
Kalman filters

Kalman filters are very good at finding the state x of a system. But what kinds of Kalman filters are
there? How do they work? And what are their properties? That’s what this chapter is about.

1 The time-varying Kalman filter

1.1 The Kalman filtering problem

Let’s suppose that we are observing some stochastic process y. Based on this process, we should estimate
another stochastic process z. In other words, we need to determine z(t) given F y

t−1. A special case of this
problem is the Kalman filtering problem. Now z (or x) equals the state of some system with output
y. In other words, given the system

x(t + 1) = A(t)x(t) + M(t)v(t), x(t0) = x0 ∈ G(m0, Q0)m (1.1)
y(t) = C(t)x(t) + N(t)v(t), v(t) ∈ G(0, Qv(t)), (1.2)

we need to determine the conditional distribution of x(t) given F y
t−1.

1.2 The time-varying Kalman filter

To solve this problem, we can use a time-varying Kalman filter. However, this only works if
N(t)Qv(t)N(t)T > 0. (If this is not the case, then we can split up the system. The condition then
holds for the first part of the system, while the second part is not affected by the noise.) In this case, the
distribution of x(t)|F y

t−1 is Gaussian and is specified by the characteristic function

E[exp(iwT x(t))|F y
t−1] = exp(iwT x̂(t)− 1

2
wT Qf (t)w), ∀w ∈ Rn. (1.3)

In the above equation, we call x̂ the conditional mean process and Qf the conditional variance
process.

But how do we find x̂ and Qf? For that, we can use the recursively defined equations

x̂(t + 1) = A(t)x̂(t) + K(t)[y(t)− C(t)x̂(t)], x̂(t0) = E[x0] = m0, (1.4)
H11(t) = A(t)Qf (t)A(t)T + M(t)Qv(t)M(t)T , (1.5)
H12(t) = A(t)Qf (t)C(t)T + M(t)Qv(t)N(t)T , (1.6)
H22(t) = C(t)Qf (t)C(t)T + N(t)Qv(t)N(t)T , (1.7)

K(t) = H12(t)H−1
22 (t), (1.8)

Qf (t + 1) = H11(t)−H12(t)H−1
22 (t)H12(t)T , Qf (t0) = Q0. (1.9)

If we use the above relations, then we have

x̂(t) = E[x(t)|F y
t−1] and Qf (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T |F y

t−1]. (1.10)

1.3 Related process

When applying the Kalman filter, we can define the innovation process v̄(t) as v̄(t) = y(t)−C(t)x̂(t).
Now v̄(t) is a Gaussian white noise process, with

v̄(t) ∈ G(0, Qv̄(t)), Qv̄(t) = H22(t) = C(t)Qf (t)C(t)T + N(t)Qv(t)N(t)T . (1.11)
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Given this white noise process, the output y(t) can be determined. In other words, we have F y
t = F v̄

t .

Next to this, the error process e(t) is defined as e(t) = x(t)− x̂(t). Its recursive equation is

e(t + 1) = (A(t)−K(t)C(t))e(t) + (M(t)−K(t)N(t))v(t). (1.12)

2 The time-invariant Kalman filter

2.1 The Filter algebraic Ricatti equation

Previously, we considered the case where the state space matrices depended on time. Now let’s assume
that A, C, M , N and Qv are constant in time. In this case, the time-varying Kalman filter may converge
to a time-invariant Kalman filter. To see when this happens, we first make some assumptions.

• Assume that NQvNT > 0.
• Define F and G such that

F = A−MQvNT (NQvNT )−1C, (2.1)
GGT = MQvMT −MQvNT (NQvNT )−1(MQvNT )T . (2.2)

Assume that (F,G) is a stabilizable pair.
• Assume that (A,C) is a detectable pair.

Let’s define the function f(Q) as

f(Qf ) = AQfAT +MQvMT −(AQfCT +MQvNT )(CQfCT +NQvNT )−1(AQfCT +MQvNT )T . (2.3)

The above assumptions now imply that there exists a unique solution Qf = QT
f ≥ 0 to the Filter

algebraic Riccati equation Qf = F (Qf ). This solution Qf is actually the limit limt→∞Qf (t) of the
time-varying Kalman filter. Also, if (F,G) is controllable as well, then we have Qf = QT

f > 0.

2.2 The time-invariant Kalman filter

Let’s define the matrices K(Qf ) and A(Qf ) as

K(Qf ) = (AQfCT + MQvNT )(CQfCT + NQvNT )−1, (2.4)
A(Qf ) = A−K(Qf )C. (2.5)

It can be shown that spec(A(Qf )) ⊂ D. The time-invariant Kalman filter is now given by

x̄(t + 1) = Ax̄(t) + K(y(t)− Cx̄(t)). (2.6)

It is important to note that we don’t denote this filter by x̂(t). This is because generally x̄ 6= E[x(t)|F y
t−1].

But if this is the case, then why would we use the time-invariant Kalman filter, and not the time-varying
Kalman filter.

The answer is that a filter with a time-varying matrix K (like the time-varying Kalman filter) is quite
complicated. A filter with a constant matrix K is a lot simpler. And it can be shown that the time-
invariant Kalman filter is better than any other filter with a constant matrix K. With ‘better’ we mean
that the variance of the error e(t) = x(t)− x̄(t) of the Kalman filter is always better (or just as good) as
any other filter.
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