
Basics of stochastic systems

Stochastic systems are systems with stochastic processes: there is uncertainty. How do we deal with this
uncertainty? That is what we will look at in this chapter. To be more precise, we’ll examine the basics
of stochastic systems. How are they defined and written down?

1 Stochastic processes

1.1 Definitions of stochastic processes

Consider a probability space (Ω, F, P ) and a measurable space (X, G). Also, we have an index set T .
This index set usually denotes time. So, t ∈ T with either T = N or T = Z. (The system is discrete
in time.) A stochastic process is a function x : Ω × T → X. In other words, for all t, the parameter
x(., t) is a random variable. It is sometimes also denoted as xt or x(t). On the other hand, the function
x(ω, .) : T → X (for fixed ω) is called a sample path of the process x.

A stochastic process x is called a Gaussian process if every subset of random variables (xt1 , xt2 , . . . , xtm
)

(with ti ∈ T ) is jointly Gaussian. Similarly, two stochastic processes x and y are called jointly Gaus-
sian if every subset of random variable (xt1 , . . . , xtm , ys1 , . . . , ysn) is jointly Gaussian. Two independent
Gaussian processes are always jointly Gaussian.

An example of a stochastic process is a Gaussian white noise process vt ∈ G(0, V (t)). So, it is a
Gaussian process with mean 0 and variance matrix V (t). Here, V (t) satisfies V (t) = V (t)T ≥ 0 for all t.
Furthermore, all vt are independent with respect to each other.

1.2 Properties of stochastic processes

Let’s consider a stochastic process x. We define the mean of the process as mx(t) = E[x(t)]. Similarly, we
have the joint moment function or correlation function Cx(t, s) = E[x(t)x(s)T ] and the covariance
function

Wx(t, s) = E[(x(t)−mx(t))(x(s)−mx(s))T ]. (1.1)

The covariance function has as property that that W (t, s) = W (s, t)T for all s, t ∈ T . Also, W is positive
definite (W ≥ 0). For a function W : T × T → Rn×n this means that, for every set t1, . . . , tm and
constant vectors c1, . . . , cm, we have

m∑
i=1

m∑
j=1

cT
i W (ti, tj)cj ≥ 0. (1.2)

Let’s examine a subset (xt1 , xt2 , . . . , xtm) with ti ∈ T . We time-shift this subset by a time s such that also
ti +s ∈ T . Now also consider the subset (xt1+s, xt2+s, . . . , xtm+s). We say that the process is stationary
if these two subsets have the same joint distribution for all subsets ti and all time-shifts s.

The concept of time-reversibility is defined similarly. Now examine the subsets (xt1 , xt2 , . . . , xtm
) and

(xt−t1 , xt−t2 , . . . , xt−tm
) for some time t ∈ T . We say that the process is time-reversible if these two

subsets have the same joint distribution for all subsets ti and times t. Also, it can be shown that a
time-reversible process is always time-invariant. The converse doesn’t always hold.

1.3 Properties of Gaussian stochastic processes

Let’s examine a Gaussian process x on the time index T = Z. It can be shown that x is stationary if
m(t) = m(0) for all t ∈ T and if W (t, s) = W (t + u, s + u) for all t, s, u ∈ T . If this is the case, then
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we can define a new covariance function W1(t) = W (t, 0) = W (t + s, s). In other words, the covariance
function only depends on one argument. This new function is para-symmetric: W (t) = W (−t)T for
all t ∈ T .

Let’s examine a stationary Gaussian process x with zero mean. This process is also time-reversible if
W (t) = W (−t) or, equivalently, W (t) = W (t)T . This also implies that a scalar stationary Gaussian
process is always time-reversible.

2 Representing stochastic systems

2.1 Modeling a stochastic system

Let’s examine a stochastic system. This system has an output y(t), an input u(t) and a noise v(t).
We can usually control the input u(t). However, the noise v(t) is uncontrollable. In fact, it is assumed
to be Gaussian white noise. So, v(t) ∈ G(0, Qv(t)). We can now model the system with an ARMAX
representation, being

y(t) =
n∑

i=1

aiy(t− i) +
n∑

i=0

biu(t− i− k) +
n∑

i=0

civ(t− i). (2.1)

In the above equation, k is the input delay and t ∈ T . Also, we generally have c0 = 1. Do note that,
since the noise v(t) is a stochastic process, also the output y(t) will be a stochastic process.

Working with the above representation has disadvantages. Luckily, it can be rewritten to the state space
representation of stochastic systems, also known as the Gaussian system representation. This is

x(t + 1) = A(t)x(t) + B(t)u(t) + M(t)v(t), (2.2)
y(t) = C(t)x(t) + D(t)u(t) + N(t)v(t). (2.3)

Here, the stochastic process x(t) is the state of the system. It is assumed that x0 = x(t0) ∈ G(m0, Q0)
is known.

