The Laplace Transform

1 Laplace transform definitions

1.1 Improper integrals

The Laplace transform involves an integral from zero to infinity, which is a so-called improper inte-
gral. Such an integral is defined as

/OO F(t)dt = lim /A £(1) dt. (1.1)

A—oo

Such an integral can converge to a certain value or diverge.

1.2 Integral transforms

An integral transform is a relation of the form

B
F(s) = / K(s,1) f(t) dt, (12)

where K (s,t) is a given function, called the kernel of the transformation. This relation transforms the
function f into another function F', which is called the transform of f.

1.3 Laplace transform

One such integral transform is the Laplace transform, which is often useful for linear differential
equations. In this transform, K(s,t) = e %!, a = 0 and 3 = oo. So the Laplace transform, denoted by
L{f(t)} (even though the L is often written slightly different), is defined as

L{f(1)) = F(s) = / o (1.3)

Now suppose |f(t)| < Ke* for t > M for certain constants K, a and M, then the Laplace transformation
exists for s > a. An overview of Laplace transforms can be seen in table 1.

Function f(t) = L='{F(s)} | Laplace Transform F(s) = L{f(t)} | Range Notes

1 % 5>0

2 ol s> 0 | n = positive integer
et - s>a
sin at 5,24;#(12 s>0
cos at ﬁ s>0
sinh at e s> |al
coshat e 5> |al

Table 1: Laplace transforms of basic functions.




1.4 Linear operators

It can also be shown that the Laplace transform is a linear operator, meaning that for any constants
¢1 and ¢ and functions fi(¢) and fy(¢),

L{efi(t) +cafo(t)} = el L{f1(8)} + caL{fa(1) }- (1.4)

Using this theorem and table 1, it is possible to transform many functions quite easily.

Define L™1{F(s)} as the inverse transform of F(s), meaning that f(t) = L~*{L{f(t)}}. Then also
L~!is a linear operator. So this gives

L_l{chl(S) + CQFQ(S)} = ClL_l{Fl(S)} + CQL_l{FQ(S)} (15)

1.5 Laplace transform of derivatives

The Laplace transform of f/(¢) is related to the Laplace transform of f(¢) (if it exists), by the equation

L{f'(t)} = sL{f(t)} — £(0). (1.6)
If £(™ is the n’th derivative of f, then also
L{fM ()} = s"L{f(#)} = 5" F(0) = s"72f/(0) = ... = sf"72(0) = £71(0). (1.7)

2 Functions and operators

2.1 Unit step function

The unit step function, also called the Heaviside function, is denoted by u.(t). It is defined such
that u.(t) =0if t < c and u.(t) =1 for t > c.

(In other words, in an equation like u.(t) f(t), the function . "activates” the function f(¢) only for ¢t > ¢,
meaning for values of ¢ smaller than ¢, the function is just 0. To ”deactivate” the function f(t), the
function (1 — u(¢))f(¢) can be used.)

The Laplace transform of u., with range s > 0, is
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L{uct)} = . (2.1)
If F(s) = L{f(t)} and f(t) = L-*{F(s)}, then
L{ua®f(t -} = e “F(s) & ut)f(t—c) = L™ F(s)}. (2.2)
Analogous, it can be shown that
L f()} =F(s—c) & e f(t) =L {F(s )}, (2.3)

2.2 Delta function

The Dirac delta function §(¢) (also called the delta function or the unit impulse function) is
defined such that

d(t)=0"fort #0 and /oo d(t)dt = 1. (2.4)



The Laplace transform of this function is
L{5(t —tg)} = e~ "%, (2.5)

From this follows that L{5(¢t)} = ¢” = 1. And finally, the integral of the product of the delta function
and any continuous function f is

/_oo ot —to)f(t)dt = f(to)- (2.6)

2.3 The convolution integral
If F(s) = L{f(t)} and G(s) = L{g(t)} both exist for s > a > 0, then
H(s) = F(s)G(s) = L{h(t)}, s >a, (2.7)
where h(t) is
h(t) = /Ot ft—7)g(r)dr = /otf(T)g(t —7)dT. (2.8)

Note the difference between ¢ and 7. The function & is known as the convolution of f and g and the
integrals in the last equation are known as convolution integrals. It is conventional to write the above

equation as h(t) = (f * g)(t).
The * is more or less similar to a multiplication. The following rules apply.

frg=g=*], (2.9)

f*(g1+92) = fxg1+ f*g, (2.10)
(f*g)xh=fx(gxh), (2.11)
Fx0=0xf. (2.12)

However, in general f x 1 # f. Keep these rules in mind.

