
Calculus of variations

The calculus of variations has turned out to be a handy tool for solving dynamic problems. What is the
calculus of variations? And how can we apply it to dynamic problems? That’s what we’ll look at now.

1 The basic principles of calculus of variations

1.1 The definition of a functional

A function (like y(x)) takes one or more numbers as input. The output is also a number. A generalization
of a function is a functional. A functional (like I[y(x)]) takes one or more functions as input. The output
is again a number. A specific kind of functional is the integral functional. The general form of such a
functional is

I[y(x)] =
∫ x2

x1

F (x, y(x), y′(x)) dx. (1.1)

The integrand F is called the Lagrangian of the integral function. An example of such an integral
functional (for the so-called brachistochrone problem) is

I[y(x)] =
∫ x2

x1

√
1 + [y′(x)]

2√
2gy(x)

dx. (1.2)

An admissible function is a function y(x) that satisfies certain conditions. These conditions are usually
differentiability conditions (we, for example, want continuously differentiable functions) and boundary
conditions (we, for example, want to have y(x1) = y1 and y(x2) = y2). The full set of all admissible
functions is called the domain of the functional.

1.2 The variational problem

Let’s suppose we have a certain functional I[y(x)]. It then often occurs that we want to find the function
y(x) which minimizes or maximizes the functional I[y(x)]. This kind of problem is called a variational
problem. The resulting function y(x) is called an extremal.

Finding an extremum of a function is easy: you simply set the derivative to zero. But functionals don’t
really have a derivative. For that reason, we examine

I[y∗(x) + εη(x)] =
∫ x2

x1

F (x, y∗(x) + εη(x), y∗′(x) + εη′(x))dx, (1.3)

where y∗(x) is a certain admissible function. Also, the perturbation η(x) is an arbitrary function, such
that y∗(x) + εη(x) is still an admissible function. The term εη(x) is known as the variation. It is often
also written as δy∗(x), with δ being the variational operator. We then also write I[εη] = I[δy∗] = δI.

The above function now only depends on one variable, being ε. So, to find the extremum, we simply have
to find the derivative with respect to ε and set it to zero. This will give us

dI

dε
[y∗ + εη] =

∫ x2

x1

(
∂F

∂y
η +

∂F

∂y′ η
′
)

dx = 0. (1.4)

We can now apply integration by parts to rewrite the term ∂F
∂y′

dη
dx . The result will be

dI

dε
[y∗ + εη] =

∫ x2

x1

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
η dx +

∂F

∂y′ η

∣∣∣∣x2

x1

= 0. (1.5)

This is a rather interesting equation. From it, we can derive conditions which any extremal y(x) must
satisfy. We will examine these conditions in the upcoming paragraph.
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1.3 Extremum conditions

Let’s examine the last equation of the previous paragraph. It must hold for any function η(x). For this
reason, the part within brackets has to be zero for every x. In other words, we must have

∂F

∂y
− d

dx

(
∂F

∂y′

)
. (1.6)

This equation is known as the Euler-Lagrange equation for the functional I[y(x)]. It is the equation
we have to use to find the extremal y(x).

Now let’s look at the term ∂F
∂y′ η

∣∣∣x2

x1

. This term also has to be zero. However, it is a bit difficult to analyze.

This is because some problems have so-called essential boundary conditions (EBCs) y(x1) = y1 and
y(x2) = y2. We know that both y∗(x) and y∗(x) + εη(x) have to satisfy these conditions. (They are

both admissible functions.) This implies that η(x1) = η(x2) = 0. So, in this case, the term ∂F
∂y′ η

∣∣∣x2

x1

is

automatically zero. We can’t derive any conditions from it. (That is, other than the EBCs that were
already present.)

However, other problems only have one or zero EBCs. For example, let’s examine a problem having only
the EBC y(x1) = y1. We thus have η(x1) = 0. But we don’t necessarily have η(x2) = 0. In this case, we
therefore must have

∂F

∂y′

∣∣∣∣
x=x2

= 0. (1.7)

If we don’t have the EBC y(x1) = y1 as well, then we should also have

∂F

∂y′

∣∣∣∣
x=x1

= 0. (1.8)

The above two boundary conditions are called natural boundary conditions (NBCs). So we see that
every end always has a boundary condition. Sometimes an EBC has been specified. If this is not the
case, an NBC will automatically be present.