Sometimes, we assume that the system is stationary/time invariant. This means that the matrices
A, B, M , C, D, N and Qv don’t depend on time. This significantly simplifies the system.

2.2 Interconnecting systems

Let’s consider figure 1. In this figure, three Gaussian systems are connected. There are the control system
(1), the input noise (2) and the output noise (3). These three systems can be modeled by

x1(t + 1) = A1x1(t) + B1u1(t), y1(t) = C1x1(t) + D1u1(t), (2.4)
x2(t + 1) = A2x2(t) + B2u2(t), y2(t) = C2x2(t) + D2u2(t), (2.5)
x3(t + 1) = A3x3(t) + B3u3(t), y3(t) = C3x3(t) + D3u3(t). (2.6)

Also note that u1(t) = u(t) + y2(t) and y(t) = y1(t) + y3(t). It may seem complicated to deal with this
system. But luckily, we can write the whole system in state space form as well. If we are to do this, we
first ought to define

x =

x1

x2

x3

 and v =

[
v2

v3

]
. (2.7)
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Figure 1: The interconnection of Gaussian systems.

Now, by using the equations above, it can be derived that

x(t + 1) =

A1 B1C3 0
0 A2 0
0 0 A3

x(t) +

B1

0
0

u(t) +

B1N2 0
M2 0
0 M3

 v(t), (2.8)

y(t) =
[
C1 D1C2 C3

]
x(t) + D1u(t) +

[
D1N2 N3

]
v(t). (2.9)

2.3 Stochastic systems in literature

In the literature, you often find a representation of the form

x(t + 1) = A(t)x(t) + M1(t)r(t), y(t) = C(t)x(t) + N1(t)w(t). (2.10)

Here, r(t) and w(t) are independent white noise processes. This is, however, only a special case of our
previous representation. In fact, we can put the above representation into our own form, using

v(t) =

[
r(t)
w(t)

]
, M(t) =

[
M1(t) 0

]
and N(t) =

[
0 N1(t)

]
. (2.11)

Our new noise signal is now given by

v(t) ∈ G

(
0,

[
Qr(t) 0

0 Qw(t)

])
. (2.12)

2.4 Forward and backward representation

Previously, we have considered systems in the forward representation. It was written as

x(t + 1) = Afx(t) + Mvf (t) and y(t) = Cf (t)x(t) + Nvf (t). (2.13)

Though, if it is clear that we are using the forward representation, the superscript f is not written. If we
have Q(t) = E[x(t)x(t)T ] > 0, then it can be shown that

Af (t) = E[x(t + 1)x(t)T ]Q(t)−1, (2.14)
Cf (t) = E[y(t)x(t)T ]Q(t)−1, (2.15)

Qf
v (t) =

[
Q(t + 1) E[x(t + 1)y(t)T ]

E[y(t)x(t + 1)T ] E[y(t)y(t)T ]

]
−

[
Af (t)
Cf (t)

]
Q(t)−1

[
Af (t)T Cf (t)T

]
. (2.16)
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We also have M = [In 0] and N = [0 Ip]. However, we could also use the backward representation of the
system. It is then written as

x(t− 1) = Abx(t) + Mvb(t) and y(t− 1) = Cb(t)x(t) + Nvb(t). (2.17)

This time, the system matrices satisfy

Ab(t) = E[x(t− 1)x(t)T ]Q(t)−1, (2.18)
Cb(t) = E[y(t− 1)x(t)T ]Q(t)−1, (2.19)

Qb
v(t) =

[
Q(t− 1) E[x(t− 1)y(t)T ]

E[y(t)x(t− 1)T ] E[y(t)y(t)T ]

]
−

[
Ab(t)
Cb(t)

]
Q(t)−1

[
Ab(t)T Cb(t)T

]
. (2.20)

Based on the above equations, we can also find the relation between te forward and the backward
representations. It is given by

Af (t)Q(t) = Q(t + 1)Ab(t + 1)T , (2.21)
Ab(t)Q(t) = Q(t− 1)Af (t− 1)T , (2.22)

Cf (t)Q(t) = Cb(t + 1)Q(t + 1)Ab(t + 1)T + NQb
v(t + 1)MT , (2.23)

Cb(t)Q(t) = Cf (t− 1)Q(t− 1)Af (t− 1)T + NQf
v (t− 1)MT . (2.24)

(2.25)

If the system is stationary and the matrices are thus constant in time, then the above equations can be
simplified somewhat.
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