
Basic concepts

There are quite some advanced techniques in the Dynamics and Stability course. Before we’re going to
examine those, we need to make sure we have a good foundation. We will examine some basic concepts.
You will have seen most of them before. So we’ll go through them quickly.

1 Using coordinate systems

1.1 Coordinate systems

Kinematics is the study concerned with describing motion. To describe motion, we need to have
coordinate systems. Examples are normal, cylindrical and spherical coordinate systems. In these
coordinates systems, we denote the position of a particle by the vector r.

Every vector has components. We can, for example, write r in the normal coordinate system as

r = x̂i + ŷj + zk̂. (1.1)

Here, î, ĵ and k̂ are unit vectors. (They per definition have length 1. This is also indicated by the
hats.) x, y and z are the components. They are different in different coordinate systems. To transform
vectors between coordinate systems, we use transformation matrices [T ]. To transform a vector r1 in
coordinate system 1 to the same vector r2 in coordinate system 2, we can use

r2 = [T ]21r1. (1.2)

Transformation matrices are orthogonal. This implies that [T ]−1 = [T ]T . The inverse equals the
transpose.

1.2 Changing vectors

Next to the velocity, also the velocity v and the acceleration a are vectors. They satisfy

a = v̇ = r̈. (1.3)

We see that the time rate of change is important. Now let’s examine a vector r = rê, where ê is a unit
vector in some coordinate system 1. We now examine r from another coordinate system 2. Coordinate
system 1 has a rotation vector ω with respect to system 2. The time derivative of r is now given by

ṙ = ṙê + r ˙̂e. (1.4)

It can be shown that ˙̂e = ω × ê. This implies that

ṙ = ṙê + r (ω × ê) . (1.5)

1.3 Non-inertial reference frames

The basis of dynamics and stability are Newton’s laws. But sadly, Newton’s laws are not valid in a
non-inertial reference frame. To find the differences, we examine a non-inertial reference frame FB with
origin B. We do this with respect to an inertial reference frame FO with origin O. The position vector r
of a particle P can be expressed as

rO = rB + rrel. (1.6)
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In this equation, rB is the position vector of B, with respect to O. Also, rrel is the position vector of P
with respect to B. It is important to see that rO and rB are given with respect to FO, while rrel is given
with respect to FB .

We can differentiate the above equation, with respect to time. However, as time changes, also the
coordinate system of FB changes. To take that into account, we have to use equation (1.5). It then
follows that

vO = vB + (ω × rrel) + vrel, (1.7)

where ω is the rotational velocity of FB with respect to FO. Also, vrel is the velocity of P , as seen from
FB .

We have now expressed the velocity of point P in FO as a function of the velocity of point P in FB . We
can go even further. Differentiating again will give us the acceleration. Doing this, and working out the
results, will give

aO = aB + α× rrel + ω × (ω × rrel) + 2 (ω × vrel) + arel. (1.8)

The vector arel is the acceleration of P as seen from FB . Also, α = ω̇ is the angular acceleration of
FB , with respect to FO. The term ω × (ω × rrel) is known as the centrifugal acceleration. The term
2 (ω × vrel) is called the Coriolis acceleration.

Now let’s suppose a force F is acting on particle P . Newton’s second law implies that F = maO. This
implies that

marel = F−maB −mα× rrel −mω × (ω × rrel)− 2m (ω × vrel) = F + Ffict. (1.9)

Note that, in FB , we do not have F = marel. Newton’s second law therefore does not hold in FB . Instead,
it appears as if some fictitious force Ffict is present. This fictitious force strangely effects the motion
of the particle in point P . It is important to remember that Ffict is not a real force. It’s only a force
that appears to be present, if an observer forgets that he’s in a non-inertial reference frame.

2 Momentum, work, energy and potential functions

2.1 Momentum

The linear momentum p of a particle is defined as

p = mv, (2.1)

where m is the mass of the particle. The time rate of change ṗ equals the resultant force
∑

F acting
on the particle. From this follows that

p1 +
∫ t2

t1

∑
F dt = p2. (2.2)

The change in linear momentum p2 − p1 is called the impulse. The above equation is also known as
the Principle of Impulse and Momentum.

In a similar way, we can define the angular momentum LO of a particle about some point O as

LO = r× p = r×mv. (2.3)

The time rate of change L̇O now equals the resultant moment
∑

r× F. This knowledge gives us the
rotational version of the Principle of Impulse and Momentum. It is given by

L1 +
∫ t2

t1

∑
(r× F) dt = L2. (2.4)
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2.2 Work and energy

Let’s examine a particle moving from position r1 to position r2. The work done on the particle, by a
force F, is given by

W1→2 =
∫ r2

r1

F · dr. (2.5)

It can be shown that W1→2 also equals

W1→2 = T2 − T1 = ∆T, (2.6)

where T = 1
2mv2 is the kinetic energy of the particle. The above equation is also known as the

Principle of Work and Energy.

A force F is conservative if ∇×F = 0. In this case, there is a certain potential function V satisfying
F = −∇V . (The minus sign is present by convention.) V is also known as the potential energy. It can
be determined up to a constant. The point where V = 0 is called the datum. Usually, first a datum is
set. Then, from the datum, the arbitrary constant is derived.

Now let’s again examine the work done by force F. It can be shown that

W1→2 = −(V2 − V1) = −∆V. (2.7)

So the work done by a conservative force is independent of the path of the particle. It only depends on
the initial and final position. Now let’s examine all the forces acting on a particle. The total work done
W1→2 can be split up into two parts: The work done by conservative forces Wcons and the work done by
non-conservative forces Wnc. It follows that

Wnc = ∆T + ∆V, (2.8)

where V is the potential function of the conservative forces. If there are no non-conservative forces, then
Wnc = 0. In this case, we have

T1 + V1 = T2 + V2 = E, (2.9)

where E is the total (mechanical) energy of the particle. It is constant. The above statement is
known as the Conservation of Energy relation.

2.3 Basic ideas of stability

For simplicity, let’s reduce our problem to a one-dimensional problem. We can then rewrite the conser-
vation of energy relation as

1
2
mv2 + V (x) = E. (2.10)

So, given the total energy E, the magnitude of v only depends on the position x. This means that we
can make a plot of v versus x. The resulting curves are called phase curves. If we plot multiple phase
curves (for different values of E), then we get a phase plane, also known as a phase portrait.

We can examine a few interesting points in the phase portrait. A turning point is a point where
the particle changes direction. At such points, we must have v = 0 for a brief moment. Similarly, an
equilibrium point is a point where the resultant force is zero. In other words, F = −dV/dx = 0.
This means that, in an equilibrium point, the potential function V must be either at a minimum or at a
maximum.

Whether an equilibrium point is a minimum or a maximum of V is, in fact, rather important. It determines
whether the equilibrium point is stable. Let’s suppose that we give the particle a small deviation from
an equilibrium position. If the point is a minimum of V (and thus d2V/dx2 > 0), then the resulting force
will point towards the equilibrium point. (The force is attractive.) The point will thus be stable. If,
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however, the point is a maximum of V (and thus d2V/dx2 < 0), then the resulting force will point away
from the equilibrium point. (The force is repulsive.) The point is therefore unstable. We will later go
more into depth on the stability of equilibrium points.

4


