
Probability theory

In this summary, we will be examining a lot of stochastic systems. Stochastic systems deal with proba-
bilities. So, let’s dive into the probability theory first.

1 The probability distribution function

1.1 Definition of the probability distribution function

Very important in probability theory is the probability distribution function (PDF) f(u). This
function has as limits f(−∞ = 0) and f(∞) = 1. It also increases: if u < v, then f(u) ≤ f(v). Finally,
PDFs are also right continuous. To find out what this means, we examine some discontinuity v in the
graph of f(u). Now let’s approach this point v from the right. The value which we get is f(u+). Right
continuous functions now must have f(u) = f(u+).

We can make a distinction between continuous and discrete PDFs. Continuous PDFs usually have a
continuous shape: the value of f(u) more or less gradually increases from 0 to 1. For continuous PDFs
we also have

f(u) =
∫ u

−∞
p(v) dv, where f(∞) =

∫ ∞

−∞
p(v) dv = 1. (1.1)

In the above equation, p(u) is the probability density function.

Discrete PDFs are rather different. The graph of f(u) now takes the shape of a staircase. The points
where f(u) jumps up are denoted by un.

f(u) =
∑

un<u

p(n), where f(∞) =
∑

p(n) = 1. (1.2)

Now, p(n) is called the probability frequency function.

1.2 Examples of probability distribution functions

Several examples of PDFs exist. We’ll examine a few now. The Bernoulli distribution has a discrete
PDF. Given the parameter q (satisfying 0 ≤ q ≤ 1), the distribution is defined by

p(1) = q and p(0) = 1− q. (1.3)

The Poisson distribution is discrete as well. Given the parameter λ (satisfying λ ∈ R+), it is defined
by

p(k) = λk e−λ

k!
. (1.4)

In this equation, we must have k ∈ N = {0, 1, . . .}.
The gamma distribution is continuous. Its parameters are λ and r and satisfy λ, r ∈ R+. The
distribution is defined by

p(v) =
vr−1

λr

e−
v
λ

Γ(r)
, where Γ(r) :=

∫ ∞

0

vr−1e−v dv. (1.5)

The function Γ(r) is known as the gamma function. (By the way, the ‘:=’ means ‘is per definition’.)

However, the most important distribution is the Gaussian distribution, also known as the normal
distribution. This continuous distribution has as parameters a mean vector m and a variance matrix
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Q. m satisfies m ∈ Rn while Q satisfies both Q ∈ Rn×n and Q = QT > 0. (With Q > 0 we mean that
Q is strictly positive definite, which in turn demands that xtQx > 0 for all vectors x. This, in turn,
demands that all eigenvectors of Q are positive.) The distribution is now defined by

p(v1, v2, . . . , vn) =
1√

(2π)n det(Q)
e−

1
2 (v−m)T Q−1(v−m). (1.6)

But why is this distribution so important? Well, let’s suppose that we have a number of independent
distributions. If we add these distributions up and normalize them, then the central limit theorem
claims that the resulting distribution will converge to a Gaussian distribution. The more distributions
are added up, the close the result will be a to a Gaussian distribution. And since many phenomena in real
life are the result of sums of distributions, we can use the Gaussian distribution to approximate them.

2 Measurable spaces and probability spaces

2.1 σ-algebras

Let’s examine a set Ω. A σ-algebra F on Ω is a collection of subsets of Ω, satisfying three important
rules.

1. If the set A is in F (A ∈ F ), then the complement Ac is also in F (Ac ∈ F ). (In other words, F is
closed with respect to complementation.)

2. Let’s examine a set of sets {A1, A2, . . . , An} such that all Ai are in F . Now let’s take the union of
all these sets. This union must now also be in F . In an equation, we have A1 ∪A2 ∪ . . . ∪An ∈ F .

3. The set Ω is in F . (And thus, due to rule 1, also the empty set ∅ is in F .)

Examples of σ-algebras include {∅,Ω} and {∅, A, Ac,Ω} for every set A ∈ Ω.

A tuple (Ω, F ), consisting of a set Ω and a σ-algebra F on Ω, is called a measurable space. A σ-algebra
G on Ω consisting of subsets of the σ-algebra F (thus satisfying G ⊆ F ) is called a sub-σ-algebra.

