_{k} \frac{v^{2}}{p} = -14.89 \frac{m/s^{2}}{s^{2}}$$

$$\frac{3/350}{(1000)} \left(\begin{array}{c} \text{Roman numeral: process; Arabic number: state} \right) \\ \text{I. Engine moves 1 ft; } U=\Delta T: Fd = \frac{1}{2} m (v_2^2 - v_1^2) \\ (\text{State } 0 \Rightarrow \text{State } 0) & 40,000 (1) = \frac{1}{2} \frac{400,000}{32.2} (v_2^2 - 0^2) \\ v_2 = 2.54 \text{ ft/sec} \end{array} \right) \\ v_2 = 2.54 \text{ ft/sec} \end{array}$$

$$\text{I. `Collision'' with A : m_L v_2 = (m_L + m_A) v_3 \\ (0) \Rightarrow (3) & 400,000 (2.54) = 600,000 v_3, v_3 = 1.692 \frac{\text{ft}}{\text{sec}} \end{array}$$

$$\text{II. L FA move 1 ft: } 40,000 (1) = \frac{1}{2} \frac{600,000}{32.2} (v_4^2 - 1.692^2) \\ (3) & 0_4 = 2.67 \text{ ft/sec} \end{array}$$

$$\text{II. `Collision'' with B: (m_L + m_A) v_4 = (m_L + m_A + m_B) v_5 \\ (4) \Rightarrow (5) & 600,000 (2.67) = 800,000 v_5 \\ v_5 = 2.01 \text{ ft/sec} \end{aligned}$$

$$\text{II. L, A, FB move 1 ft: } 40,000 (1) = \frac{800,000}{32.2} (v_4^2 - 2.01^2) \\ (5) \Rightarrow (6) & 000 (2.67) = 800,000 v_5 \\ v_5 = 2.69 \text{ ft/sec} \end{aligned}$$

$$\text{II. Collision'' with C: (6) \Rightarrow (5) \\ (m_L + m_A + m_B) v_6 = (m_L + m_A + m_B + m_c) v_7 \\ 800,000 (2.69) = 1,000,000 v_7 \\ (c) & v_7 = 2.15 \text{ ft/sec} = v \end{aligned}$$

(b)
$$v' = 2.78 \text{ ft/sec}$$

$$\frac{3/35/}{2} D \text{ to } E : y = y_0 + v_y \cdot t - \frac{1}{2}gt^2 - f^2 = -\frac{1}{2}gt^2 + t = \sqrt{\frac{2f}{g}}$$

$$x = x_0 + v_{\chi_0}t : d = v_0 \sqrt{\frac{2f}{g}} + v_0 = d\sqrt{\frac{g}{2f}}$$

$$A \text{ to } D : U = \Delta T$$

$$\frac{1}{2}kS^2 - \mu_k mgf - mgf = \frac{1}{2}m(d^2\frac{g}{2f}) - 0$$

$$S = \sqrt{\frac{Mg}{k}}\sqrt{\frac{d^2}{2f}} + 2f(1+\mu_k)$$

$$But speed at top of hill must be ≥ 0 :
$$U = \Delta T : \frac{1}{2}kS^2 - \mu_k mgf - 3mgf = \frac{1}{2}mv^2 - 0 \ge 0$$

$$or S \ge \sqrt{\frac{2mgf}{k}}(3+\mu_k)$$

$$\therefore \frac{mg}{k}(\frac{d^2}{2f} + 2f(1+\mu_k)) \ge \frac{2mgf}{k}(3+\mu_k)$$$$

or $d \ge 2\sqrt{2} p$

 $\frac{3/352}{so \ from \ Eq. \ 3/47} = 6371 \sqrt{\frac{2 \times 9.825 \times 10^{-3}}{6371 + 2000}} \times 3600$ $= 35 \ 140 \ km/h$ Thus $\Delta \sigma = 35140 - 26140 = 9000 \ km/h$

$$\frac{3/353}{2!6} = \sqrt{2gh} = \sqrt{2(32.2)(6)} = 19.66 \text{ ft/sec}$$

$$\frac{3/353}{2!6} = \sqrt{2gh} = \sqrt{2(32.2)(6)} = 19.66 \text{ ft/sec}$$

$$\frac{3/353}{2!6} = \sqrt{4} \text{ (19.66)} + 0 = (18+2)v', v' = 1.966 \frac{54}{5ec}$$

