
Properties of stochastic systems

Previously, we have seen how stochastic systems are defined. Now we look at what properties such
systems can have.

1 Properties of Gaussian system representations

1.1 Definitions

Gaussian system representations have several properties. But before we can examine these properties,
we need to make some definitions. First, we define the state transition function Φ : T × T → Rn×n,
associated with A(t), recursively as the function

Φ(t, s) =


A(t)Φ(t− 1, s) if s < t,

I if s = t,

0 if s < t.

(1.1)

For time-invariant systems, this can be reduced to

Φ(t, s) =

{
At−s if s ≤ t,

0 if s > t.
(1.2)

Second, we define the following notations.

F x+
t = σ ({x(s),∀s > t}) , (1.3)

F
x(t)
t = σ ({x(s),∀s = t}) = σ({x(t)}), (1.4)

F x
t = F x−

t = σ ({x(s),∀s ≤ t}) . (1.5)

So, whereas F
x(t)
t is the σ-algebra generated by x(t), F x

t is the σ-algebra generated by all x(s) with s ≤ t.

We also have definitions for Gaussian processes and Markov processes. We’ll examine them.

• A Gaussian process is a process x(t) (with t ∈ T ) such that all finite linear combinations of x(t)
is normally distributed as well. Thus, any variable z = c1x(t1) + . . . + cnx(tn) is Gaussian.

• A Markov process is a process that satisfies the Markov property. This property requires that,
given the current state x(t) of a system, the future does not depend on the past. In an equation,
this property/requirement can be written as

E
[
eiuT x(t+1)|F x(t)

t

]
= E

[
eiuT x(t+1)|F x

t

]
. (1.6)

In other words, the distribution of x(t + 1) depends on the distribution of x(t). Knowing the
distribution of x(s) for s < t doesn’t influence this in any way.

• A process which is both a Gaussian process and a Markov process is called a Gauss-Markov
process.

1.2 Properties

Let’s examine a Gaussian system representation without any input u(t). This system representation now
has several properties. We’ll list a couple.
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1. For all t ∈ T , the σ-algebras F v+
t and (F x

t ∪ F y
t−1) are independent. In other words, there is

absolutely no relation between v(s) for s > t and either x(s) for s ≤ t or y(s) for s ≤ t − 1. Of
course, there is a link between v(t) and y(t), just as there is a link between v(t) and x(t + 1).

2. Let’s suppose that we know the state x(s) at some time s ∈ T . We can then find the state x(t) and
the output y(t) at some time t ∈ T , using

x(t) = Φ(t, s)x(s) +
t−1∑
u=s

Φ(t− 1, u)M(u)v(u), (1.7)

y(t) = C(t)

(
Φ(t, s)x(s) +

t−1∑
u=s

Φ(t− 1, u)M(u)v(u)

)
+ N(t)v(t). (1.8)

3. The process (x, y) is a jointly Gaussian process.
4. The state process x(t) is a Gauss-Markov process with x(t) ∈ G(mx(t), Q(t)). Here, we have

mx(t + 1) = A(t)mx(t) with mx(t0) = m0, (1.9)
Q(t + 1) = A(t)Q(t)A(t)T + M(t)Qv(t)M(t)T with Q(t0) = Q0, (1.10)
Wx(t, s) = E

[
(x(t)−mx(t))(x(s)−mx(s))T

]
= Φ(t, s)Q(s) (for t ≥ s). (1.11)

5. The output process y(t) is a Gaussian process with y(t) ∈ G(my(t), Qy(t)). Now we have

my(t) = C(t)my(t), (1.12)
Qy(t) = C(t)Q(t)C(t)T + N(t)Qv(t)N(t)T , (1.13)

Wy(t, s) =

{
Qy(t) = C(t)Q(t)C(t)T + N(t)Qv(t)N(t)T if s = t,

C(t)Φ(t, s)Q(s)C(s)T + C(t)Φ(t− 1, s)M(s)Qv(s)N(s)T if s < t.
(1.14)

2 Properties of time-invariant system representations

2.1 The impulse response function

Let’s examine a time-invariant system without any noise. So, we have

x(t + 1) = Ax(t) + Bu(t) and y(t) = Cx(t) + Du(t), (2.1)

with x(t0) = x0. The state and the output of the system can now be determined using

x(t) = At−t0x0 +
t−1∑
s=t0

At−1−sBu(s) and y(t) = CAt−t0x0 +
t−1∑
s=t0

CAt−1−sBu(s) + Du(t). (2.2)

We can also define the impulse response function H(t) according to

H(t) =

{
D, if t = 0,

CAt−1B, if t = 1, 2, . . . .
(2.3)

Now, if x0 = 0, we have

y(t) =
t∑

s=t0

H(t− s)u(s). (2.4)
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2.2 Controllability

An important concept for systems is the concept of controllability. We say that a system is controllable
if there is a time t1 ∈ T such that from every initial state x0 ∈ X, any final state x(t1) = x1 ∈ X can
be reached. With ‘can be reached’, we mean that there is an input u such that, if x(t0) = x0, we have
x(t1) = x1.

