
Lagrangian dynamics

Newton examined forces. From this, he derived accelerations and such. Lagrange did something different.
He examined energy, by using generalized coordinates. And that’s what we’ll do in this chapter as well.

1 System configurations and coordinates

1.1 Degrees of freedom

Let’s consider a particle in a three-dimensional space. We need three numbers to fully describe this
particle. We thus say that the particle has three degrees of freedom. On the other hand, a rigid body
has six degrees of freedom. (Three due to its position, and three due to its orientation.) For a general
system, the number of degrees of freedom is denoted by NDOF. We usually thus need NDOF numbers
(called coordinates) to describe the system.

1.2 System configurations

Describing the configuration of a system can be done in many ways. (We could use many kinds of
coordinate systems.) However, we want to be able to work with any description of the system. To
accomplish this, we define generalized coordinates qi. The collection of all possible sets of coordinates
(q1, q2, . . . , qn) is called the configuration space. By the way, the formulation of dynamics problems in
terms of generalized coordinates is known as Lagrangian dynamics.

1.3 Transforming coordinates

Once a problem is described in certain generalized coordiantes, it can also be described in other coordinate
systems. For this, we use coordinate transformations, like

qi = qi(x1, x2, . . . , xn, t) and similarly xi = xi(q1, q2, . . . , qn, t). (1.1)

The latter part of the above equation is known as the inverse transformation.

2 Generalizing energy, momentum and forces

We have generalized coordinates. It would be nice if we could generalize other parameters as well. That’s
what we’ll do in this part.

2.1 Kinetic energy

Let’s examine a system with generalized coordinates q = (q1, q2, . . . , qn). The generalized velocities
q̇i of the system are the time derivatives of the coordinates. In other words,

q̇i =
dqi

dt
. (2.1)

From the generalized velocities, the kinetic energy, in terms of the generalized coordinates, can be
derived. It can be shown that

T =
1
2

n∑
i=1

n∑
j=1

αij q̇iq̇j +
n∑

i=1

βiq̇i + γ = T2 + T1 + T0. (2.2)
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In this equation, T2 is the collection of terms with the αij coefficients, T1 with the βi coefficients and
T0 = γ. If the transformations from the generalized coordinates to the actual coordinates do not depend
on time, then T1 = T0 = 0. (This is the case if xi = xi(q1, q2, . . . , qn), or, equivalently, ∂xi/∂t = 0 for all
i.) In this case, we call the system a natural system.

Sadly, the above relation isn’t a very easy one. The coefficients αij , βj and γ depend on the system and
the way in which the generalized coordinates are defined. Finding them requires some skill and work.

2.2 The generalized momentum

The generalized momentum in qi direction pi can be derived from the kinetic energy. It is defined as

pi =
∂T

∂q̇i
. (2.3)

When calculating this partial derivative, all other variables (including the time t) remain fixed.

2.3 Generalized forces

Now let’s examine generalized forces Q. To do this, we examine work. We can remember that work
is force times displacement in the corresponding direction. We thus have

δW =
n∑

i=1

Fi δxi. (2.4)

By using the transformations to generalized coordinates, we can rewrite this to

δW =
n∑

i=1

 n∑
j=1

Fj
∂xj

∂qi

 δqi =
n∑

i=1

Qi δqi. (2.5)

In this equation, Qi is the generalized force in the direction of the coordinate qi. It is given by

Qi =
n∑

j=1

Fj
∂xj

∂qi
. (2.6)

It may be important to note that the amount of work performed does not depend on changes in time.

Let’s examine a force that is conservative in the real physical word. The corresponding potential function
is V . (We thus have F = −∇V .) In this case, it can be shown that the corresponding generalized force
is also conservative. In fact, we have

Qi = −∂V

∂qi
or, equivalently, Q = −∇V. (2.7)

Note that, to use this function, we first have to transform V . First, V was a function of the physical
coordinates. (So V = V (x1, x2, . . . , xn).) But, to use the above equation, V has to be a function of the
generalized coordinates. (Thus V = V (q1, q2, . . . , qn).)