$$\frac{18}{16} = \sqrt{1116} \text{ (1116)} \text{ spring deflection}$$

$$\frac{18}{16} = \sqrt{1116} \text{ (1116)} \text{ spring deflection}$$

$$\frac{18}{16} = \sqrt{1116} \text{ (1116)} \text{ (1116)} \text{ spring deflection}$$

$$\frac{18}{16} = \sqrt{116} \text{ (1116)} \text{ (11$$

$$\frac{3/354}{9} \stackrel{?}{\rightarrow} G_{1} = G_{2}$$

$$\frac{3/354}{9} \stackrel{?}{\rightarrow} G_{1} = G_{2}$$

$$\frac{9/354}{3-5} = 2\sqrt{9} \frac{1}{9} \frac{1-1}{9} \frac{1}{5} \frac{1}{9} \frac{1}{5} \frac{1}{3-5} = 2\sqrt{9} \frac{1}{9} \frac{$$

$$\frac{3/355}{350} = \frac{y^{2} \sin 90^{\circ}}{32.2}, \quad y = 106.2 \text{ ft/sec}$$

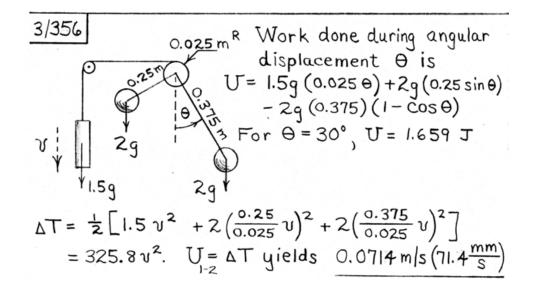
$$G_{1} = my_{1} = \frac{5/16}{32.2} \left(90 \frac{5280}{3600}\right) \left(-\frac{1}{2}\right) = -1.281 \text{ i} \text{ lb-sec}$$

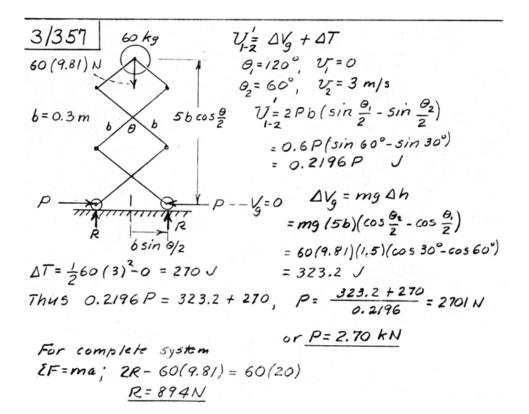
$$G_{2} = my = \frac{5/16}{32.2} 106.2 \left(\frac{1}{12} + \frac{1}{12}\right) = -1.281 \text{ i} \text{ lb-sec}$$

$$\frac{45^{\circ}}{32.2} = 0.729 \left(\frac{1}{2} + \frac{1}{2}\right) = 0.729 \left(\frac{1}{2} + \frac{1}{2}\right) = -1.281 \text{ i}$$

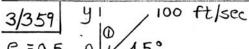
$$F_{av} = 402 \text{ i} + 145.7 \text{ j} = 402 \text{ i} + 145.7 \text{ j} = 16$$

$$F_{av} = \sqrt{402^{2} + 145.7^{2}} = \frac{428}{16} \text{ lb}$$
(Note: The weight of the baseball is ignored during its impoct with the bat. With the weight included, F_{av} still rounds to 428 lb.)