3 Solving differential equations

3.1 Solving a second order initial value problem

Suppose we have a differential equation of the form
ay” + by +cy = f(1), (3.1)

with a, b and ¢ constants. Taking the Laplace transform of both sides, and applying equations 1.4 and
1.7, gives

aL{y"} +bL{y'} +cL{y} = a(s’L{y} — sy(0) — ¢/ (0)) +b(sL{y} —y(0)) +cL{y} = L{f ()} = F(s). (3.2)
Solving this for L{y} = Y (s) gives

(as + b)y(0) + ay’(0) F(s)

Y =L = .
(s) (v} as?2 +bs+c as? 4+ bs+c

(3.3)

Now L{y} is known. To find f(t), we simply need to transform it back: f(t) = L='{L{y}}. But the
inverse Laplace transform is not always easy to find. This problem is known as the inversion problem
for the Laplace transform.



3.2 Inversion problem for the Laplace transform

To find L='{F(s)} for some function F(s), it’s wise to split F(s) up in pieces that occur in table 1, and
use equation 1.5 to inversely transform all the pieces. However, this splitting up in pieces often isn’t that
easy. Especially when fractions are present, this can be difficult. That’s why the following example shows
a method in which fractions can be split up.

From the differential equation y” + y = sin 2¢ follows

¥(s) = 253 + 52 +85+6
ECET

(3.4)

We want to split this fraction up in separate fractions, one with denominator s?> + 4 and the other with
denominator s% + 1, like

__o b a(s®+1)+b(s*+4)
Y(S)_52+4+52+1_ (s24+4)(s2+1) (3.5)

for certain a and b. From this we see that a(s? + 1) + b(s% +4) = 253 + s + 85 + 6. But, if @ and b are
just constants, there are no third powers of s on the left side of the equation. So let’s just suppose that
b = cs+ d. Now it’s easy to see that ¢ = 2. Working out the rest of the equation gives a = —2/3 and
d =5/3. So finally we have split up the fraction to

—2/3 2 5/3
Y(s) = . 3.6
() 52+4+52+1 s2+1 (36)
Using table 1 we can find
1
y:fgsin2t+2cost+gsint. (3.7)

3.3 Discontinuous forcing functions

If the nonhomogeneous term of the differential equation, also called the forcing term, is discontinuous,
solving the differential equation can be difficult. To illustrate how to solve such equations, we handle an
example. To solve the differential equation

y' Ay =ua(t)(t —4) —us(@)(t-8)  y(0)=0  y'(0)=0, (3.8)

we take the Laplace transform to find

e —e™

s2(s?2+4)

8s

Y(s) = (3.9)

It is now often wise to define H = m, such that Y (s) = (e7%* — e 8)H(s). If we define h(t) =
L=1{H(s)}, then taking the inverse Laplace transform, and using equation 2.2, gives

y(t) = ua(t)h(t — 4) — ug(t)h(t — 8). (3.10)
We only need to find h(t). Rewriting H(s) differently gives
11 1 2 o L1

which can be inserted in equation 3.10 to get the solution of our differential equation.



3.4 Using the convolution integral

Consider the differential equation
ay” + by +cy = g(t), (3.12)

where a, b and ¢ are constants. Let’s define L{g(t)} = G(s) and define ®(s) and ¥(s) as

(as + b)yo + ay; G(s)

P(s) = U(s) = ———. 1
() as®+bs+c () as® +bs+c (3:13)
By taking the Laplace transform of the differential equation, we find
Y(s)=®(s)+U(s) &  yt)=0ot)+v(), (3.14)
where ¢(t) = L™1{®(s)} and ¥ (t) = L=1{¥(s)}. It is convenient to write ¥(s) as
U(s) = H(s)G(s), (3.15)
where H(s) = m The function H(s) is known as the transfer function. Using the convolution
integral, we can solve for ¥(t):
¢
vlt) = L HHEGE) = [ A - nglr)dr, (3.16)
0

where h(t) = L™1{H(s)}. The function h(t) is called the impulse response of the system.



