CHAPTER 11. ——

Chapter Eleven
Section 11.1

1. Since the right hand sides of the ODE and the boundary conditions are all zero, the
boundary value problem is homogeneous.

3. The right hand side of the ODE is nonzero. Therefore the boundary value problem is
nonhomogeneous.

6. The ODE can also be written as
g+ A1+ a)y = 0.

Although the second boundary condition has a more general form, the boundary value
problem is homogeneous.

7. First assume that A = 0. The general solution of the ODE is y(z) = ¢;x + ¢,. The
boundary condition at x = 0 requires that ¢, = 0. Imposing the second condition,

61(7'("}—1)—“02:0.

It follows that ¢; = ¢, = 0. Hence there are no nontrivial solutions.

Suppose that A = — 2. In this case, the general solution of the ODE is
y(x) = cicosh px + cysinh px .
The first boundary condition requires that ¢; = 0. Imposing the second condition,
¢i (cosh pm + psinh pm) + ¢y(sinh pm + pcosh pm) = 0.
The two boundary conditions result in
cy(tanh pm + p) = 0.

Since the only solution of the equation tanh um +p =0 1s p=0,wehavec, = 0.
Hence there are no nontrivial solutions.

Let A\ = p2, with > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cy8in px .
Imposing the boundary conditions, we obtain ¢, = 0 and
¢i (cos pm — psin pum) + cy(sin pm + peos pmw) = 0.
For a nontrivial solution of the ODE, we require that sin um 4+ pcos um = 0. Note that
cosum =0= sinur =0,

which is false. It follows that tan ym = — . From a plot of mtan 7w and — 7p,
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we find that there is a sequence of solutions, p, ~ 0.7876, u, ~ 1.6716,---; For large
values of n,

s
T oy R (2n—1)§.

Therefore the eigenfunctions are ¢, (x) = sin pu,z , with corresponding eigenvalues
A &~ 0.6204, A\, &~ 2.7943,--- .

Asymptotically,

8. With A = 0, the general solution of the ODE is y(x) = ¢,z + ¢, . Imposing the two
boundary conditions, ¢;, = 0 and 2¢; + ¢, = 0. It follows that ¢, = ¢, = 0. Hence
there are no nontrivial solutions.

Setting A = — w2, the general solution of the ODE is
y(x) = ¢jcosh ux + cysinh px .
The first boundary condition requires that ¢, = 0. Imposing the second condition,
i (cosh p+ psinh p) + cy(sinh p+ pcosh ) = 0.
The two boundary conditions result in
ci(14+ ptanhp) =0.
Since ptanh p > 0, it follows that ¢; = 0, and there are no nontrivial solutions.
Let A\ = p2, with > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cy8in px .

Imposing the boundary conditions, we obtain ¢, = 0 and
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¢i (cos pu — psin ) + cy(sin p+ pcosp) = 0.

For a nontrivial solution of the ODE, we require that cos u — psin = 0. First note
that

cosp=0=pu=0o0r sinpu=0.

Therefore we find that 1 — ptan pu = 0. From a plot of ptan u, there is a sequence of

144
124
104
8_
2 4 g 10

solutions, u; ~ 0.8603, uy ~ 3.4256,---; For large n,

pn = (n— 1),
Therefore the eigenfunctions are ¢, (x) = cos p,x , with corresponding eigenvalues
A~ 0.7402, A\, &~ 11.7349, --- .
Asymptotically,

A & (n—1)°72.

12. First note that P(z) =1, Q(z) = — 2z and R(z) = A. Based on Prob. 11, the
integrating factor is a solution of the ODE
p'(z) = — 22 p(z).

The differential equation is first order linear, with solution p(z) = cexp(— 2?). It then
follows that the Hermite equation can be written as

/ .
[e“”Qy'] +Ae P y=0.

14. For the Laguerre equation, P(z) = x,Q(z) =1 —x and R(xz) = \. Using the
result of Prob. 11, the integrating factor is a solution of the ODE

wp'(r) = —zp(z).

X

The general solution of p/(z) = — u(x) is p(x) = ce™*. Therefore the Laguerre

equation can be written as

page 722



CHAPTER 11. ——

[ze %y’ + Ne Py =0.

15. For the Chebyshev equation, P(z) =1 — 2%, Q(z) = — x and R(x) = o?. The
integrating factor is a solution of the ODE

(1—2?)p'(z) =z p(z).
The differential equation is separable, with
dn _ @
o 1—a2
The general solution of the resulting ODE is

() =

C
1—a?
Recall that the Chebyshev equation is typically defined for |z| < 1. Therefore it can also

be written as

012

V1— a2

/
[ 1—x2y']—|— y=20.

