Basic concepts

There are quite some advanced techniques in the Dynamics and Stability course. Before we're going to examine those, we need to make sure we have a good foundation. We will examine some basic concepts. You will have seen most of them before. So we'll go through them quickly.

1 Using coordinate systems

1.1 Coordinate systems

Kinematics is the study concerned with describing motion. To describe motion, we need to have **coordinate systems**. Examples are **normal**, **cylindrical** and **spherical** coordinate systems. In these coordinates systems, we denote the **position** of a particle by the vector **r**.

Every vector has components. We can, for example, write \mathbf{r} in the normal coordinate system as

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}.\tag{1.1}$$

Here, $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are **unit vectors**. (They per definition have length 1. This is also indicated by the hats.) x, y and z are the components. They are different in different coordinate systems. To transform vectors between coordinate systems, we use **transformation matrices** [T]. To transform a vector $\mathbf{r_1}$ in coordinate system 1 to the same vector $\mathbf{r_2}$ in coordinate system 2, we can use

$$\mathbf{r_2} = [T]_1^2 \mathbf{r_1}.\tag{1.2}$$

Transformation matrices are **orthogonal**. This implies that $[T]^{-1} = [T]^T$. The inverse equals the transpose.

1.2 Changing vectors

Next to the velocity, also the **velocity v** and the **acceleration a** are vectors. They satisfy

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}}.\tag{1.3}$$

We see that the time rate of change is important. Now let's examine a vector $\mathbf{r} = r\hat{\mathbf{e}}$, where $\hat{\mathbf{e}}$ is a unit vector in some coordinate system 1. We now examine \mathbf{r} from another coordinate system 2. Coordinate system 1 has a **rotation vector** ω with respect to system 2. The time derivative of \mathbf{r} is now given by

$$\dot{\mathbf{r}} = \dot{r}\hat{\mathbf{e}} + r\dot{\hat{\mathbf{e}}}.\tag{1.4}$$

It can be shown that $\dot{\mathbf{\hat{e}}} = \boldsymbol{\omega} \times \mathbf{\hat{e}}$. This implies that

$$\dot{\mathbf{r}} = \dot{r}\hat{\mathbf{e}} + r\left(\omega \times \hat{\mathbf{e}}\right). \tag{1.5}$$

1.3 Non-inertial reference frames

The basis of dynamics and stability are Newton's laws. But sadly, Newton's laws are not valid in a non-inertial reference frame. To find the differences, we examine a non-inertial reference frame F_B with origin B. We do this with respect to an inertial reference frame F_O with origin O. The position vector \mathbf{r} of a particle P can be expressed as

$$\mathbf{r}_{\mathbf{O}} = \mathbf{r}_{\mathbf{B}} + \mathbf{r}_{\mathbf{rel}}.\tag{1.6}$$

In this equation, $\mathbf{r}_{\mathbf{B}}$ is the position vector of B, with respect to O. Also, $\mathbf{r}_{\mathbf{rel}}$ is the position vector of P with respect to B. It is important to see that $\mathbf{r}_{\mathbf{O}}$ and $\mathbf{r}_{\mathbf{B}}$ are given with respect to F_O , while $\mathbf{r}_{\mathbf{rel}}$ is given with respect to F_B .

We can differentiate the above equation, with respect to time. However, as time changes, also the coordinate system of F_B changes. To take that into account, we have to use equation (1.5). It then follows that

$$\mathbf{v}_{\mathbf{O}} = \mathbf{v}_{\mathbf{B}} + (\omega \times \mathbf{r}_{\mathbf{rel}}) + \mathbf{v}_{\mathbf{rel}},\tag{1.7}$$

where ω is the rotational velocity of F_B with respect to F_O . Also, $\mathbf{v_{rel}}$ is the velocity of P, as seen from F_B .

We have now expressed the velocity of point P in F_O as a function of the velocity of point P in F_B . We can go even further. Differentiating again will give us the acceleration. Doing this, and working out the results, will give

$$\mathbf{a}_{\mathbf{O}} = \mathbf{a}_{\mathbf{B}} + \alpha \times \mathbf{r}_{\mathbf{rel}} + \omega \times (\omega \times \mathbf{r}_{\mathbf{rel}}) + 2(\omega \times \mathbf{v}_{\mathbf{rel}}) + \mathbf{a}_{\mathbf{rel}}.$$
 (1.8)

The vector $\mathbf{a_{rel}}$ is the acceleration of P as seen from F_B . Also, $\alpha = \dot{\omega}$ is the **angular acceleration** of F_B , with respect to F_O . The term $\omega \times (\omega \times \mathbf{r_{rel}})$ is known as the **centrifugal** acceleration. The term $2 (\omega \times \mathbf{v_{rel}})$ is called the **Coriolis acceleration**.