1.4 Generalizing the variational problem

We can make the variational problem a bit more general. We can, for example, examine a Lagrangian
function with several more input functions F (x, y1, . . . , yn, ẏ1, . . . , ẏn). In this case, the resulting Euler-
Lagrange equation will be

∂F

∂yi
− d

dx

(
∂F

∂y′
i

)
= 0, (1.9)

for every i from 1 to n. We thus have n conditions, resulting in n (possibly coupled) differential equations.
Solving this set of equations is usually quite difficult.

Sometimes, we might also have to deal with a function y(x1, . . . , xn) of multiple variables. In this case,
the Lagrangian is F (x1, . . . , xn, y, yx1 , . . . , yxn

), where yxi
means the derivative ∂y

∂xi
. If we want to find

the extremal of the functional I[y], then we now have to use the condition

∂F

∂y
− ∂

∂x1

(
∂F

∂yx1

)
− ∂

∂x2

(
∂F

∂yx2

)
− . . .− ∂

∂xn

(
∂F

∂yxn

)
= 0. (1.10)

This time, we wind up with a partial differential equation. It’s usually rather hard to solve as well.

We could also have to deal with higher derivatives of a function y(x). In this case, the Lagrangian is given
by F (x, y, y′, y′′, . . . , y(n)), where y(i) stands for the ith derivative of the function y. The Euler-Lagrange

2



equation now becomes
∂F

∂y
+

n∑
i=1

(−1)i di

dxi

(
∂F

∂y(i)

)
= 0. (1.11)

We now have a higher-order differential equation. Again, solving it can be rather difficult.

Finally, it can also occur that multiple of the above cases occur simultaneously. In that case, you would
have to combine the above conditions. But we won’t go into detail on this.

2 Applying the calculus of variations

2.1 Hamilton’s principle

It is time to apply the calculus of variations to dynamic systems. For this, we use Hamilton’s principle.
It states that ∫ t2

t1

(δT + δW ) dt = 0. (2.1)

For conservative systems, we have δW = −δV . It now follows that the integral

I =
∫ t2

t1

(T − V ) dt. (2.2)

should be at an extremum. In fact, it has to be at a minimum. The above integral is called the action
of the system. We can rewrite T − V as L(q, q̇, t). In this case, it follows that we should have

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, (2.3)

for every i from 1 to n. So we see that, from Hamilton’s principle, and from the calculus of variations,
we have derived Lagrange’s equations of motion.

Sometimes, we don’t have a conservative system. In this case, the nonconservative forces Qnc
i also have

to be taken into account. Rewriting equation (2.1) gives∫ t2

t1

(
δT − δV +

n∑
i=1

Qnc
i δqi

)
dt =

∫ t2

t1

(
δL +

n∑
i=1

Qnc
i δqi

)
dt = 0. (2.4)

Using the calculus of variations in dynamic problems has a big advantage. This method also works
when there are an infinite amount of degrees of freedom. So, when examining continuous mechanical
systems, like a vibrating string or a bending bar, this method is most likely to be used.

2.2 The Ritz method

Let’s consider the variational problem

I[y(x)] =
∫ x2

x1

F (x, y(x), y′(x)) dx, with y(x1) = y1 and y(x2) = y2. (2.5)

The Ritz method is a method of finding an approximate solution ȳ(x) to this problem. To start, we
take n linearly independent known functions hi(x), called shape functions. (Deciding which functions
to take can be rather difficult. It is something that requires quite some experience. But often h1(x) =
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1, h2(x) = x, h3(x) = x2, . . . works quite well.) We then assume that our approximate solution can be
written as

ȳ(x) =
n∑

i=1

aihi(x). (2.6)

The unknown coefficients ai are called degrees of freedom. It’s our job to find them. To do this,
we insert the above relation into equation (2.5). This reduces the functional I[y(x)] to a function of n
variables, being

Φ(a1, a2, . . . , an) =
∫ x2

x1

F

(
x,

n∑
i=1

aihi(x),
n∑

i=1

aih
′
i(x)

)
dx. (2.7)

We can now also apply the boundary conditions ȳ(x1) = y1 and ȳ(x2) = y2. This further reduces the
function Φ to a function of n− 2 variables.

We want to find the extremums of Φ. To do this, we simply set ∂Φ
∂ai

= 0 for all remaining ai. This gives
us n − 2 equations and n − 2 unknowns. It can thus be solved, giving us all the coefficients ai. Once
these coefficients are known, also our approximate solution ȳ(x) is known. And it has turned out that
ȳ(x) is often a rather good approximation of the real solution.
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