Stability theory

Some systems are stable, while others are not. In this chapter, we’ll investigate the effects of the equations
of motion and the potential function on stability.

1 Definitions

1.1 Equilibrium points

Let’s consider a system with a state x. This system is described by the evolution equations
x =F(x,1). (1.1)
Once an initial condition x° = x(() is specified, then the solution x(t) is uniquely determined.
A point x* is called an equilibrium point or a singular point if
x=F(x",t) =0. (1.2)

In other words, if x® = x*, then the system state remains constant.

1.2 Definition of stability
Let’s examine an equilibrium point x*. We want to know whether this point is stable. To find this out,
we take an initial point x° close to x*. With close, we mean that it is less than a distance § away:

Ix® — x*| < 4. (1.3)

Now we examine the solution x(¢). If it remains close to the equilibrium point x*, then the equilibrium
point is called stable. With close, we again mean that it stays within a certain bound e:

x(t) — x*| < e. (1.4)

(If there is no such €, then the equilibrium point is called unstable.) We can examine the above difference
more closely. We say the equilibrium point is asymptotically stable if this difference converges to zero:

tlim |x(t) —x*| = 0. (1.5)

2 Examining matrices

2.1 Linear systems

We say that a system is linear, if we can write the evolution equations as
x = A(t)x. (2.1)

It directly follows that x = 0 is an equilibrium point. Often, the matrix A does not depend on time.
In this case, it is not very hard to determine the stability of the system. For this, we assume x has a

solution of the form
X(t) = Zciek’it. (22)

It follows that A\; must be an eigenvalue of A, with c; the corresponding eigenvector. The real part
of these eigenvalues determine the stability of the system. If Re(A;) < 0, for all eigenvalues A;, then the
system is stable. (If also Re();) < 0, for all eigenvalues \;, then the system is asymptotically stable.)
If there, however, is an eigenvalue with a real part bigger than zero (so Re()\;) > 0), then the system is
unstable.



2.2 Nonlinear systems

Of course not all systems are linear. And not all systems have x = 0 as an equilibrium point either. Let’s
examine a nonlinear system of equations x = F(x, t) with equilibrium point x*. Now let’s take an initial
point x? close to x*. The corresponding solution is x(¢). We now define the perturbation vector 7(t)
such that

x(t) = x* + n(t). (2.3)

Let’s consider this perturbation 7)(¢). By applying a linearization about the equilibrium point, we can

find that d
=L = DF(X, () + g(n.x" ). (2.4)

In this equation, g(n,x*,t) is the part taking into account nonlinear terms. When examining stability, it
is usually neglected. Also, DF(x*,t) is the derivative of F at x*. It is a matrix with components

_OF,

6mj x=x*

DFi;(t) (2.5)

If the nonlinear system does not depend on time, then we have reduced our system to 7 = DF(x*)n. The
stability of the system thus depends on the eigenvalues of DF'(x*), just like in the previous paragraph.

3 Stability in Lagrangian systems

3.1 Stability and the potential function

Let’s examine a Lagrangian system with generalized coordiantes ¢; and a potential function V(q, q,t).
The forces Q; acting on the system are given by Q; = —9V/9q;. We have an equilibrium configuration
q* if the forces acting on the system are zero. So, an equilibrium configuration must satisfy

oV
0q;

=0 for alls. (3.1)

:i=q;

Now let’s examine the stability of an equilibrium configuration q*. We give the system a small deviation
from the equilibrium configuration. If all forces @); push the configuration back, then the system is stable.
This is the case if e
\%
5 >0 for all . (3.2)
9¢; i=q;

(3

In other words, the potential function is at a minimum. If, however, we have 9*V/d¢? < 0 at ¢; = ¢}
for at least one 4, then the system is unstable. (By the way, if 92V /3q? < 0 for all i, then the potential
function V is at a maximum. If 92V/dq? > 0 for some i, and 9?V/dq? < 0 for other i, then V has a
saddle point. In both cases, the system is unstable.)

3.2 Stability and the Jacobi energy function

Now let’s examine a Lagrangian system with a Jacobi energy function h. We know that h = T, —Ty+V =
constant. In an equilibrium configuration, we have ¢; = 0 for all <. This means that also 75 = 0, and
thus h =V — Ty = constant. This trick also works the other way around. If V' — T} is constant, and thus

M =0 (3.3)

for all ¢, then q* is an equilibrium configuration.



We can combine this rule with what we’ve seen in the previous paragraph. To do this, we define the
effective potential V. ;s = V —Tj. It follows that, if 9V, s /0q; = 0, for all 4, then we have an equilibrium
configuration. This means that, if we use the effective potential, all the rules of the previous paragraph
still hold.