$$\frac{3/358}{T_1 + U_{1-2}} = T_2 : 0 + m_{Ag} 1.8 (1 - \cos 60^\circ) = \pm m_1 M_{A2}^2 \\ U_{A2} = 4.20 \text{ m/s} \\ \text{Collision} (@ > @): \\ \begin{cases} m_A U_{A2} + m_B U_{B2}^{A\circ} = m_A U_{A3} + m_B U_{B3} & (1) \\ U_{B_3} - V_{A_3} = 0.7 (U_{A2} - U_{B2}^{A\circ}) & (2) \\ \text{Solution} : U_{A3} = 2.42 \text{ m/s}, V_{B3} = 5.36 \text{ m/s} \\ \text{Rise of } B (@ > @): \\ T_3 + U_{3-4} = T_4 : \\ \pm m_B (5.36)^2 - m_B (9.81) [2.4(1 - \cos 30^\circ) + 5 \sin 30^\circ] = 0 \\ \text{S} = 2.28 \text{ m} \end{cases}$$



-1-0.5 A		5 -	
8' 1	3\ 5 (3) ^β (3)		
Ţ	e ₂ =0.3	√ <i>∠</i> /2	
		- x>	

Use coordinates & states ()-(5) shown. $v_{1x} = -100 \cos 45^\circ = -70.7 \ \text{ft/sec}$ U1y = -100 sin 45° = -70.7 ft/sec $v_{2x} = -e_1 v_{1x} = -0.5(-70.7) = 35.4$ ft/sec Vzy = Vy = -70.7 Alsec $v_{3\chi} = \frac{v_{2\chi}}{v_{3\chi}} = .35.4 \text{ ft/sec}$ $v_{3\chi} = -\sqrt{v_{2\chi}^2 + 2g(8)} = -\sqrt{70.7^2 + 2(32.2)(8)} = -74.3 \frac{\text{ft}}{\text{sec}}$ $v_{3y} = v_{2y} - gt_3 = -74.3 = -70.7 - 32.2 t_3 = 0.1104 sec$ V4x = V3x = 35.4 ft/sec V4y = - ev3y = - 0.3 (-74.3) = 22.3 ft/sec $y_{5} = y_{4} + v_{y_{4}}t_{5} - z_{9}t_{5}^{2}$; -4 = -8 + 22.3 t = 16.1 t s2 : t = 0.212, 1.172 sec Then $x = x_3 + v_{4x} t_5 + 2$, where $x_3 = v_{2x} t_3$ = 35.4(0.1104)= 3.73 ft Thus x = 3.73 + 35.4(0.212) + 2 = 13.40 ft or $\chi = 3.73 + 35.4(1.172) + 2 = 47.3$ ft

$$\frac{3/360}{\Delta v_{A}} = R \sqrt{\frac{9}{r_{i}}} \left(\sqrt{\frac{2r_{2}}{r_{1}+r_{2}}} - 1 \right)$$
Nominally,
 $(\Delta v_{A})_{n} = (3959)(5280) \sqrt{\frac{32.23}{(3959+170)(5280)}} \times (\sqrt{\frac{2(3959+22,300)}{(3959+170)+(3959+22,300)}} - 1) = 7997 \frac{ft}{sec}$
Actually

Helling,

$$(\Delta V_{A})_{a} = (3959)(5280)\sqrt{\frac{32.23}{(3959+170)(5280)}} \times (\sqrt{\frac{2(3959+700)}{(3959+170)+(3959+700)}} - 1) = 755 \frac{ft}{sec}$$

 $(\frac{(\Delta V_{A})_{a}}{(\Delta V_{A})_{n}} = \frac{t'}{t}, t' = \frac{(\Delta V_{A})_{a}}{(\Delta V_{A})_{n}} t = \frac{755}{7997}(90) = 8.50 sec.$

