Stochastic control

In this chapter, we're going to examine how we can control a system using stochastic control. First, we
examine some basic principles of stochastic control. After that, we’ll look at an example of a field where
stochastic control theory can often be applied: statistical decision problems.

1 Basic principles of stochastic control

1.1 Information structures

Let’s examine the system

z(t+1) = Ax(t)+ Bu(t) + Mov(t), (1.1)
y(t) = Cux(t) + Du(t) + No(t). (1.2)

We can now use the input u(t) to control the system. To control the system, we need information.
But luckily, information is available. We say that, at every time ¢ € T, the o-algebra G; specifies the
available information. The family of all such o-algebras Gy, being {G;,t € T}, is called the information
structure.

There are different types of information structures. The type depends on which data is available.
e The past-output information structure is {Fty__l,t € T}. So, we have all previous outputs
available as data. (But the states x are not available.)

e The current output information structure is {Fy(t),t € T}. So, only the current output is
available.

e The past-state information structure is {Ff_, te T}. So, all previous states are available.

e The Markov information structure (also called the current state information structure)
is {F“f(t), te T}. So, only the current state is available.

1.2 Control laws

Based on the information structure, we can make a control law. A control law (also called control
policy) is a measurable mapping from the available data to the input space U. How the control law is
called depends on the information structure that is used. We will examine the most important control
laws now.

e The past-output control law uses the past-output information structure. So, for every t € T,
g¢ is a measurable map g; : Y* — U. This implies that we can also see g itself as a mapping
g:TxYt—=U.

e The output control law uses the current output information structure. So we now have g :
TxY —U.

e The past-state control law uses the past-state information structure. So now g : T'x X*+! — U.

e The Markov control law uses the Markov information structure. So now g : T'x X — U. We
denote the set of all possible Markov control laws by G ;.

e The stationary Markov control law also uses the Markov information structure. But now the
control law g does not depend on time. So, g: X — U.

Let’s suppose that we use a control law g. For example, we use the Markov control law. The resulting
control system parameters are then written with the superscript g. So, we have

2I(t+1) = Ax9(t) + Bul(t) + Mo(t), (1.3)

yI(t) = Cz9(t) + Du?(t) + No(t). (1.4)



In this equation, we have u9(t) = g(t,z9(t)). The above system representation is called a closed-loop
stochastic control system.

1.3 Control objectives

The question remains, which control law do we use? We usually choose a control law such that control
objectives are met. A control objective is a property of the closed-loop control system which we should
strive to attain. Examples of control objectives are

e Making the system stable.
e Suppressing noise.

e Optimizing a performance measure. For example, we might want to choose g such that a cost
function J is minimized. The cost function j can then have a form like

J=F

t=0

Zl (c1z(t) + @u(t))] : (1.5)

e Making the system robust. Robustness means that, even when deviations are applied in the model,
the system still has a satisfactory performance.

The stochastic control problem is now defined as the problem of finding a control law g such that
the control objectives are satisfied as well as possible. Solving this problem consists of two steps. First,
in control synthesis, possible control laws g need to be generated. Then, in control design, the best
of these control laws g needs to be chosen. In practice, this often means that the numerical parameters
of the control law need to be chosen.

2 Statistical decision problems

2.1 Statistical decision problems

Statistical decision problems are often good examples of stochastic control problems. Let’s suppose
that we have & money. We can invest this in 2 investment opportunities. (It works the same when there
are more investment opportunities.) The two investment opportunities return y; = r1zy and yo = roxs,
respectively, where r; and r, are random variables and x; and x5 are the amount of money invested in
r1 and 9, respectively. The total return which you get is thus ¥y = y1 + y2. The question now is how to
invest «. Which fraction u should we invest in r; and which fraction (1 — u) should we invest in ro?

To solve this problem, we need a utility function U(y). This utility function is a measure of how ‘happy’
you are with a return y. For most normal people, this is a concave function. (That is, d*U/dy* < 0.
Initially, people are very happy when they get more money. But, as people get richer, the extra happiness
decreases if they get more money.) Of course, y is a random variable as well. So, we need to select u
such that the expected utility E[U(y)] is maximized.

2.2 An example

Let’s demonstrate the above procedure with an example. Let’s say that opportunity 1 is a ‘sure’ invest-
ment opportunity: r; is always 1.5. On the other hand, opportunity 2 is a ‘risky’ investment opportunity:
there is a chance of 50% that ro = 3, but also a chance of 50% that ro = 1. We also define the utility
function as U(y) = 6y — y*>. We now have

Yy =1r121 + roxe = riux + ro(1 — u)x. (2.1)



We should thus maximize
ElUy))=F [6(r1um +7ro(1 —u)x) — (rquz +ra(l — u)x)ﬂ . (2.2)

Using the data given for r; and ro gives

1
E[U(y)] = = (6(1.5uz + (1 — u)z) — (1L.5uz + (1 — u)g[:)2)+5 (6(1.5uz + 3(1 — u)z) — (1.5uz + 3(1 — u)z)?) .
(2.3)
We can find the maximum of this equation by differentiating for u. This then shows that the maximum

occurs at u = 2/5.
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2.3 Risk

Risk plays an important role in statistical decision problems. We say that a decision makes with a utility
function U(y) is risk averse if E[U(y)] < U(Ey]). That is, he prefers the certain pay-off U(E[y]) above
the uncertain pay-off E[U(y)]. Similarly, the decision maker is risk preferring if E[U(y)] > U(E[y])
and risk neutral if E[U(y)] = U(E[y]).

We can also define the index of absolute risk aversion r(y). Assuming that U is twice differentiable,
it is defined as

U (y)
r(y) = — . 2.4
The index r(E[y]) is roughly proportional to the amount of money one would pay to avoid risks. Thus,
if r(E[y]) > 0, then the person would pay to avoid risks and is thus risk averse. Similarly, if »(E[y]) < 0,
the person would pay to have risks and is thus risk preferring.