16. We consider solutions of the form u(x,t) = X (x)T'(t). Substitution into the PDE
results in

XT"+c¢XT' +kXT =o’X"T.
Dividing both sides of the equation by XI', we obtain

XT" | XT' L X'T
xT " SxT TP TY X7
that is,
TII T/ QX//
T e Ty Tk

Since both sides of the resulting equation are functions of different variables, each must
be
equal to a constant, say — A. Therefore we obtain two ordinary differential equations

X"+ AN=k)X=0 and T" +cT'+ T =0.

17(a). Setting y = s(z)u, we have y' = s'u+ su' and y” = s"u+ 2s'u’ + su”.
Substitution into the given ODE results in

s"u+2s'u" +su" —2(s'u+su')+ (1+N)su=0.
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Collecting the various terms,
su"+ (28" —2s)u’ +[s" — 25"+ (1 + \)sjJu=0.

The second term on the left vanishes as long as s’ = s.

(b). With s(x) = e”, the transformed differential equation can be written as
v + X =0.

Since the boundary conditions are homogeneous, we also have u(0) = u(1) = 0. It now

follows that the eigenfunctions are u,, = sin /A, , with corresponding eigenvalues
\, = n’r.

Therefore the eigenfunctions for the original problem are ¢, (z) = e*sin nmx, with
corresponding eigenvalues

14+ )\, =1+ n72
(c). The given equation is a second order constant coefficient differential equation. The

characteristic equation is

r—2r+(14X) =0,
withroots 7, =1+ — A .

If A = 0, then the general solution is y = c¢,e” + ¢, xe®. Imposing the two boundary
conditions, we find that ¢, = ¢, = 0, and hence there are no nontrivial solutions. If
A < 0, then the general solution is

Yy = clexp(l + Vv - A):c + czexp(l -V - /\)ZE.
It again follows that ¢, = ¢, = 0, and hence there are no nontrivial solutions.

Therefore A > 0, and the general solution is
y = cie’cos V/ Az + ¢, e”sin \/Xac )

Invoking the boundary conditions, we have ¢; = 0 and c,e sz’n\/x =0. Fora
nontrivial

solution, \/X =nr.

19. First write the differential equation as
y"+ 1+ Ny + Ay =0,

which is a second order constant coefficient differential equation. The characteristic
equation is
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4+ (1+Nr+A=0,
with roots 7, = — 1 and 7, = — A. For A # 1, the general solution is
y=ce " +ce V.

Imposing the boundary conditions, we require that ¢, + ¢, = 0 and c,e ™! + c,e™ = 0.
For a nontrivial solution, it follows that e=* = e, and hence A\ = 1, which is contrary
to the assumption.
If A =1, then the general solution is

y=ce " +cyre”.
The boundary conditions require that ¢; = 0 and c;e™ + ¢, e™! = 0. Hence there are

no nontrivial solutions.

21. Suppose that A = 0. In that case the general solution is y = ¢;x 4 ¢,. The
boundary
conditions require that ¢, + 2¢, = 0 and ¢, + ¢, = 0. We find that ¢, = ¢, = 0, and
hence there are no nontrivial solutions.
(a). Let A = p?, with u > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cy8in px .
The boundary conditions require that
2c; +pcy, =0 and cicosp+cpsinp = 0.
These equations have a nonzero solution only if
2stnp — peospu =0,
which can also be written as

2tanp —pu=0.

. 24 e 821

Based on the graph, the positive roots of the determinantal equation are
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™

py A= 4.2748 , py &~ 7.5965 ,--- ; for large n, u, =~ (2n + 1) 5

Therefore the eigenvalues are

27T2

A~ 18.2738, A\, &= 57.7075 -+ ; for large n, A\, =~ (2n + 1) T

(b). Setting A\ = — pu? < 0, the general solution of the ODE is
y(x) = c,cosh px + cysinh px .
Imposing the boundary conditions, we obtain the equations
2¢, + pcy, =0 and cicosh p+ cysinh = 0.
These equations have a nonzero solution only if
2sinh p — pcosh u=0.
The latter equation is satisfied only for 4 = 0 and p = +1.9150. Hence the only

negative eigenvalue is A_; = 3.6673.

24. Based on the physical problem, A = mw?/EI > 0. Let A\ = pu*. The characteristic
equation is r* — ' = 0, with roots r,, = & i, r; = — p and r, = . Hence the
general solution is

y(x) = cicosh px + cysinh px + 3008 px + ¢48in P .