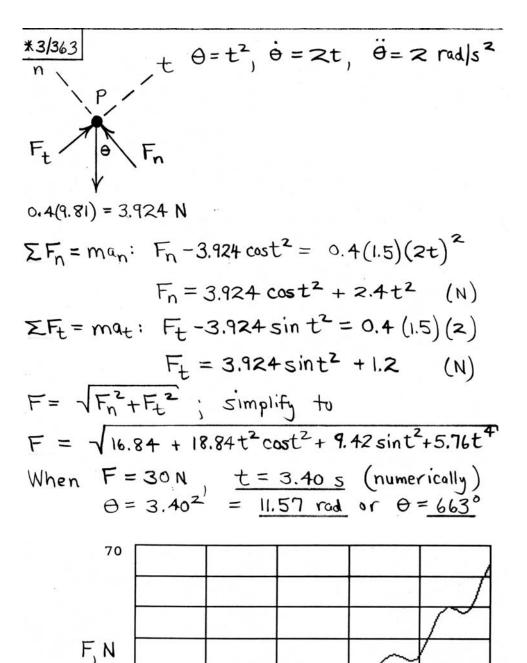
$$\frac{|3|36|}{|1|}$$

$$\frac{|1|}{|1|} = \frac{|1|}{|1|} = \frac{|1|}{|1|}$$

$$\frac{\sum 3/362}{\left\{F_{R}=-k_{1} v_{1} k_{1}=0.833 \frac{|b-hr|}{m!}=0.5682 \frac{|b-sec|}{ft}\right\}} = \frac{\sum 3/362}{\left\{F_{D}=-k_{2} v_{1}^{2} k_{2}=0.0139 \frac{|b-hr|^{2}}{m!^{2}}=0.006457 \frac{|b-sec|}{ft^{2}}\right\}} = \frac{\sum 2}{1650} \frac{ft-lb}{sec} = \frac{3}{16} \frac{hr}{m!^{2}} = 0.006457 \frac{|b-sec|}{s600}\right] = \frac{1650}{sec} = \frac{3}{16} \frac{hr}{p}$$

$$P_{60} = F v = \left[0.833(60) + 0.0139(60)^{2}\right] \left[60 \left(\frac{5280}{3600}\right)\right] = 8800 \frac{ft-lb}{sec} = \frac{16}{16} \frac{hr}{p}$$

$$(b) - k_{1}v - k_{2}v^{2} = m \frac{dv}{dt} \frac{dv}{dt} \int_{0}^{t} \frac{dv}{(k_{1}+k_{2}v)} \int_{0}^{t} \frac{1}{(k_{1}+k_{2}v)} \int_{0}^{t} \frac{1}{(k_{1$$

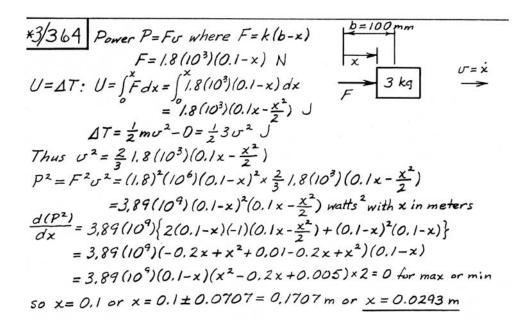


t, 5

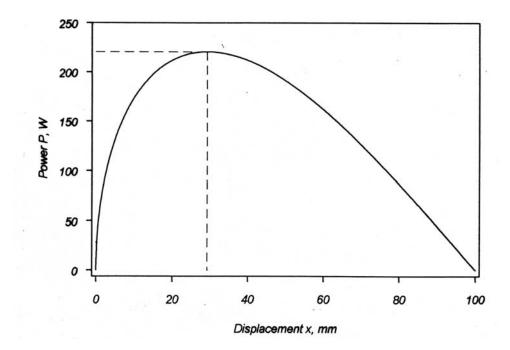
5

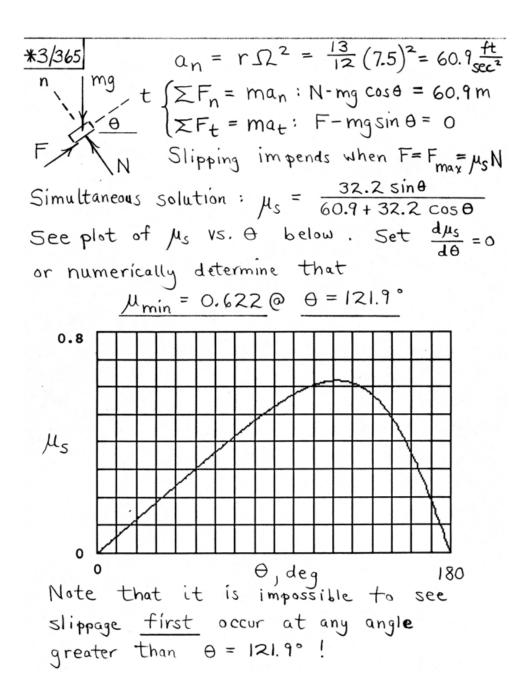
0

0



 $P = \sqrt{38.9(10^8)} (0.1-x) \sqrt{0.1x - 0.5x^2} W$ Substitute x from above & get $P_{max} = 220 W$





