Stability theory

Some systems are stable, while others are not. In this chapter, we'll investigate the effects of the equations of motion and the potential function on stability.

1 Definitions

1.1 Equilibrium points

Let's consider a system with a state x. This system is described by the evolution equations

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t). \tag{1.1}$$

Once an initial condition $\mathbf{x}^0 = \mathbf{x}(t_0)$ is specified, then the solution $\mathbf{x}(t)$ is uniquely determined.

A point \mathbf{x}^* is called an **equilibrium point** or a **singular point** if

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}^*, t) = \mathbf{0}. \tag{1.2}$$

In other words, if $\mathbf{x}^{0} = \mathbf{x}^{*}$, then the system state remains constant.

1.2 Definition of stability

Let's examine an equilibrium point \mathbf{x}^* . We want to know whether this point is **stable**. To find this out, we take an initial point \mathbf{x}^0 close to \mathbf{x}^* . With close, we mean that it is less than a distance δ away:

$$|\mathbf{x}^0 - \mathbf{x}^*| < \delta. \tag{1.3}$$

Now we examine the solution $\mathbf{x}(t)$. If it remains close to the equilibrium point \mathbf{x}^* , then the equilibrium point is called **stable**. With close, we again mean that it stays within a certain bound ε :

$$|\mathbf{x}(t) - \mathbf{x}^*| < \varepsilon. \tag{1.4}$$

(If there is no such ε , then the equilibrium point is called **unstable**.) We can examine the above difference more closely. We say the equilibrium point is **asymptotically stable** if this difference converges to zero:

$$\lim_{t \to \infty} |\mathbf{x}(t) - \mathbf{x}^*| = 0.$$
(1.5)

2 Examining matrices

2.1 Linear systems

We say that a system is linear, if we can write the evolution equations as

$$\dot{\mathbf{x}} = A(t)\mathbf{x}.\tag{2.1}$$

It directly follows that $\mathbf{x} = \mathbf{0}$ is an equilibrium point. Often, the matrix A does not depend on time. In this case, it is not very hard to determine the stability of the system. For this, we assume \mathbf{x} has a solution of the form

$$\mathbf{x}(t) = \sum \mathbf{c}_{\mathbf{i}} e^{\lambda_{\mathbf{i}} t}.$$
(2.2)

It follows that λ_i must be an **eigenvalue** of A, with \mathbf{c}_i the corresponding **eigenvector**. The real part of these eigenvalues determine the stability of the system. If $\operatorname{Re}(\lambda_i) \leq 0$, for all eigenvalues λ_i , then the system is **stable**. (If also $\operatorname{Re}(\lambda_i) < 0$, for all eigenvalues λ_i , then the system is **asymptotically stable**.) If there, however, is an eigenvalue with a real part bigger than zero (so $\operatorname{Re}(\lambda_i) > 0$), then the system is **unstable**.

2.2 Nonlinear systems

Of course not all systems are linear. And not all systems have $\mathbf{x} = \mathbf{0}$ as an equilibrium point either. Let's examine a nonlinear system of equations $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t)$ with equilibrium point \mathbf{x}^* . Now let's take an initial point \mathbf{x}^0 close to \mathbf{x}^* . The corresponding solution is $\mathbf{x}(t)$. We now define the **perturbation vector** $\eta(t)$ such that

$$\mathbf{x}(t) = \mathbf{x}^* + \eta(t). \tag{2.3}$$

Let's consider this perturbation $\eta(t)$. By applying a linearization about the equilibrium point, we can find that

$$\frac{d\eta}{dt} = DF(\mathbf{x}^*, t)\eta(t) + \mathbf{g}(\eta, \mathbf{x}^*, t).$$
(2.4)

In this equation, $\mathbf{g}(\eta, \mathbf{x}^*, t)$ is the part taking into account nonlinear terms. When examining stability, it is usually neglected. Also, $DF(\mathbf{x}^*, t)$ is the **derivative** of **F** at \mathbf{x}^* . It is a matrix with components

$$DF_{ij}(t) = \left. \frac{\partial F_i}{\partial x_j} \right|_{\mathbf{x}=\mathbf{x}^*}.$$
(2.5)

If the nonlinear system does not depend on time, then we have reduced our system to $\dot{\eta} = DF(\mathbf{x}^*)\eta$. The stability of the system thus depends on the eigenvalues of $DF(\mathbf{x}^*)$, just like in the previous paragraph.

3 Stability in Lagrangian systems

3.1 Stability and the potential function

Let's examine a Lagrangian system with generalized coordiantes q_i and a potential function $V(\mathbf{q}, \dot{\mathbf{q}}, t)$. The forces Q_i acting on the system are given by $Q_i = -\partial V/\partial q_i$. We have an **equilibrium configuration** \mathbf{q}^* if the forces acting on the system are zero. So, an equilibrium configuration must satisfy

$$\left. \frac{\partial V}{\partial q_i} \right|_{q_i = q_i^*} = 0 \quad \text{for all } i.$$
(3.1)

Now let's examine the stability of an equilibrium configuration \mathbf{q}^* . We give the system a small deviation from the equilibrium configuration. If all forces Q_i push the configuration back, then the system is **stable**. This is the case if

$$\left. \frac{\partial^2 V}{\partial q_i^2} \right|_{q_i = q_i^*} > 0 \quad \text{for all } i.$$
(3.2)

In other words, the potential function is at a **minimum**. If, however, we have $\partial^2 V/\partial q_i^2 < 0$ at $q_i = q_i^*$ for at least one *i*, then the system is **unstable**. (By the way, if $\partial^2 V/\partial q_i^2 < 0$ for all *i*, then the potential function *V* is at a **maximum**. If $\partial^2 V/\partial q_i^2 > 0$ for some *i*, and $\partial^2 V/\partial q_i^2 < 0$ for other *i*, then *V* has a **saddle point**. In both cases, the system is unstable.)

3.2 Stability and the Jacobi energy function

Now let's examine a Lagrangian system with a Jacobi energy function h. We know that $h = T_2 - T_0 + V =$ constant. In an equilibrium configuration, we have $\dot{q}_i = 0$ for all i. This means that also $T_2 = 0$, and thus $h = V - T_0 =$ constant. This trick also works the other way around. If $V - T_0$ is constant, and thus

$$\frac{\partial \left(V - T_0\right)}{\partial q_i}\Big|_{q_i = q_i^*} = 0 \tag{3.3}$$

for all i, then \mathbf{q}^* is an equilibrium configuration.

We can combine this rule with what we've seen in the previous paragraph. To do this, we define the **effective potential** $V_{eff} = V - T_0$. It follows that, if $\partial V_{eff} / \partial q_i = 0$, for all *i*, then we have an equilibrium configuration. This means that, if we use the effective potential, all the rules of the previous paragraph still hold.