(a). Simply supported on both ends : y(0) =y"(0) =0; y(L)=y"(L)=0.
Invoking the boundary conditions, we obtain the system of equations
¢, +c;=0
cg—c3=0
cicosh pL 4 cysinh pL + czcos pL + eysin pl = 0
ciplcosh pL + cyp’sinh pL — csp?cos pL — cyp’sinpL = 0.

The determinantal equation is
plsinh pL sin pL = 0.

The nonzero roots are p, = nrw/L, n=1,2,---. The first two equations result in
¢, = c3 = 0. The last two equations,

cysinhnm + cysinnm = 0
csinhnm —esinnm =0,

imply that ¢, = 0. Therefore the eigenfunctions are ¢,, = sin u,x , with corresponding
eigenvalues \, = nir?/L%.
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(b). Simply supported : y(0) =y”(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

c,+c;=0
c,—c;=0
cicosh pL + cysinh pL + czcos pL + cysin pl = 0
¢, psinh pL + ¢y pcosh p — c3 psin pul + ¢4 pcos pL = 0.

The determinantal equation is

2u3sinh pL cos pL — 2pdcosh pL sin pl = 0.

180
160
140
1204

det 1007

80
B0
407
20

0 =3 2
=204

Based on numerical analysis, u, =~ 3.9266/L and p, ~ 7.0686/L.

The first two equations result in ¢, = ¢; = 0. The last two equations,

cysinh pp L 4 cysin i, L = 0
¢y cosh p, L 4+ c,cos pup, L =0,

imply that
st oy L
Co = — —(——F—C4.
? sinh p, L !
Therefore the eigenfunctions are
n L ,
On = — S Hn Y ik, UnT + SIN
sinh p, L

with corresponding eigenvalues )\, = pu? .

(¢). Clamped : y(0) =y'(0) =0; free : y"(L)=y" (L) =0.
Invoking the boundary conditions, we obtain the system of equations
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c,+c;=0

peo 4+ pey =0

aip’cosh pL + cp’sinh pL — csp?cos pL — ey sin ul = 0
¢ pPsinh pL + ¢y pcosh puL + c; psin pL — ¢, pcos pL = 0.

The determinantal equation is

1+ coshuLcospul =0.

B0
det 407

201

02 04 0B 08 T—12 14 16 18§ 2
mul
-201

The first two nonzero roots are p, ~ 1.8751/L and p, ~ 4.6941/L. With¢; = — ¢,
and ¢, = — ¢, the system of equations reduce to

[}

ci(cosh p, L 4 cos p, L) + ¢o(sinh p, L + sin p, L) = 0
ci(sinh pn, L — sin p, L) + ¢y(cosh pp, L + cos p, L) = 0.

Let A, = (cosh p, L + cos u,L)/(sinh pu,L + sin u,L) . The eigenfunctions are
given by
On(x) = cosh ppx — cos ppx + Ay (sin ppx — sinh p,x),

with corresponding eigenvalues \, = p .

25(a). Assume that the solution has the form w(x,t) = X (z)7'(t). Substitution into
the
PDE results in

EX//T — XT "

p

Dividing both sides of the equation by XT', we obtain
EX"T  XT"
p XT — XT°

that is,
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X// p T//
XTET
Since both sides of the resulting equation are functions of different variables, each must

be
equal to a constant, say — A\. Therefore we obtain two ordinary differential equations

FE
X"+AXX =0 and T"+X=T=0.
P

(b). Given that u(0,t) = X(0)T'(t) fort > 0, it follows that X(0) = 0. The second
boundary condition can be expressed as

EAX'(L)T(t) + mX(L)T"(t) =0, ¢t>0.

From the result in Part (a),

EAX'(L)T(t) — Am%X(L)T(t) _0, t>0.

Since the condition is to be satisfied for all ¢ > 0, we arrive at the boundary condition

X'(L) - )\p—AX(L) =0.

(c). If A = 0, the general solution of the spatial equation is
X(x)=cx+c,.

The boundary condition require that ¢, = ¢, = 0. Hence there are no nontrivial
solutions.
If A = — u? < 0, then the general solution is

X (x) = ¢icosh px + cysinh px .

The first boundary condition implies that ¢, = 0. The second boundary condition
requires
that

cycosh pL + ¢, ,uﬁsinh uwl=0.
pA

The solution is nontrivial only if
A
ptanh pl = — P2 .
m

Since ptanh L > 0, there are no nontrivial solutions.

