
Stochastic control

In this chapter, we’re going to examine how we can control a system using stochastic control. First, we
examine some basic principles of stochastic control. After that, we’ll look at an example of a field where
stochastic control theory can often be applied: statistical decision problems.

1 Basic principles of stochastic control

1.1 Information structures

Let’s examine the system

x(t + 1) = Ax(t) + Bu(t) + Mv(t), (1.1)
y(t) = Cx(t) + Du(t) + Nv(t). (1.2)

We can now use the input u(t) to control the system. To control the system, we need information.
But luckily, information is available. We say that, at every time t ∈ T , the σ-algebra Gt specifies the
available information. The family of all such σ-algebras Gt, being {Gt, t ∈ T}, is called the information
structure.

There are different types of information structures. The type depends on which data is available.

• The past-output information structure is
{
F y−

t−1, t ∈ T
}
. So, we have all previous outputs

available as data. (But the states x are not available.)
• The current output information structure is

{
F y(t), t ∈ T

}
. So, only the current output is

available.
• The past-state information structure is

{
F x−

t , t ∈ T
}
. So, all previous states are available.

• The Markov information structure (also called the current state information structure)
is

{
F x(t), t ∈ T

}
. So, only the current state is available.

1.2 Control laws

Based on the information structure, we can make a control law. A control law (also called control
policy) is a measurable mapping from the available data to the input space U . How the control law is
called depends on the information structure that is used. We will examine the most important control
laws now.

• The past-output control law uses the past-output information structure. So, for every t ∈ T ,
gt is a measurable map gt : Y t → U . This implies that we can also see g itself as a mapping
g : T × Y t → U .

• The output control law uses the current output information structure. So we now have g :
T × Y → U .

• The past-state control law uses the past-state information structure. So now g : T ×Xt+1 → U .
• The Markov control law uses the Markov information structure. So now g : T × X → U . We

denote the set of all possible Markov control laws by GM .
• The stationary Markov control law also uses the Markov information structure. But now the

control law g does not depend on time. So, g : X → U .

Let’s suppose that we use a control law g. For example, we use the Markov control law. The resulting
control system parameters are then written with the superscript g. So, we have

xg(t + 1) = Axg(t) + Bug(t) + Mv(t), (1.3)
yg(t) = Cxg(t) + Dug(t) + Nv(t). (1.4)
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In this equation, we have ug(t) = g(t, xg(t)). The above system representation is called a closed-loop
stochastic control system.

1.3 Control objectives

The question remains, which control law do we use? We usually choose a control law such that control
objectives are met. A control objective is a property of the closed-loop control system which we should
strive to attain. Examples of control objectives are

• Making the system stable.
• Suppressing noise.
• Optimizing a performance measure. For example, we might want to choose g such that a cost

function J is minimized. The cost function j can then have a form like

J = E

[
t1∑

t=0

(c1x(t) + c2u(t))

]
. (1.5)

• Making the system robust. Robustness means that, even when deviations are applied in the model,
the system still has a satisfactory performance.

The stochastic control problem is now defined as the problem of finding a control law g such that
the control objectives are satisfied as well as possible. Solving this problem consists of two steps. First,
in control synthesis, possible control laws g need to be generated. Then, in control design, the best
of these control laws g needs to be chosen. In practice, this often means that the numerical parameters
of the control law need to be chosen.

2 Statistical decision problems

2.1 Statistical decision problems

Statistical decision problems are often good examples of stochastic control problems. Let’s suppose
that we have x money. We can invest this in 2 investment opportunities. (It works the same when there
are more investment opportunities.) The two investment opportunities return y1 = r1x1 and y2 = r2x2,
respectively, where r1 and r2 are random variables and x1 and x2 are the amount of money invested in
r1 and r2, respectively. The total return which you get is thus y = y1 + y2. The question now is how to
invest x. Which fraction u should we invest in r1 and which fraction (1− u) should we invest in r2?

To solve this problem, we need a utility function U(y). This utility function is a measure of how ‘happy’
you are with a return y. For most normal people, this is a concave function. (That is, d2U/dy2 < 0.
Initially, people are very happy when they get more money. But, as people get richer, the extra happiness
decreases if they get more money.) Of course, y is a random variable as well. So, we need to select u
such that the expected utility E[U(y)] is maximized.

2.2 An example

Let’s demonstrate the above procedure with an example. Let’s say that opportunity 1 is a ‘sure’ invest-
ment opportunity: r1 is always 1.5. On the other hand, opportunity 2 is a ‘risky’ investment opportunity:
there is a chance of 50% that r2 = 3, but also a chance of 50% that r2 = 1. We also define the utility
function as U(y) = 6y − y2. We now have

y = r1x1 + r2x2 = r1ux + r2(1− u)x. (2.1)
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We should thus maximize

E[U(y)] = E
[
6(r1ux + r2(1− u)x)− (r1ux + r2(1− u)x)2

]
. (2.2)

Using the data given for r1 and r2 gives

E[U(y)] =
1
2

(
6(1.5ux + (1− u)x)− (1.5ux + (1− u)x)2

)
+

1
2

(
6(1.5ux + 3(1− u)x)− (1.5ux + 3(1− u)x)2

)
.

(2.3)
We can find the maximum of this equation by differentiating for u. This then shows that the maximum
occurs at u = 2/5.

2.3 Risk

Risk plays an important role in statistical decision problems. We say that a decision makes with a utility
function U(y) is risk averse if E[U(y)] < U(E[y]). That is, he prefers the certain pay-off U(E[y]) above
the uncertain pay-off E[U(y)]. Similarly, the decision maker is risk preferring if E[U(y)] > U(E[y])
and risk neutral if E[U(y)] = U(E[y]).

We can also define the index of absolute risk aversion r(y). Assuming that U is twice differentiable,
it is defined as

r(y) = −U ′′(y)
U ′(y)

. (2.4)

The index r(E[y]) is roughly proportional to the amount of money one would pay to avoid risks. Thus,
if r(E[y]) > 0, then the person would pay to avoid risks and is thus risk averse. Similarly, if r(E[y]) < 0,
the person would pay to have risks and is thus risk preferring.
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