
Rigid bodies

Rigid bodies occur quite often in daily life. For that reason, it’s worth while examining them. What
relations apply to them? That’s what we’ll find out in this chapter.

1 Basic ideas of rigid bodies

1.1 The center of gravity

Previously, we have only examined particles. We will now examine rigid bodies. A rigid body is a
collection of particles. The distance between the particles does not change.

Let’s examine a rigid body. The position rC of the center of gravity (CG) is defined as

rC =
1
m

N∑
i=1

miri. (1.1)

In this equation, mi denotes the mass of a certain particle i and ri its position. Also, m =
∑N
i=1mi is

the total mass of the body. It can be shown that the acceleration aC = r̈C of the CG satisfies

maC =
N∑
i=1

Fi = FR. (1.2)

So, by using the resultant force FR, we can examine the translation of a body just as if it was just a
particle. Sadly, rotation isn’t so easy. And that is exactly the reason why this chapter is so long.

1.2 Rigid body kinematics

Let’s suppose we know the position rC of the CG, with respect to some inertial reference system FO.
The position rO of any point P on the body, with respect to FO, now satisfies

rO = rC + rrel. (1.3)

In this equation, rrel is the position of P with respect to the CG of the body. Let’s now use a coordinate
system with as origin the CG of the body. It also rotates in the same way the body rotates. Using the
basic concepts shown in the first chapter of this summary, we find that

vO = vC + ω × rrel, (1.4)

aO = aC + α× rrel + ω × (ω × rrel) . (1.5)

Note that, since the body is rigid, we must have vrel = arel = 0.

2 The inertia tensor

2.1 The definition of the inertia tensor

Let’s examine a body. The distribution of mass in this body is quite important. To quantify this, we use
the inertia tensor [IO] with respect to some point O. It is defined as

[IO] =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 =


∫

(y2 + z2) dm −
∫
xy dm −

∫
xz dm

−
∫
xy dm

∫
(x2 + z2) dm −

∫
yz dm

−
∫
xz dm −

∫
yz dm

∫
(x2 + y2) dm

 . (2.1)
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The diagonal terms are called the mass moments of inertia. The non-diagonal terms are known as
the products of inertia. By the way, in the above equation, all distance are measured with respect to
point O.

2.2 The Parallel Axis Theorem

Let’s suppose we know the value of Ixx or Ixy with respect to some axis, but want to know it with respect
to another axis. In that case, we can use the Parallel Axis Theorem. It states that

Ixx = IxxC
+m

(
d2
y + d2

z

)
and Ixy = IxyC

+mdxdy. (2.2)

In this equation, IxxC
and IxyC

indicate the moment/product of inertia with respect to the CG. Also,
the parameters d indicate the distance over which the axis is shifted. (You can apply the same trick for
the other moments/products of inertia as well. You then just have to adjust the subscripts.)

2.3 The moment of inertia with respect to a line

Sometimes, we want to find the moment of inertia Ill with respect to a line l. This moment of inertia is
now defined as

Ill =
∫
h2 dm, (2.3)

where h denotes the distance from the corresponding point to the line l. Let’s suppose that the line is
denoted by a unit vector ê. The moment of inertia with respect to the line l is then given by

Ill = êT [IO]ê. (2.4)

2.4 Principal axes

What happens to the inertia tensor, when we change the axes? In this case, also the inertia tensor changes.
We can change the axes such that the inertia tensor becomes a diagonal matrix. The corresponding axes
are called the principal axes. (The directions of the principal axes are equal to the directions of the
eigenvectors of the original inertia tensor.) We denote these axes by the subscripts 1, 2 and 3. We thus
have

[IO] =

I1 0 0
0 I2 0
0 0 I3

 . (2.5)

Getting rid of the nondiagonal components of the inertia tensor often comes in handy, as we will soon
see.

3 Euler’s equations of motion

3.1 Linear and angular momentum

We will now examine the linear and angular momentum of a body. We start with the linear momentum.
This is, in fact, quite easy. It can be shown that the linear momentum of the body p is given by p = mvc.
So, to find the linear momentum, we only have to consider the velocity of the CG of the body.