Let A = p? > 0. The general solution of the spatial equation is

X(z) = cicos px + cysin px .
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The first boundary condition implies that ¢, = 0. The second boundary condition
requires
that

¢y cos L — ¢, uﬁsin uL =10.
pA

For a nontrivial solution, it is necessary that

cos L — u%sinul) =0,
P

or
A
tan uL = il .
mp
For the case (m/pAL) = 0.5,
5.
44
3_
2_
1_
0 1' A RS B

we find that 4, L ~ 1.0769 and p,L ~ 3.6436 . Therefore the eigenfunctions are given
by ¢,(z) = sin p,x. The corresponding eigenvalues are solutions of

cosﬁnf:_g@smmho.

The first two eigenvalues are approximated as A\, ~ 1.1597/L? and \, ~ 13.276/L>.
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Section 11.2

2. Based on the boundary conditions, A > 0. The general solution of the ODE is

y(z) = crcosV/ Az + crsiny/ Az |

The boundary condition y’(0) = 0 requires that ¢, = 0. Imposing the second boundary

condition, we find that ¢,cosy/A = 0. So for a nontrivial solution, \/A = (2n — 1)7/2,
n =1,2,---. Therefore the eigenfunctions are given by

on(x) = kncosw .

In this problem, r(z) = 1, and the normalization condition is

T (@2n -z’
i [ [eos 22 e =1
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

2n —1
¢n(x):\/§cosw’ n:]_,z’...

3. Based on the boundary conditions, A > 0. For A = 0, the eigenfunction is

d)o(fﬁ) = ko.
Set ky = 1. With A > 0, the general solution of the ODE is

y(x) = 1005V Az + cysiny/ Az .

Invoking the boundary conditions, we require that ¢, = 0 and ¢, \A sinﬁ =0.
Since

A > 0, the eigenvalues are \,, = n?

7%, n =1,2,---, with corresponding eigenfunctions
¢n(x) = kycosnme.

The normalization condition is
1
ki/ cos’nmwr dr = 1.
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

do(z) =1, and ¢, (z) = V2cosnmz, n=1,2,

4. From Prob. 8 in Section 11.1, the eigenfunctions are ¢, (x) = k,cos \/ A\, x, in
which
cos\/ A\p — \/ Ap stny/ A, = 0. The normalization condition is
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1
k:?,/ cos*\/ A\, xdr =1,
0

First note that

/1"’052\/7”(11;: cos V/An sin v/ A+ An-
0

2v/ A\,

Based on the determinantal equation,

cos\/ Ap Sin\/An +/An 1+ sin® /A,
2v/\n B 2

3 —cos2\/ N\,

= f.

Therefore
4

3—0082\/)\771

and the normalized eigenfunctions are given by

2 _
kn_

2cos\/ A\, x

\/3—0032 n

6. As shown in Prob. 1, the normalized eigenfunctions are

2n—1
bn(z) = ﬂsmw, n=1,2--

¢71

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@na)do

_\/—/ @m— Yz

(2m - 1)
Therefore we obtain the formal expansion

m/ii 1 (2n-Dnzx

1=
T Zaop—1""T 2
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8. We consider the normalized eigenfunctions

(2n— 1)
(bn fSZTL n 9 n= 1727"'

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are
given by

1 cos T

T @m-)r

Therefore we obtain the formal expansion

(@) 2[ 3 {1 o2 1)7r]8m (2n — Drz

n=1 4 2

9. The normalized eigenfunctions are
2n —1
_ ﬁsmw, n=1,9

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@n@)ds

1/2 _
—\/_/ 2xsm dx—i—\/_/ '2m71da:

8 [ . mm mﬂ}

=  —— |StTN—— — COS—— | .
(2m — 1)*72 2 2

Therefore the formal expansion of the given function is

Sin

E ism7 —cos'y  (2n— 1)z
—~  (2n—1) 2 '

11. From Prob. 4, the normalized eigenfunctions are given by

2cos\/ A\, x
\/3—0082 An
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in which the eigenvalues satisfy cosy/ A, — v/ A, siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

en = /0 £(@) () dac
2

1
= T cos\/ Ay, xdx
\/3 — 082~/ A\, /0

ﬁ(QcosM—l)

Am O,

2

in which «,, = \/1 + sin?y\/ A, .

12. The normalized eigenfunctions are given by
2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cosy/ A, — v/ Ay siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

bn(z

1
Cm :/0 f(l')qu(.fE)dl'
2

1
= 1 —z)cos\/ A\, xdx
\/3—0082\/)\7,1 /0 (
\/5(1 — cos\/Am)

A O,
in which «,, = \/1 + sin?y\/ A, .