3 The generalized equations of motion

3.1 Finding the generalized equations of motion

Newton once stated that F = mr̈ or, equivalently, F = ṗ. This relation doesn’t always work with gener-
alized forces. This is because, in generalized coordinates, force is not the time derivative of momentum.
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(So ṗ 6= Q.) Instead, we have

ṗ = Q +∇T, or, in components, ṗi = Qi +
∂T

∂qi
. (3.1)

We can also recall that ṗi = dpi

dt = d
dt

(
∂T
∂q̇i

)
. Putting things together gives

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi. (3.2)

This very important relation is known as Lagrange’s Equations of Motions. (It holds for every
coordinate qi.)

3.2 The Lagrangian function

In some cases, we can simplify Lagrange’s equations of motion. Let’s suppose that the force Qi acting
on the system is conservative. We thus have a conservative system. So there is a function V (q) such
that Qi = −∂V/∂qk. If this is the case, then

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (3.3)

where L(q, q̇, t) = T (q, q̇, t)− V (q) is known as the Lagrangian function.

Sometimes, however, we can’t find a potential function V (q) such that Qi = −∂V/∂qi. But, we may be
able to find a function V (q, q̇, t) such that

Qi =
d

dt

(
∂V

dq̇i

)
− ∂V

∂qi
. (3.4)

The function V (q, q̇, t) is then known as the generalized potential. If there is such a generalized
potential, then the system is called a Lagrangian system. And, if we again define L(q, q̇, t) =
T (q, q̇, t)− V (q, q̇, t), then equation (3.3) still holds.

3.3 Lagrangian systems

Energy is not always conserved in a Lagrangian system. However, there may be another quantity that is
conserved. We define the Jacobi energy function h as

h(q, q̇, t) = −L +
n∑

i=1

q̇i
∂L

∂q̇i
. (3.5)

It can now be shown that
dh

dt
= −∂L

∂t
. (3.6)

So, if L does not explicitly depend on the time t, then h is constant. It is thus conserved. If this is indeed
the case, then we have

h = T2 − T0 + V. (3.7)

For natural systems, we have T1 = T0 = 0 and thus h = T +V . In this case, the mechanical energy T +V
is thus conserved as well.
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3.4 Ignorable coordinates

Let’s consider a Lagrangian system with n degrees of freedom. We suppose that there are m generalized
coordinates qn−m+1, . . . , qn that do not appear in the Lagrangian L. These coordinates are called inactive
or ignorable coordinates. (We will soon see why.) For these coordinates, we have ∂L/∂qi = 0, where
n−m < i ≤ n. This implies that

d

dt

(
∂L

∂q̇i

)
= 0, or, equivalently,

∂L

∂q̇i
= Ci, (3.8)

where again n − m < i ≤ n. The above equation is known as an integral of motion (a quantity
that stays constant during the motion). The constant Ci is related to the momentum corresponding to
coordinate qi.

We use the above relation, when defining the Routhian function. The Routhian function R is defined
as

R = −L +
n∑

i=n−m+1

Ciq̇i. (3.9)

The ignorable coordinates do not appear in the Routhian function. Instead, the Routhian function
contains the constants Ci. By using the Routhian function, we can rewrite the equations of motion for
the nonignorable coordinates to

d

dt

(
∂R

∂q̇i

)
− ∂R

∂qi
= 0, (3.10)

where this time 1 ≤ i ≤ n−m. We now only have n−m equations of motion left. We therefore ‘ignore’
the equations of motion corresponding to the ignorable coordinates. Once the equations of motion have
been solved, the ignorable coordinates can be found using

q̇i =
∂R

∂Ci
or, equivalently, qi(t) =

∫ t

t0

∂R

∂Ci
dτ, (3.11)

where n−m < i ≤ n. By the way, we can also express the Jacobi energy function h as a function of R.
We then find that

h = R−
n−m∑
i=1

q̇i
∂R

∂q̇k
. (3.12)

3.5 Steady motion

A special type of motion is steady motion. In a steady motion, all the nonignorable coordinates are
constant. We thus have q̇i = q̈i = 0 for 1 ≤ i ≤ n−m. Because of this, the equations of motion reduce to

∂R

∂qi
= 0, (3.13)

for 1 ≤ i ≤ n−m. On the other hand, the ignorable coordinates have a constant velocity. We thus have
q̇i = vi = constant for n−m < i ≤ n.