Now let's suppose a force **F** is acting on particle *P*. Newton's second law implies that $\mathbf{F} = m\mathbf{a}_{\mathbf{O}}$. This implies that

$$m\mathbf{a_{rel}} = \mathbf{F} - m\mathbf{a_B} - m\alpha \times \mathbf{r_{rel}} - m\omega \times (\omega \times \mathbf{r_{rel}}) - 2m(\omega \times \mathbf{v_{rel}}) = \mathbf{F} + \mathbf{F_{fict}}.$$
 (1.9)

Note that, in F_B , we do not have $\mathbf{F} = m\mathbf{a_{rel}}$. Newton's second law therefore does not hold in F_B . Instead, it appears as if some **fictitious force** $\mathbf{F_{fict}}$ is present. This fictitious force strangely effects the motion of the particle in point P. It is important to remember that $\mathbf{F_{fict}}$ is not a real force. It's only a force that appears to be present, if an observer forgets that he's in a non-inertial reference frame.

2 Momentum, work, energy and potential functions

2.1 Momentum

The **linear momentum p** of a particle is defined as

$$\mathbf{p} = m\mathbf{v},\tag{2.1}$$

where *m* is the mass of the particle. The time rate of change $\dot{\mathbf{p}}$ equals the **resultant force** $\sum \mathbf{F}$ acting on the particle. From this follows that

$$\mathbf{p_1} + \int_{t_1}^{t_2} \sum \mathbf{F} \, dt = \mathbf{p_2}. \tag{2.2}$$

The change in linear momentum $\mathbf{p}_2 - \mathbf{p}_1$ is called the **impulse**. The above equation is also known as the **Principle of Impulse and Momentum**.

In a similar way, we can define the **angular momentum L_O** of a particle about some point O as

$$\mathbf{L}_{\mathbf{O}} = \mathbf{r} \times \mathbf{p} = \mathbf{r} \times m\mathbf{v}. \tag{2.3}$$

The time rate of change $\dot{\mathbf{L}}_{\mathbf{O}}$ now equals the **resultant moment** $\sum \mathbf{r} \times \mathbf{F}$. This knowledge gives us the rotational version of the Principle of Impulse and Momentum. It is given by

$$\mathbf{L}_{1} + \int_{t_{1}}^{t_{2}} \sum \left(\mathbf{r} \times \mathbf{F} \right) \, dt = \mathbf{L}_{2}. \tag{2.4}$$

2.2 Work and energy

Let's examine a particle moving from position r_1 to position r_2 . The **work** done on the particle, by a force F, is given by

$$W_{1\to 2} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} \cdot d\mathbf{r}.$$
 (2.5)

It can be shown that $W_{1\to 2}$ also equals

$$W_{1\to 2} = T_2 - T_1 = \Delta T, \tag{2.6}$$

where $T = \frac{1}{2}mv^2$ is the **kinetic energy** of the particle. The above equation is also known as the **Principle of Work and Energy**.

A force **F** is **conservative** if $\nabla \times \mathbf{F} = \mathbf{0}$. In this case, there is a certain **potential function V** satisfying $\mathbf{F} = -\nabla V$. (The minus sign is present by convention.) V is also known as the **potential energy**. It can be determined up to a constant. The point where V = 0 is called the **datum**. Usually, first a datum is set. Then, from the datum, the arbitrary constant is derived.

Now let's again examine the work done by force \mathbf{F} . It can be shown that

$$W_{1\to 2} = -(V_2 - V_1) = -\Delta V.$$
(2.7)

So the work done by a conservative force is independent of the path of the particle. It only depends on the initial and final position. Now let's examine all the forces acting on a particle. The total work done $W_{1\rightarrow 2}$ can be split up into two parts: The work done by conservative forces W_{cons} and the work done by non-conservative forces W_{nc} . It follows that

$$W_{nc} = \Delta T + \Delta V, \tag{2.8}$$

where V is the potential function of the conservative forces. If there are no non-conservative forces, then $W_{nc} = 0$. In this case, we have

$$T_1 + V_1 = T_2 + V_2 = E, (2.9)$$

where E is the total (mechanical) energy of the particle. It is constant. The above statement is known as the Conservation of Energy relation.

2.3 Basic ideas of stability

For simplicity, let's reduce our problem to a one-dimensional problem. We can then rewrite the conservation of energy relation as

$$\frac{1}{2}mv^2 + V(x) = E.$$
(2.10)

So, given the total energy E, the magnitude of v only depends on the position x. This means that we can make a plot of v versus x. The resulting curves are called **phase curves**. If we plot multiple phase curves (for different values of E), then we get a **phase plane**, also known as a **phase portrait**.

We can examine a few interesting points in the phase portrait. A **turning point** is a point where the particle changes direction. At such points, we must have v = 0 for a brief moment. Similarly, an **equilibrium point** is a point where the resultant force is zero. In other words, $\mathbf{F} = -dV/dx = 0$. This means that, in an equilibrium point, the potential function V must be either at a minimum or at a maximum.

Whether an equilibrium point is a minimum or a maximum of V is, in fact, rather important. It determines whether the equilibrium point is stable. Let's suppose that we give the particle a small deviation from an equilibrium position. If the point is a minimum of V (and thus $d^2V/dx^2 > 0$), then the resulting force will point towards the equilibrium point. (The force is attractive.) The point will thus be **stable**. If, however, the point is a maximum of V (and thus $d^2V/dx^2 < 0$), then the resulting force will point away from the equilibrium point. (The force is repulsive.) The point is therefore **unstable**. We will later go more into depth on the stability of equilibrium points.