2.2 Probability measures

Suppose we have a measurable space (Ω, F ). Let’s examine a function P : F → R+. (In other words,
the function P takes as input elements of F and as output it gives elements of R+.) Also examine any
disjoint set of sets {A1, A2, . . . , An} such that all Ai are in F . (With disjoint, we mean that Ai and Aj

(with i 6= j) have no elements in common: Ai ∩Aj = ∅.) We now say that P is σ-additive if

P (A1 ∪A2 ∪ . . . ∪An) =
n∑

i=1

P (An). (2.1)

If we also have that P (Ω) = 1, then we say that P is a probability measure. We also say that the
triple (Ω, F, P ) is a probability space. Such a probability space has several interesting properties.

1. P (∅) = 0.
2. If A1 ⊆ A2, then P (A1) ≤ P (A2).
3. P (A1 ∪A2 ∪ . . . ∪An) ≤

∑n
i=1 P (Ai) for any combination of sets A1, . . . , An.

4. For any A ∈ F , we have 0 ≤ P (A) ≤ 1.
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3 Random variables

3.1 What is a random variable?

Let’s suppose we have some experiment, but we don’t know its outcome x yet. We can then define x as a
random variable. If some event ωi occurs, x will have the value x(ωi), whereas if some other event ωj

occurs, x will have the value x(ωj). The events ωi are part of the event space Ω. x is thus a function
from Ω to R (x : Ω → R).

A rather basic example of a random variable is the indicator function. The indicator function IA(ω)
of a subset A ∈ Ω is defined as

IA(ω) =

{
1, if ω ∈ A

0, if ω /∈ A.
(3.1)

A simple random variable is a finite linear combination of indicator functions of measurable sets. In
other words, if we have a certain combination of sets A1, . . . , An ∈ F , then the random variable

x =
n∑

i=1

ciIAi
(3.2)

is a simple random variable.

3.2 PDFs and σ-algebras of a random variable

Every random variable x has a PDF fx(u) attached to it. Generally speaking, the PDF fx(u) is the
probability that x(ω) < u. If we combine this with our knowledge on probability spaces, we find that

f(u) = P ({ω ∈ Ω|x(ω) ≤ u}) = P (A) with A = {ω ∈ Ω|x(ω) ≤ u}. (3.3)

What does the above equation mean? Well, we first look at all events ω ∈ Ω for which x(ω) ≤ u. We
denote the set of all these events by A. The value of f(u) now equals the value of the probability measure
P (A).

Let’s examine a random variable defined on the measurable space (Ω, F ). We denote the set of all possible
values of x by X. We now say that x takes values in the measurable space (X, G). Here, the set G has a
relationship with F . In fact, for every set A ∈ G, we have

x−1(A) := {ω ∈ Ω|x(ω) ∈ A} ∈ F. (3.4)

We can now also define x−1(G), according to

x−1(G) := {x−1(A)|∀A ∈ G}. (3.5)

Note that we now must have x−1(G) ⊆ F . However, it is not necessarily true that x−1(G) = F . But it
can be shown that x−1(G) is a σ-algebra. We define this σ-algebra as F x := F (x) := x−1(G). We say
that F x is the σ-algebra generated by x.

3.3 The characteristic function

Consider a random variable x with PDF fx(u). The expectation E[x] of this random variable can now
be found using

E[x] =
∫ ∞

−∞
vpx(v) dv (for continuous) and E[x] =

∑
vnpx(vn) (for discrete). (3.6)
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The function E[.] is called the expectation function. We use it to define the characteristic function
cx : Rn → C of a random variable x, according to

cx(u) = E[eiuT x] =
∫ ∞

−∞
eiuvp(v) dv. (3.7)

In the above equation, i =
√
−1 denotes the complex variable. The characteristic function is quite

convenient. If you have it, you can find the corresponding PDF, and vice versa.

3.4 Gaussian random variables

Previously, we have seen the PDF of a Gaussian distribution. Any random variable x : Ω → Rn with
such a PDF is called a Gaussian random variable with parameters m and Q. This is denoted by
x ∈ G(m,Q). The characteristic function of x has the form

cx(u) = E[eiuT x] = eiuT m− 1
2 uT Qu. (3.8)

Let’s examine several Gaussian random variables x1, . . . , xn. We can put them together in a vector
xT = [xT

1 . . . xT
n ]. If the new random vector x is also Gaussian (thus satisfying x ∈ G(m,Q) for some

m,Q), then we say that x1, . . . , xn are jointly Gaussian.

Gaussian random variables have several nice properties. Let’s examine a few.

• Every linear combination y = Ax + b of a Gaussian random variable is also a Gaussian random
variable. In fact, if x ∈ G(m,Q), then y ∈ G(Am + b, AQAT ).