13. We consider the normalized eigenfunctions

3

2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cos\/\, — /A, siny/ A, = 0. The coefficients in the
eigenfunction expansion are given by

bn(z
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o = [ 1@on@s
2

1/2
/ cos v/ \, xdx
0

- \/3—0032 An

_ VEsin(y/R/2)

b
ATL a’IL

in which «,, = /1 + sin2\/\, .

15. The differential equation can be written as

[(1+2%)y] +y=0,
with p(z) = — 1 —2? and ¢(x) = 1. The boundary conditions are homogeneous and

separated. Hence the BVP is self-adjoint.

16. Since the boundary conditions are not separated, the inner product is computed:
Given u and v, sufficiently smooth and satisfying the boundary conditions,

(L[u],v) :/0 [u"v + uv]dz

1 1
:u’v‘ —/ [u'v" + uv]dx
0 Jo
1
= [u'v —uv'] ‘0 + (u, L[v)).

Based on the given boundary conditions,
uw' (Dv(1) —u'(0)v(0) = u(0)v(1) + 2u(1)v(0)
—u(1)v'(1) + u(0)v'(0) = — u(1)v(0) — 2u(0)v(1) .
Since

mw—quzummm—mmmm,

the BVP is not self-adjoint.
18. The differential equation can be written as
- [y/]/ = >\y )

with p(z) =1, ¢(z) =0, and r(z) = 1. The boundary conditions are homogeneous
and separated. Hence the BVP is self-adjoint.
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19. If a, = 0, then

u'(0)v(0) — u(0)v'(0) = 0.
If b, = 0, then u(1) = v(1) = 0 implies that
u'(1)v(1) —u(1)v'(1) = 0.

Furthermore,

Clearly, the results are also true if a, = b, = 0.

20. Suppose that ¢, (z) and ¢,(x) are linearly independent eigenfunctions associated
with an eigenvalue A. The Wronskian is given by

W1, 0:)(x) = d1(2)dy(x) — do() ¢y ().

Each of the eigenfunctions satisfies the boundary condition a,y(0) + a,y'(0) = 0. If
either a; = 0 or a, = 0, then clearly W (¢, ,¢,)(0) = 0. On the other hand, if a, is
not equal to zero, then

W(¢1 5 ¢2)(0) = ¢1(0)¢2/(0) - ¢2(0)¢1/(O)
— — L6,(0),(0) + Z—;¢2(0)¢1<0>

By Theorem 3.3.2, W(¢,,¢,)(x) =0 forall 0 < < 1. Based on Theorem 3.3.3,
¢1(z) and ¢,(x) must be linearly dependent. Hence A must be a simple eigenvalue.

22. We consider the operator
Lly) = — [p(x)y"] +a(z)y
on the interval 0 < x < 1, together with the boundary conditions
a,y(0) + ay’'(0) =0, biy(l) +by'(1) =0.

Let u =¢ + i1 and v =& + 9. Ifu and v both satisfy the boundary conditions, then
the real and imaginary parts also satisfy the same boundary conditions. Using the inner
product

(u,v) = /Olu(m)@(x)dx,
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(Llu],v) = / [~ [p(@)u] 7+ q(z)ut]do
:/{ z)(¢' + iy )]v+q uv}dm

= p(@)(@ + i) /{p (' + )0 + q(z)uv}da

Integrating by parts, again,

[ @6 + w5z = (0 + ]~ [ i) u}e.
Collecting the boundary terms,

P[0+ )T — (6 +i)0']|| = p(@)[(6' + )€~ in) — (& + i) (€'~ in)]]

The real part is given by
= p@)(¢'c — 6€") + (6'n — v,
= p@)l9'¢ — 9¢'|, + p()lw'n — ]|

p()[(8'€ + ') — (66" + vn)]|

Since ¢, ¢, £ and 7 satisfy the boundary conditions, it follows that

1
p(@)[(@'E+9"n) = ($€" +ym)]| =
Similarly, the imaginary part also vanishes. That is,

p(@)[($'E —vE') = (6'n— én’)] ; _

Therefore

The result follows from the fact that (w, L[v]) = (u, L[v]).

24. Based on the physical problem, A = P/EI > 0. Let A\ = p?. The characteristic
equation is 7* + p?r? = 0, with roots r,, = 0, r; = — ui and 7, = pi. Hence the
general solution is

y(z) = ¢1 + ¢y x + c3co8 px + c48in px .

page 737



CHAPTER 11. ——

(a). Simply supported on both ends : y(0) =y"(0) =0; y(L)=y"(L)=0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
C3 = 0
cscos pL +cysinpul =0
¢+ L+ cscos pL + cysinpl = 0.
The determinantal equation is
sinul = 0.
The nonzero roots are p, = nw/L, n=1,2,---. Therefore the eigenfunctions are

¢n = sin p,x , with corresponding eigenvalues )\, = n?7?/L?. Hence the smallest
eigenvalue is A\, = 72 /L2,

(b). Simply supported : y(0) = y”(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

c+ec;=0
C3 = O
¢y — czpsin L + cypicos pL = 0
¢, +cL+cscospul+cysinpl =0.
The determinantal equation is

uLcospul —sinpl =0.