*3	366 0.2 0.2	5 Ib B	ut a	dx =	25-R). Udv,	$dx = \frac{0}{2}$	125 32.2 adx		
$\begin{array}{l} \chi \ R \\ (0.25 - R) \ dx = \frac{0.25}{32.2} \ v \ dv = 0.00388 \ d(v^2) \\ \hline \\ For small intervals : (0.25 - R) \ \Delta \chi = 0.00388 \ \Delta(v^2) \\ or \Delta(v^2) = (64.4 - 258R) \ \Delta \chi \end{array}$									
Set up program to produce the following table:									
	x ft	AX ft	R Ib	64.4-258 R ft/src2	AU2 (ft/sec)	~12 (ft/sec)2	v ft/sec		
	0		0	64.4		0	0		
		l			64.4		en den Caral andre and a second and a second and a second		
	1	Annother and the gale months of the first	0.04	54.1	and the first of the second second	64.4	8.02		
		1			54.1				
	2		0.08	43.7		118.5	10.7		
		1			43.7				
	3		0.13	30.9	_	162.2	12.7		
		1			30.9				
	4		0.16	23.1		193.1	13.9		
		1			23.1				
	5	4	0.19	15.4		216.2	14.7		
	e danato al	1			15.4				
	6	1)4 4 10 mcana	0.21	10.2		231.6	15.Z		
	30°000 0111100	1			10.2				
	7		0.22	7.6		241.8	15.6		
		1			7.6		101 (101 (101 - 101) 101 - 101 (101		
	8		0.23	5.1		249,4	15.8		
	•	. l =	0.25	-	5.1	254.5			
	9		0.45	0	0	~ 34.3	16.0		
a la contra de	10					254.5	16.0		

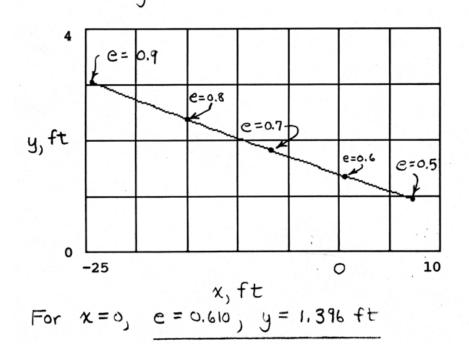
So
$$v = 16.0 \text{ ft/sec}$$

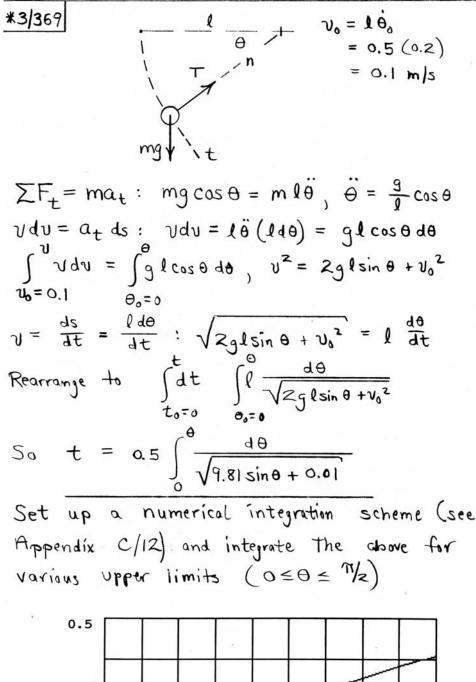
For $R = Kv^2$ $W - Kv^2 = \frac{W}{g}a$
 $\int_{0}^{\chi} \frac{g}{W} dx = \int_{0}^{v} \frac{v dv}{W - Kv^2}$
 $\Rightarrow v = \sqrt{\frac{W}{K}(1 - e^{-2gkx/W})}$
With numbers, $v = 16.3 \text{ ft/sec}$

