
Sturm-Liouville Problems

1 Homogeneous Problems

1.1 Sturm-Liouville problems

In this chapter, we will be examining differential equations of the form

(p(x)y′)′ − q(x)y + λr(x)y = 0, (1.1)

where p(x), q(x) and r(x) are given functions. y is a function of x and y′ denotes the derivative with
respect to x. Let’s define the differential operator L to be

L[y] = − (p(x)y′)′ + q(x)y. (1.2)

We can now rewrite the differential equation to

L[y] = λr(x)y. (1.3)

By using L = 1 we can also rewrite the boundary conditions to

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0. (1.4)

Such types of problems are called Sturm-Liouville problems.

1.2 Lagrange’s identity

Lagrange’s identity is∫ 1

0

(L[u]v − uL[v]) dx = [−p(x) (u′(x)v(x)− u(x)v′(x))]10 . (1.5)

By using the boundary conditions of equation 1.4 we can show that the right side of this identity is 0,
and thus also ∫ 1

0

(L[u]v − uL[v]) dx = 0. (1.6)

Using the inner product, defined in the previous chapter, we can also write this as (L[u], v)−(u, L[v]) = 0.

1.3 Sturm-Liouville problem properties

Several things are known about Sturm-Liouville problems. It can be shown that all eigenvalues λ (for
which there are nontrivial solutions to the problem) are real. In fact, if we find two eigenvalues λ1 and
λ2 (with λ1 6= λ2) and corresponding eigenfunctions φ1 and φ2, then∫ 1

0

r(x)φ1(x)φ2(x)dx = 0. (1.7)

Also all eigenvalues are simple, meaning that each eigenvalue has only one eigenfunction (if you don’t
consider multiples of that eigenfunction). Furthermore, the eigenvalues can be ordered according to
increasing magnitude, such that λ1 < λ2 < . . . < λn < . . ., where λn →∞ as n→∞.
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1.4 Orthogonality

Equation 1.7 expresses the property of orthogonality of the eigenfunctions with respect to the weight
function r(x). The eigenfunctions are said to form an orthogonal set with respect to r(x).

Every eigenvalue has one corresponding eigenfunction. However, every multiple of this eigenfunction is
actually also an eigenfunction. So we can choose our eigenfunctions such that∫ 1

0

r(x)φ2
n(x)dx = 1. (1.8)

Eigenfunctions satisfying this condition are said to be normalized. Normalized eigenfunctions are said
to form an orthonormal set with respect to r(x).

1.5 Expressing a function as a sum of eigenfunctions

Suppose we have found all the normalized eigenfunctions φn of a Sturm-Liouville problem. Can we now
express a given function f(x) as a sum of these eigenfunctions? If so, then a solution f(x) could be
written as

f(x) =
∞∑

n=1

cnφn(x). (1.9)

The only trick is to find the coefficients. To find any coefficient cm, we can multiply the above equation
by r(x)φm(x) and then integrate from 0 to 1, like∫ 1

0

= r(x)φm(x)f(x)dx =
∞∑

n=1

cn

∫ 1

0

r(x)φm(x)φn(x)dx = cm, (1.10)

where we have used equation 1.7 in the last step. It follows that

cm =
∫ 1

0

r(x)φm(x)f(x)dx = (f(x), r(x)φm(x)). (1.11)

2 Nonhomogeneous Problems

2.1 Nonhomogeneous Sturm-Liouville problems

We have spend enough time on homogeneous problems. Now let’s turn our attention to the nonhomoge-
neous problems. These problems have the form

L[y] = − (p(x)y′)′ + q(x)y = µr(x)y + f(x), (2.1)

where µ is a given constant. Note the extra term f(x). Let the boundary conditions once more be

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0. (2.2)

To solve this problem, we first look at the homogeneous problem L[y] = λr(x)y with eigenvalues λ1, λ2, . . .
and corresponding eigenfunction φ1, φ2, . . .. We will assume that the solution y = φ(x) can be written as

φ(x) =
∞∑

n=1

bnφn(x). (2.3)
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However, this time we can not find the coefficients bn in the way we are used to. Instead, we can find
them with a small detour. First define the coefficients cn as

cn =
∫ 1

0

f(x)φn(x)dx. (2.4)

The coefficients bn can then be found using

bn =
cn

λn − µ
. (2.5)

If λn 6= µ for all n, then the solution will simply be equal to

y = φ(x) =
∞∑

n=1

cn

λn − µ
φn(x). (2.6)

However, if λn = µ for some n, then there is a problem. If cn 6= 0 (for the same n), then we are
dividing by zero. It can then be shown that the nonhomogeneous problem simply doesn’t have a solution.
However, if also cn = 0, then bn remains arbitrary. In this case there are infinitely many solutions to the
nonhomogeneous problem.

2.2 Nonhomogeneous heat conduction problems

The generalized heat conduction equation is given by

r(x)ut = (p(x)ux)x − q(x)u + F (x, t), (2.7)

with two boundary conditions and one initial condition, being

ux(0, t)− h1u(0, t) = 0, ux(1, t) + h2u(1, t) = 0, and u(x, 0) = f(x). (2.8)

We assume any solution will have the form

u(x, t) =
∞∑

n=1

bn(t)φn(x), (2.9)

where φn(x) are the eigenfunctions of the problem. To find the coefficients bn we need to do several steps.
First we need to find two intermediate coefficients Bn and γn(t), given by

Bn =
∫ 1

0

r(x)f(x)φn(x)dx, (2.10)

γn(t) =
∫ 1

0

F (x, t)φn(x)dx. (2.11)

Now the coefficient bn can be calculated using

bn(t) = Bn + e−λnt

∫ t

0

eλnsγn(s)ds. (2.12)

All the necessary coefficients are now known. The solution can be found by using the sum

u(x, t) =
∞∑

n=1

bn(t)φn(x). (2.13)
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