It follows that the eigenfunctions are given by

On(z) = Sin\/)\_nx — (\/)\_nCOS\/)\_nL)EB,

and the eigenvalues satisfy the equation L+/ )\, cos /A, L — sin\/ A\, L =0.
The smallest eigenvalue is estimated as A, ~ (4.4934)%/L2.

(c). Clamped : y(0) =y’(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
Cy+ pcy, =0
¢, + L+ cycos pL + cysin pl =0
¢y — ¢z psin pL + ¢y pcos pL = 0.
The determinantal equation is

2 —2cospul = pLsinpl .

It follows that the eigenfunctions are given by
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On(x) =1 —cos\/ A\, z,

and the eigenvalues satisfy the equation 2 — 2cos \/ A\, L = \/ A\, Lsin\/\,L.
The smallest eigenvalue is \, = (27)> /L.

26. As shown is Prob. 25, the general solution is
y(z) = ¢ + ¢y + 3008 px + ¢ysin P .

Imposing the boundary conditions, we obtain the system of equations

C2:0
Cl+03:O
CQ+,LLC4:0

cscos pL 4+ cysinpl = 0.
For a nontrivial solution, it is necessary that
cospuL =0.
We find that ¢, = ¢, = 0, and hence the eigenfunctions are given by

On(x) =1 —cosv/ A,z

The corresponding eigenvalues are A, = (2n — 1)*72/4L%, n = 1,2,---. The smallest
eigenvalue is \, = 72 /4L>,
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Section 11.3

4. The eigensystem of the associated homogeneous problem is given in Prob. 11 of
Section 11.2. The normalized eigenfunctions are

\/5 cos\/ A\, x
1+ sin2\/\,
in which the eigenvalues satisfy cos\/ A, — v/ A, siny/ A, = 0. Rewrite the given

differential equation as — y” = 2y + = . Since u = 2 # A, , the formal solution of
the nonhomogeneous problem is

Pn(T) =

=Y

n=1

o = [ 1@

1
= L/ T cos\/ A\, zdx
\/1—|—sin2\//\_” 0

\/5(2 cos v/ A, — 1)
A/ 1+ sin2y/ N\,
Therefore we obtain the formal expansion

— 2608\/7—1)008\/733
; Mg = 2) (1 + sin2/N,)

in which

5. The solution follows that in Prob. 1, except that the coefficients are given by

= [ s@oaas

1/2
_f/ Q;L'sznnﬂ'xdaj—}—f 2—2:17 sinnrr dx

\/—sm n7r/2

n?m?

Therefore the formal solution is

_q Zsm (nm/2) sinnmx

— n?m?(n?n? — 2)
n=1
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6. The differential equation can be written as — y” = uy + f(x). Note that g(x) =0
and r(z) = 1. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are

¢n($) = ﬁsznw >

with associated eigenvalues \, = (2n — 1)°7%/4. Based on Theorem 11.3.1, the
formal solution is given by

y(z) = V2 i (/\nci 0 sin (@n—l)z

2 b
as long as u # A, . The coefficients in the series expansion are computed as

B ! . (2n—1)z
Cp = \/5/0 f(as)sm# dz.

7. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are
2n —1
On(x) = \/5003—( n 5 )z ,

with associated eigenvalues A, = (2n — 1)°72/4. Based on Theorem 11.3.1, the
formal solution is given by

y(w)=\/5§:

n=1

Cn Lo (2n —1)x
O‘n - N) 2 ’

as long as p # A, . The coefficients in the series expansion are computed as

! n—1)x
Cn = \/5/0 f(ac)cos% dz

9. The normalized eigenfunctions are

V2cos /A,
1+ sin2\/\,

The eigenvalues satisfy cos+/\, — /A, siny/ A, = 0. Based on Theorem 11.3.1, the
formal solution is given by

y(m)=\/§§: Cncos\/Anx ’

nzl()\n—,u,) 1+sin2\/)\n

as long as p # A\, . The coefficients in the series expansion are computed as

on(z) =
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)eos /A, x da .