Now let’s find the angular momentum LO with respect to some point O. (Don’t confuse the angular
momentum L with the Lagrangian function L.) It can be shown that

LO = rC ×mvO +
∫

r× (ω × r) dm. (3.1)

2



(In the above equation, all the position vectors r are with respect to point O.) We usually pick O such
that the first term of this relation is zero. To accomplish this, we can do two things. We can pick a point
that is fixed in space, such that vO = 0. We can also pick the CG, implying that rC = 0. That leaves
us only with the right side. Using the inertia tensor, we can also rewrite the right side. We then remain
with

LO = [IO]ω. (3.2)

Remember that this equation only holds with respect to a fixed point, or with respect to the CG of the
body.

3.2 Equations of motion for a rigid body

We know that the resultant force FR effects the linear momentum of a body. Similarly, the resultant
moment N effects the angular momentum. It does this according to

NC =
∑

MCi
=
dLC

dt
, or NO =

∑
MOi

=
dLO

dt
, (3.3)

where O is a certain reference point. (Again, the above equation only holds if O is a fixed point, or O is
the CG.) Let’s examine the time derivative of the angular momentum. It is given by

dL
dt

=
d

dt
(Lxi + Lyj + Lzk) = L̇xi + L̇yj + L̇zk + ω × L. (3.4)

The last term in the above equation comes from the fact that the unit vectors may change too. We
can combine the above two equations with the knowledge that LO = [IO]ω. This will then give us the
equations of motion for a rotating rigid body. These equations will, however, be rather big. But we can
use a trick to make a lot of terms disappear out of these equations. We can use the principal axes of the
object. If we do that, it follows that

N1 = I1ω̇1 − (I2 − I3)ω2ω3, (3.5)
N2 = I2ω̇2 − (I3 − I1)ω3ω1, (3.6)
N3 = I3ω̇3 − (I1 − I2)ω1ω2. (3.7)

The above equations are known as Euler’s equations of motion. They only hold with respect to the
principal axes of the body.

3.3 Analyzing Euler’s equations of motion

We can derive some interesting facts from Euler’s equations of motion. First, we can see that the angular
acceleration ω̇ doesn’t only depend on the moment applied. It also depends on the rotation rates about
the other two principal axes. This is sometimes important to keep in mind.

We can also ask ourselves, when is a steady rotation possible, without any outside moments acting on
the system? (So when is ω̇1 = ω̇2 = ω̇3 = 0 possible, while also N1 = N2 = N3 = 0?) We can now see
that, to ensure a steady rotation, 2 out of the 3 terms ω1, ω2 and ω3 must be zero. In other words, a
steady rotation is only possible about one of the principal axes.

Now let’s assume that we’re trying to rotate our body about one of the principal axes. For example,
we try to rotate it about the third principal axis. In the real world, small perturbations are always
present. So although ω1 and ω2 are much smaller than ω3, they are not exactly zero. Sometimes, these
perturbations damp out. (The rotation is stable.) In other cases, these perturbations grow. (The rotation
is unstable.) It can be derived that the condition for instability is

I1 > I3 > I2, or I2 > I3 > I1. (3.8)
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A steady rotation is thus stable if it is performed about the principal axis with either the smallest or the
largest moment of inertia. It is unstable if it is performed about the principal axis with the moment of
inertia which is between the values of the other two.

4 Lagrange’s equations of motion

4.1 Kinetic energy

There is another way to analyze rotating bodies. We then have to make use of the kinetic energy of the
body. But how do we find the kinetic energy? We can do that, using the general equation

T =
1
2
mv2

O + vO · ω ×
∫

r dm+
1
2

∫
(ω × r) · (ω × r) dm. (4.1)

This equation works for any point O on the body. But it’s kind of a horrific equation. To simplify it, we
usually pick O such that the middle term disappears. Again, we can do this in two ways. Either O is
fixed (vO = 0) or O is the CG (the integral is zero). If we do the first (and thus have O fixed), then we
can rewrite the above equation to

T =
1
2
ωT [IO]ω. (4.2)

If, on the other hand, we choose point O to be the CG, then we have

T =
1
2
mv2

C +
1
2
ωT [IC ]ω. (4.3)

4.2 Euler angles

We have previously only looked at rotations, as seen from the rotating object itself. We haven’t examined
rotations from an inertial reference frame. When doing this, we need to know something about the
orientation of the body, with respect to the inertial reference frame. For this, Euler angles come in
handy. They allow us to express orientations.