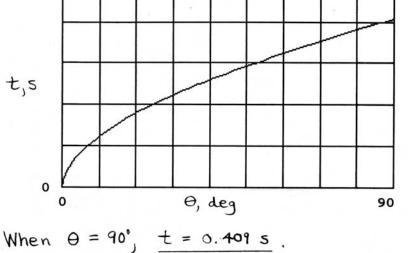
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

 $\Sigma F_r = ma_r = m(\ddot{r} - r\dot{\theta}^2)$ *3/367 $mg\sin\theta = m(r - r\omega_{o}^{2})$ Ν $r - \omega_0^2 r = g \sin \omega_0 t$ io Assume r= Cest to obtain $S_1 = -\omega_0$, $S_2 = \omega_0$, Assume particular solution of form rp = D sin wot and find D= - y So $r = r_{h} + r_{p} = C_{1}e^{-\omega_{0}t} + C_{z}e^{-\omega_{0}t} - \frac{9}{2\omega^{2}} \sin \omega_{0}t$ Use the initial conditions $r(0) = \dot{r}(0) = 0$ to find C, and Cz, allowing us to write the solution as $r = \frac{9}{4\omega_0^2} \left(-e^{-\theta} + e^{\theta} - 2\sin\theta \right)$ Now, set r = 1 m and wo = 0.5 rod/s and use Newton's method to solve for θ as $\theta = 0.535$ rad, or <u>30.6°</u>. From $\theta = \omega_0 t$, $t = \frac{0.535}{0.5} = 1.069 s$.

$$\frac{\frac{1}{3}}{\frac{1}{368}}$$
Define states
 $0 - 6$ as shown. 3'
 $10 - 7 - 32$ and $10 - 7 - 32$. $2(0.376) = -5.15$ ft/sec
Now program the following numbered equations:
 $10 - 2x = -60 - 1x$ (1)
 $10 - 2y = 0 - 1y$ (2)
 $10 - 3x = 0 - 2x$ (3)
 $10 - 3y = -\sqrt{10 - 2x} + 2 - 3y - 14$ (4)
 $10 - 2y = 0 - 1 - 3y - 12 - 3y - 14$ (5)







Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

$$\frac{\frac{\frac{1}{3}37}{37}}{V_{g}} = \int_{g} \left(\frac{\pi}{2} - r\theta\right) \overline{r} \sin \alpha - fgr\theta \frac{r\theta}{2}}{r \sin \alpha} = r \frac{\sin (\frac{\pi}{4} - \frac{\theta}{2})}{r \theta} \int_{q}^{r} \frac{r}{\theta} \int_{q}^{r} \frac{r}{2} \int_{q}^{r} \frac{r}{2}$$

θ, deg

90

Ľ 0

0

$$\Sigma F_{t} = ma_{t} :$$

$$\Sigma F_{t} = ma_{t} :$$

$$F_{t} = mu \frac{dv}{ds}$$

$$F_{t} = mu \frac{dv}{ds}$$

$$But ds = rd\theta, so$$

$$F_{t} = mv \frac{dv}{ds}$$

$$But ds = rd\theta, so$$

$$F_{t} = mv \frac{dv}{rd\theta}$$

$$F_{t} = mv \frac{dv}{rd\theta}$$

$$F_{t} = mv \frac{dv}{rd\theta}$$

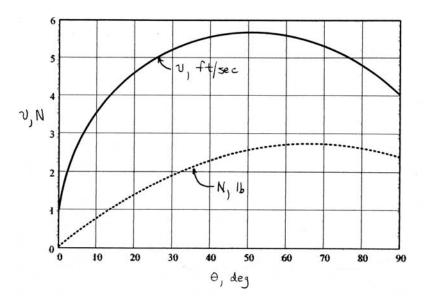
It is not possible to separate variables, so we numerically integrate to obtain v as a function of Θ .

$$\Sigma F_n = m \frac{\eta^2}{p}$$
: $N - mg \sin \theta = m \frac{\eta}{r}$
 $N = m \left[g \sin \theta + \frac{\eta^2}{r}\right]$

where v is available from the previously mentioned numerical integration. Plots of both v and N as functions of O are shown below. The maxima are

$$v_{\text{max}} = 5.69 \text{ ft/sec} \oplus \theta = 50.8^{\circ}$$

N max = 2.75 16 @ 8 = 66.2"



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.