Cp = V2 /1f(ac
\/1+ sin2y/X, 70

13. The differential equation can be written as — y” = w2y + cos 7z — a. Note that
p=m?and f(x) = cosmx — a. Furthermore, 1 = 7 is an eigenvalue corresponding

to the eigenfunction ¢,(z) = \/2sinmz. A solution exists only if f(z) and ¢, (z) are
orthogonal. Since

1
/ (cosmr —a)sinTxdr = — 2a/7,
0

there exists a solution as long as a = 0. In that case, the ODE is
y” + 7T2y = —CcOoSTI.

The complementary solution is y.(x) = ¢,cos Tz + cysinmx . A particular solution is
Y (x) = Az cos mx + Bz sinmx . Using the method of undetermined coefficients, we

find that A =0 and B = — 1/27. Therefore the general solution is
y(z) = ¢cos Tx + cysin T — zisin T .
™

The boundary conditions require that ¢, = 0. Hence the solution of the boundary value
problem is

y(x) = cysinmr — 2 sinma.
2T
15. Let y(z) = ¢1(x) + ¢o(x) . It follows that L[y] = L[¢p,] + L]p,] = f(x). Also,

a1y(0) + ay'(0) = a161(0) + a1$5(0) + a2¢,(0) + a2¢,(0)
= a161(0) + a>$/(0) + a:1¢(0) + a2, (0)

= .

Similarly, the boundary condition at z = 1 is satisfied as well.

16. The complementary solution is y.(x) = ¢,cos mx + c;sin7x . A particular solution
is Y(z) = A+ Bz. Using the method of undetermined coefficients, we find that A = 0
and B = 1. Therefore the general solution is

y(x) = cicosmx + cysinma + x.

Imposing the boundary conditions, we find that ¢, = 1. Therefore the solution of the
BVP is

y(r) = cosmx + csinmx + T .

Now attempt to solve the problem as shown in Prob. 15. Let BVP-1 be given by
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uw" 4+ 7 = 1,
u(0) =0, u(l)=0.
The general solution of the ODE is

u(x) = ccos T + sinTr + T .

The boundary conditions require that ¢, = 0 and — ¢, +1 = 0. We find that BVP-1 has
no solution. Let BVP-2 be given by

The general solution of the ODE is v(x) = ¢,cos mx + ¢ysinmx . Imposing the
boundary conditions, we obtain ¢, = 1 and — ¢, = 0. Thus BVP-2 has no solution.

17. Setting y(x) = u(x) 4+ v(x), substitution results in
u +v" + p(@)u + 0T+ q(x)[u+v] = v + plx)u’ + q(z)u +
+ 0" + p(z)v' + q(z)v.
Since the left hand side of the equation is zero,
u” + p(x)u' + qlx)u= — " + plx)v’ + q(x)v].

Furthermore, 4(0) = y(0) —v(0) = 0 and u(1) = y(1) —v(1) = 0. The simplest
function having the assumed properties is v(z) = (b — a)x + a. In this case,
)

g(z) = (a = b)p(x) + (a = b)x q(z) —aq(z).

20. The associated homogeneous PDE is u; = u,,, 0 < z < 1, with
uz(0,t) =0, u,(1,t) +u(l,t) =0 and u(x,0) =1 — x.

Applying the method of separation of variables, we obtain the eigenvalue problem
X"+ AX = 0, with boundary conditions X'(0) =0 and X'(1) + X(1) = 0. It was
shown in Prob. 4, in Section 11.2, that the normalized eigenfunctions are

2cos\/ A\, T
bn(z) = \/_ >

1+ sin2y/\,

where cosy/A, — /A, siny/A, = 0.

We assume a solution of the form
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Substitution into the given PDE results in

o0

> 0 00nt) = 3000w+

n=1
= =) Mabu(t)n(x) + 77,
n=1

that is,

i + )‘”b” )]¢7L(x) =e '

n=1

We now note that

_ i \/Esm\/x oul(2).

:1\/)‘771 1 +sin2\//\7n

Therefore

-t _ Zﬁn e_td)n(x)
n=1
in which 3, = ﬁsz’n\/)\n/ [\/)\n 1+ sinQ\/)\n] . Combining these results,

S B4(E) + Auba(t) — e () = 0

n=1
Since the resulting equation is valid for 0 < z < 1, it follows that
by () + Aubn(t) = Bpe™', n=1,2,--

Prior to solving the sequence of ODEs, we establish the initial conditions. These are
obtained from the expansion

w(z,0)=1—z= ia,@n(x)
n=1

in which o, = /2 (1 — cos\/A\,)/ {)\n 1+ sz‘n2\/>\7]. That is, b, (0) = o, .