• Let’s examine two jointly Gaussian random variables x and y. We now have[
x

y

]
∈ G

([
mx

my

]
,

[
Qx Qxy

QT
xy Qy

])
, where Qxy = E

[
(x−mx)(y −my)T

]
= QT

yx. (3.9)

If Qxy = 0, then F x and F y are independent, and vice versa. In other words, when Gaussian
random variables are uncorrelated, they are also independent, and vice versa.

• Independent Gaussian random variables are always jointly Gaussian. (The converse is of course not
always true.)

• If y ∈ G(m,Q) and S = ST , then E[yT Sy] = tr(SQ) + mT Sm. (The function tr(.) is the trace of
the matrix: the sum of the diagonal elements.)

4 Conditional expectation

4.1 Properties of conditional expectation

Let’s examine a measurable space (Ω, F ). Also examine a sub-σ-algebra G of F . We now define the
conditional expectation of x given G, denoted by E[x|G], as the random variable E[x|G] that is both
G measurable and satisfies

E[xIA] = E[E[x|G]IA] (4.1)

for every set A ∈ G. By the way, the random variable E[x|G](ω) is G measurable if

{ω ∈ Ω|E[x|G](ω) ≤ r} ∈ G for all r ∈ R. (4.2)

There are several properties of the conditional expectation. We will examine a few.
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• Let’s examine two random variables x and y that are integrable. (This means that E[|x|] and E[|y|]
are finite.) Also suppose that we can write y as

y =
n∑

k=1

ckIAk
, (4.3)

where A1, . . . , An is a finite partition of Ω. (In other words, the sets A1, . . . , An are disjoint, but
their union equals Ω.) It can now be shown that

E[x|F y] =
n∑

k=1

dkIAk
where dk =

E[xIAk
]

E[IAk
]

. (4.4)

• Let’s examine two jointly Gaussian random variables x and y. Assume that Qy > 0. We now have

E[x|F y] = mx + QxyQ−1
y (y −my), (4.5)

E[(x−E[x|F y])(x−E[x|F y])T |F y] = E[(x−E[x|F y])(x−E[x|F y])T ] = Qx −QxyQ−1
y QT

xy, (4.6)

E[eiuT x|F y] = eiuT E[x|F y]− 1
2 uT Q̃u for all u ∈ Rn, (4.7)

E[eiuT E[x|F y]] = eiuT mx− 1
2 uT QxyQ−1

y QT
xyu for all u ∈ Rn. (4.8)

In the above equations, we have used the definition Q̃ := Qx −QxyQ−1
y QT

xy.
• Conditional expectation is linear. So,

E[c1x1 + x2x2|G] = c1E[x1|G] + c2E[x2|G]. (4.9)

• If x ≤ y for all ω ∈ Ω, then E[x|G] ≤ E[y|G].
• If y is G measurable, then E[y|G] = y.
• If G1 ⊆ G2, then E[x|G1] = E[E[x|G2]|G1]. In particular, if we set G1 = {∅,Ω} and simply write

G2 = G, then this reduces to E[E[x|G]] = E[x].
• If F x and G are independent sub-σ-algebras (with respect to P ), then E[x|G] = E[x]. Also, F x

and G are independent if and only if for all u ∈ R, we have E[eiuT x|G] = E[eiuT x].

4.2 Independence and conditional independence

Let’s consider two σ-algebras F1 and F2. We say that F1 and F2 are independent if E[x1x2] = E[x1]E[x2]
for all x1, x2 : Ω → R for which F1 and F2 are σ-algebras, respectively.

We can extend this idea to conditional expectations. We say that F1 and F2 are conditionally inde-
pendent, given a sub-σ-algebra G, if

E[x1x2|G] = E[x1|G]E[x2|G] (4.10)

for all x1, x2 with the same conditions as stated earlier. We generally denote this conditional indepen-
dence by (F1, F2|G) ∈ CI. Conditional independence has several properties. In fact, the following four
statements are equivalent:

(F1, F2|G) ∈ CI, (F2, F1|G) ∈ CI, (F1 ∨G, F2 ∨G|G) ∈ CI, (4.11)

E[x1|F2 ∨G] = E[x1|G] for all x1 with F1 as σ-algebra. (4.12)

Also, if F1 and (F2 ∨G) are independent, then also (F1, F2|G) ∈ CI.

We can ask ourselves, when are Gaussian random variables conditionally independent? Well, let’s consider
Gaussian random variables x, y1 and y2 with Qx > 0. It can be shown that (F y1 , F y2 |F x) ∈ CI if and
only if

Qy1y2 = Qy1xQ−1
x Qxy2 . (4.13)
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