So how do we check if a system is controllable? For that, we can examine the controllability matrix,
defined as

conmat(A,B) =
[
B AB A2B . . . An−1B

]
. (2.5)

The system is controllable if and only if this controllability matrix is of full rank (i.e. it has rank n). In
this case, we say that the pair of matrices (A,B) is a controllable pair. (The controllability only depends
on the system matrices A and B, and not on C or D.) For discrete systems, it can be shown that if the
system is controllable, then any state x1 can be reached within a time t1 for any t1 satisfying t1− t0 ≥ n.

Now let’s examine the case where (A,B) is not controllable. In this case, there is a state-space transforma-
tion S (with det S 6= 0) such that x̄(t) = Sx(t). With respect to this new basis, the system representation
takes the so-called Kalman controllability form

x̄(t + 1) =

[
A11 A12

0 A22

]
x̄(t) +

[
B1

0

]
u(t) and y(t) =

[
C1 C2

]
x̄(t) + Du(t). (2.6)

In the above equation, (A11, B1) is a controllable pair. So, we have split up the system into a fully
controllable part and a fully uncontrollable part.

2.3 Observability

A concept very similar to controllability is observability. Let’s say that we don’t know the state x(t) of
a system, but we do know the system matrices A, B, C and D. We say that the system is observable if
there is a time t1 such that, after t1, we can always uniquely determine the state x of the system.

To find whether a system is observable, we can examine the observability matrix, defined as

obsm(A,C) =



C

CA

CA2

...
CAn−1

 . (2.7)

The pair (A,C) is controllable if the above matrix is of full rank. If a discrete system is controllable,
then it can be shown that the state x can always be uniquely determined within a time t1 − t0 ≥ n.

Just like with controllability, we can split a system also up in an observable part and an unobservable
part. This time, we find that

x̄(t + 1) =

[
A11 0
A21 A22

]
x̄(t) +

[
B1

B2

]
u(t) and y(t) =

[
C1 0

]
x̄(t) + Du(t). (2.8)

Now, (A11, C1) is an observable pair.
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We can also split up a system in both controllable and observable parts. We then find that

x̄(t + 1) =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

 x̄(t) +


B1

B2

0
0

u(t), (2.9)

y(t) =
[
C1 0 C3 0

]
x̄(t) + Du(t). (2.10)

2.4 Stabilizability and detectability

The concepts of stabilizability and detectability are similar to controllability and observability, respec-
tively. To test on stabilizability (i.e. whether a pair (A,B) is stabilizable), we can split up the system
as in equation (2.6). If the noncontrollable part A22 is exponentially stable, then the pair (A,B) is
stabilizable. Otherwise it is not. (With exponentially stable, we mean that the set of eigenvalues of
A, denoted by spec(A), falls within the unit circle, denoted by Do. Thus, spec(A) ⊂ Do.)

Alternatively, also the Hautus test can be used. Examine the matrix[
(sI −A) B

]
. (2.11)

If the above matrix has rank n for all unstable eigenvalues λ ∈ spec(A), then the pair (A,B) is stabilizable.
Otherwise it is not.

The test for detectability is similar. The pair (A,C) is detectable if and only if the nonobservable
part A22 in equation (2.8) is stable. Alternatively, the Hautus test can again be used. Now examine the
matrix [

(sI −A)
C

]
. (2.12)

If the above matrix has rank n for all unstable eigenvalues λ ∈ spec(A), then the pair (A,B) is detectable.
Otherwise it is not.

2.5 Invariant measures

Let’s consider an exponentially stable time-invariant Gaussian system. So, the matrices A, B, C, D and
Qv are constant in time. It can now be shown that there is an invariant measure x(t) = G(0, Qx).
In other words, its distribution Qx is constant. The corresponding stationary output is denoted by
y(t) = G(0, Qy). The matrices Qx and Qy and also Qxy have to be found by solving

Qx = AQxAT + MQvMT , (2.13)
Qy = CQxCT + NQvNT , (2.14)

Qxy = AQxCT + MQvNT . (2.15)

The equation for Qx is known as the Lyapunov equation. If A is exponentially stable, then it always
has a unique solution Qx = QT

x ≥ 0. We’ll give the Lyapunov equation a closer look in a moment. But
first, we mention that the covariance functions are given by

Wx(t) = AtQx, (2.16)

Wy(t) =

{
CAt−1

(
AQxCT + MQvNT

)
if t > 0,

Qy if t = 0,
(2.17)

Wxy(t) = CAtQx. (2.18)
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Let’s suppose that we have some process x(t) which is not equal to the invariant measure. If the system
is exponentially stable, then it can be shown that x(t) will always converge to the invariant measure. So,
limt→∞Q(t) = Qx, with Qx the solution to the above equation.

2.6 The Lyapunov equation

The equation
Q = AQAT + MQvMT (2.19)

is known as the Lyapunov equation. It should be solved for Q. Mostly, numerical methods are
employed here, like the Matlab function dlyap. But this equation is also subject to a few theories. Let’s
suppose that there is some G satisfying GGT = MQvMT . If (A,G) is stabilizable and if there is some
Q = QT ≥ 0 satisfying the Lyapunov equation, then A is exponentially stable.

Next to this, consider the following three statements. When two of these statements hold, then the third
must hold as well. (Or equivalently, when one doesn’t hold, then at least one of the others doesn’t hold
either.)

• A is an exponentially stable matrix. (So, spec(A) ⊂ Do.)
• (A,G) is a reachable pair. (Reachable is another word for controllable.)
• Q is positive definite. (So, Q > 0.)
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