Let’s suppose we start at an inertial coordinate system, having axes X, Y and Z. We want to transform
this to a coordinate system xyz, connected to a body. First, we rotate the inertial coordinate system
by an angle φ about the Z axis. The new X axis is known as the line of nodes ξ. Second, we rotate
the coordinate system about the line of nodes (the current X axis) by an angle θ. We do this to change
the Z axis into the z axis. Finally, we rotate the system by an angle ψ about the z axis. We have now
arrived at the xyz coordinate system.

Figure 1: Clarification of the meanings of precession, nutation and rotation.

The angular velocity ω of the body can be expressed in the Euler angles. To be more specific, it can be
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expressed as a function of the precession φ̇, the nutation θ̇ and the spin/rotation ψ̇, according toωxωy
ωz

 =

sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0

cos θ 0 1


φ̇θ̇
ψ̇

 . (4.4)

The precise meaning of the precession, the nutation and the rotation can be seen in figure 1

4.3 The equations of motion for a rotating object

We can also express the kinetic energy due to rotation as a function of the Euler angles. To do this, we
use Trot = 1

2ω
T [I]ω. Doing so, while using the principal axes, will give

Trot =
1
2

(
I1

(
φ̇ sin θ sinψ + θ̇ cosψ

)2

+ I2

(
φ̇ sin θ cosψ − θ̇ sinψ

)2

+ I3

(
φ̇ cos θ + ψ̇

)2
)
. (4.5)

We can now find the moments Qφ, Qθ and Qψ, by using Lagrange’s equations of motion. These equations
are

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi. (4.6)

In this equation, qi can be replaced by φ, θ or ψ. Qi then has to be replaced by the moment Qφ, Qθ or
Qψ, respectively.

4.4 Gyrodynamics

The equations of motion that we just derived are usually quite difficult to solve. But for some bodies,
like a gyroscope or a top, we can simplify them. We will now examine such a body. Let’s suppose that
we have a body with the I3 axis as an axis of symmetry. We thus have I1 = I2 = I and I3 = Is. It
follows that the kinetic energy, due to rotation, is given by

Trot =
1
2

(
I

(
φ̇2 sin2 θ + θ̇2

)
+ Is

(
φ̇ cos θ + ψ̇

)2
)
. (4.7)

It often also occurs that the potential function V does not depend on φ or ψ. Since L = T − V , also
the Lagrangian function L then does not depend on φ or ψ. This means that these two coordinates are
ignorable coordinates. We thus also have two integrals of motion, being

Cφ =
dL

dφ̇
= Iφ̇ sin2 θ + Is

(
φ̇ cos θ + ψ̇

)
cos θ and Cψ =

dL

dψ̇
= Is

(
φ̇ cos θ + ψ̇

)
. (4.8)

The second of these equations can also be written as Cψ = Isω3. In other words, the spin rate ω3 is
constant too. By using the above equations, we can derive the Routhian R and the energy E. They are

R = −1
2
Iθ̇2 +

(Cφ − Cψ cos θ)2

2I sin2 θ
+
C2
ψ

2Is
+ V (θ), (4.9)

E =
1
2
Iθ̇2 + Veff (θ), where Veff (θ) = V (θ) +

(Cφ − Cψ cos θ)2

2I sin2 θ
+
C2
ψ

2Is
. (4.10)
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4.5 Steady precession

Now let’s suppose we want to have a steady rotation, without nutation. We thus want to have θ constant.
This is equivalent to θ̇ = 0 or dVeff

dθ = 0. If we apply this, and perform a lot of mathematical rewriting,
we can find that

−Iφ̇2 sin θ cos θ + Isφ̇ω3 sin θ +
dV

dθ
= 0. (4.11)

From this equation, the precession rate φ̇ necessary to maintain equilibrium can be found. In fact, there
are two solutions. They are known as the slow and the fast precession.
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