3.6 Disippative systems

Let’s examine the forces Qi acting on a non-Lagrangian system. Part of these forces Qlagr
i can be derived

from a generalized potential function V (q, q̇, t), according to equation (3.4). However, another part can
not be derived from such a potential function.
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Examples of forces that can’t be derived from a potential are frictional forces. These forces can not be
connected to a potential, since energy is dissipated. In real (physical) coordinates, such forces are usually
described by functions like F fr

i = −ciẋi. (This relation holds for all i.) From this, we can derive that
the frictional generalized forces Qfr

i are given by

Qfr
i = −1

2
∂

∂q̇i

n∑
i=1

ciẋ
2
i = −∂D

∂q̇i
. (3.14)

The parameter D is known as Rayleigh’s Dissipation Function. It is defined as

D =
1
2

n∑
i=1

ciẋ
2
i . (3.15)

By using this function, we can rewrite the equations of motion to

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+

∂D

∂q̇i
= Q∗

i . (3.16)

In this equation, Q∗
i denotes the part of the force Qi that is not derivable from a potential function or a

dissipation function.

4 Constraints

4.1 Holonomic constraints

Systems can have certain constraints. Constraints reduce the number of degrees of freedom. Let’s
examine a system normally having n degrees of freedom. If this system is given c constraints, then the
remaining number of degrees of freedom is NDOF = n− c.

There are many types of constraints. So-called holonomic constraints can be written as

f(q1, q2, . . . , qn) = constant or f(q1, q2, . . . , qn, t) = constant. (4.1)

If the constraint does not depend on time (as in the first relation), then the constraint is scleronomic.
Otherwise, it is rheonomic. We can put holonomic constraints in the so-called differential form. To
do this, we have to use the chain rule. We then find that

df =
∂f

∂q1
dq1 +

∂f

∂q2
dq2 + . . . +

∂f

∂qn
dqn +

∂f

∂t
dt = 0. (4.2)

4.2 Nonholonomic constraints

Some constraints can not be written in the form shown in equation (4.1). These constraints are known
as nonholonomic constraints. There are two important types of nonhomolic constraints. These are
inequalities and nonintegrable differential expressions. Their forms are, respectively,

g(q1, q2, . . . , qn, t) ≥ 0 and A1dq1 + A2dq2 + . . . + Andqn + A0dt = 0, (4.3)

where the differential expression (the one on the right) is nonintegrable. By the way, the coefficients Ai

don’t have to be constant. They can depend on time. Nonholonomic constraints are usually a bit more
difficult to deal with than holonomic constraints. Luckily, they appear less frequently too.
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4.3 Forces caused by constraints

Let’s examine a system. This system has a set of J constraints that can be written as

Aj · δq = Aj1 δq1 + Aj2 δq2 + . . . + Ajnδqn = 0, (4.4)

where the index j is between 1 and J . Let’s consider one of these constraints. This constraint demands
that the position of the system (in the configuration space) moves along a certain n−1-dimensional plane.
To keep the position of the system in this plane, a reacting constraint force Rj acts on the system.
The only effect/goal of this force is to keep the configuration of the system in the plane. It thus acts
perpendicular to the plane.

Now let’s examine a movement δq of the system. Due to the constraint, this movement δq must be
performed in the n− 1-dimensional plane. Since Aj · δq = 0, the vector Aj must be perpendicular to the
plane. This implies that Rj and Aj have the same direction. We can thus write Rj = λjAj, where the
Lagrange multiplier λj is (at the moment) an unknown number.

In the equations of motion, we need to take the reaction forces Rj into account. We thus rewrite these
equations to

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi +

J∑
j=1

Rji = Qi +
J∑

j=1

λjAji. (4.5)

We now have n + J equations, being n equations of motion, and J constraint equations. We also have
n + J unknowns, being the n coordinates qi and the J Lagrange multipliers λj . To find the unknowns,
all the equations have to be solved simultaneously.
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