
Stability theory

Some systems are stable, while others are not. In this chapter, we’ll investigate the effects of the equations
of motion and the potential function on stability.

1 Definitions

1.1 Equilibrium points

Let’s consider a system with a state x. This system is described by the evolution equations

ẋ = F(x, t). (1.1)

Once an initial condition x0 = x(t0) is specified, then the solution x(t) is uniquely determined.

A point x∗ is called an equilibrium point or a singular point if

ẋ = F(x∗, t) = 0. (1.2)

In other words, if x0 = x∗, then the system state remains constant.

1.2 Definition of stability

Let’s examine an equilibrium point x∗. We want to know whether this point is stable. To find this out,
we take an initial point x0 close to x∗. With close, we mean that it is less than a distance δ away:

|x0 − x∗| < δ. (1.3)

Now we examine the solution x(t). If it remains close to the equilibrium point x∗, then the equilibrium
point is called stable. With close, we again mean that it stays within a certain bound ε:

|x(t)− x∗| < ε. (1.4)

(If there is no such ε, then the equilibrium point is called unstable.) We can examine the above difference
more closely. We say the equilibrium point is asymptotically stable if this difference converges to zero:

lim
t→∞

|x(t)− x∗| = 0. (1.5)

2 Examining matrices

2.1 Linear systems

We say that a system is linear, if we can write the evolution equations as

ẋ = A(t)x. (2.1)

It directly follows that x = 0 is an equilibrium point. Often, the matrix A does not depend on time.
In this case, it is not very hard to determine the stability of the system. For this, we assume x has a
solution of the form

x(t) =
∑

cie
λit. (2.2)

It follows that λi must be an eigenvalue of A, with ci the corresponding eigenvector. The real part
of these eigenvalues determine the stability of the system. If Re(λi) ≤ 0, for all eigenvalues λi, then the
system is stable. (If also Re(λi) < 0, for all eigenvalues λi, then the system is asymptotically stable.)
If there, however, is an eigenvalue with a real part bigger than zero (so Re(λi) > 0), then the system is
unstable.
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2.2 Nonlinear systems

Of course not all systems are linear. And not all systems have x = 0 as an equilibrium point either. Let’s
examine a nonlinear system of equations ẋ = F(x, t) with equilibrium point x∗. Now let’s take an initial
point x0 close to x∗. The corresponding solution is x(t). We now define the perturbation vector η(t)
such that

x(t) = x∗ + η(t). (2.3)

Let’s consider this perturbation η(t). By applying a linearization about the equilibrium point, we can
find that

dη

dt
= DF (x∗, t)η(t) + g(η,x∗, t). (2.4)

In this equation, g(η,x∗, t) is the part taking into account nonlinear terms. When examining stability, it
is usually neglected. Also, DF (x∗, t) is the derivative of F at x∗. It is a matrix with components

DFij(t) =
∂Fi

∂xj

∣∣∣∣
x=x∗

. (2.5)

If the nonlinear system does not depend on time, then we have reduced our system to η̇ = DF (x∗)η. The
stability of the system thus depends on the eigenvalues of DF (x∗), just like in the previous paragraph.

3 Stability in Lagrangian systems

3.1 Stability and the potential function

Let’s examine a Lagrangian system with generalized coordiantes qi and a potential function V (q, q̇, t).
The forces Qi acting on the system are given by Qi = −∂V/∂qi. We have an equilibrium configuration
q∗ if the forces acting on the system are zero. So, an equilibrium configuration must satisfy

∂V

∂qi

∣∣∣∣
qi=q∗i

= 0 for all i. (3.1)

Now let’s examine the stability of an equilibrium configuration q∗. We give the system a small deviation
from the equilibrium configuration. If all forces Qi push the configuration back, then the system is stable.
This is the case if

∂2V

∂q2
i

∣∣∣∣
qi=q∗i

> 0 for all i. (3.2)

In other words, the potential function is at a minimum. If, however, we have ∂2V/∂q2
i < 0 at qi = q∗i

for at least one i, then the system is unstable. (By the way, if ∂2V/∂q2
i < 0 for all i, then the potential

function V is at a maximum. If ∂2V/∂q2
i > 0 for some i, and ∂2V/∂q2

i < 0 for other i, then V has a
saddle point. In both cases, the system is unstable.)

3.2 Stability and the Jacobi energy function

Now let’s examine a Lagrangian system with a Jacobi energy function h. We know that h = T2−T0+V =
constant. In an equilibrium configuration, we have q̇i = 0 for all i. This means that also T2 = 0, and
thus h = V −T0 = constant. This trick also works the other way around. If V −T0 is constant, and thus

∂ (V − T0)
∂qi

∣∣∣∣
qi=q∗i

= 0 (3.3)

for all i, then q∗ is an equilibrium configuration.
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We can combine this rule with what we’ve seen in the previous paragraph. To do this, we define the
effective potential Veff = V −T0. It follows that, if ∂Veff/∂qi = 0, for all i, then we have an equilibrium
configuration. This means that, if we use the effective potential, all the rules of the previous paragraph
still hold.
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