Therefore the solutions of the first order ODEs are

671 (eft _ ef)wt)

—Ant
n n’ :172;"'
o —1) + ape n

b, (t) =

Hence the solution of the boundary value problem is
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00 —t =Mt
e =3 2 e .

n=1

21. Based on the boundary conditions, the normalized eigenfunctions are given by

On(x \/ 2sinnrz,

2

with associated eigenvalues )\, = n?m%. We now assume a solution of the form

u(x,t) = ibn(t)qﬁn(x) .

Substitution into the given PDE results in

ib,;(t)%(x) = an )+1—[1—2z]

n=1

- i)‘nbn(t)(ﬁn(x) +1—[1-2x|,

n=1
that is,
> [ba () + Anba(B)]dn(z) = 1 — |1 — 2a].
n=1

It was shown in Prob. 5 that

=1 — 2] = 24\/_sznn7r/2¢()

n2m?

Substituting on the right hand side and collecting terms, we obtain

i’: £+ b (t) — \/sznmr/Q o) = 0.

2.2
el n=m

Since the resulting equation is valid for 0 < x < 1, it follows that

fsm (nm/2)

2
bl (t) + n*n?b,(t) = ) ,n=1,2--
Based on the given initial condition, we also have b,(0) =0, for n =1,2,---. The
solutions of the first order ODEs are
\/_sm (nm/2) 22
bn(t) TL47T4 ( —¢€ )7 n = 1727"'

Hence the solution of the boundary value problem is
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8 o~ st 2
u(z,t) = — ZM (1 —e " ”H) sinnmr.

23(a). Let u(x,t) be a solution of the boundary value problem and v(z) be a solution
of the related BVP. Substituting for u(z,t) = w(x,t) + v(x), we have

r(z)u; = r(x)w,
and

p(x)us], — g(@)u+ F(z) = [p(e)ws], — q(@)w + [p(x)v]" — q(z)v + F(x)
[p(z)w,], — q(x)w — F(z) + F(z)
[

Hence w(x ,t) is a solution of the homogeneous PDE
r(@)wr = [p(x)w.], — q(z)w
The required boundary conditions are

w(0,t) =u(0,t) —v(0) =0,
w(l,t) =u(l,t) —v(1) =0.

The associated initial condition is w(z ,0) = u(z,0) —v(x) = f(x) — v(z).
(b). Let v(x) be a solution of the ODE

[p(z)v'] = g(x)o = — F(x),

and satisfying the boundary conditions v’(0) — h,v(0) =17 , v'(1) + hyv(1) =Tp.
If w(z,t) =u(z,t) — v(x), then it is easy to show the w satisfies the PDE and initial
condition given in Part (a). Furthermore,

wz(0,t) — hyw(0,t) = uy(0,t) —v'(0) — hyu(0,t) + hyv(0)
= u,(0,t) — hyu(0,t) — v'(0) + hyv(0)
=0.

Similarly, the other boundary condition is also homogeneous.
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25. In this problem, F'(z) = — m?cos mx . First find a solution of the boundary value
problem

v" = r*cosmx , v'(0) =0, v(l) =1.

The general solution is v(x) = Az + B — cos . Imposing the initial conditions, the
solution of the related BVP is v(x) = — cosmz. Now let w(z,t) = u(x,t) + cos .
It follows that w(x ,t) satisfies the hlomogeneous boundary value problem, and the initial
condition w(z,0) = cos(3mx/2) — cosmx — ( — cosmx) = cos(3mx/2).

We now seek solutions of the homogeneous problem of the form

Zb )bn (2

in which ¢, (z) = \/2 cos (2n — 1)7z/2 are the normalized e1genfunct1ons of the
homogeneous problem and \, = (2n —1)*72/4, with n = 1,2, ---. Substitution into
the PDE for w, we have
Y baOn(z) =D ba(t)dy (x)
n=1 n=1
= - ZAnbn(t)¢n(m) .
n=1

Since the latter equation is valid for 0 < z < 1, it follows that
by(t) + Ay (t) =0, n=1,2,---,
with b, (t) = b, (0)exp( — \,t). Hence

o0

w(z, ) =Y ba(0)exp( — At)dn () .

n=1

Imposing the initial condition, we require that

- 2n —1
V2 an(O)cos (2n - Drz = cos?m—x :
n=1

2 2
It is evident that all of the coefficients are zero, except for by(0) = 1/1/2 . Therefore
3
w(z,t) = exp( — 97r2t/4)cos%x ,

and the solution of the original BVP is

3
u(z,t) = exp( — 97T2t/4)008%$ — CcosSTT .

page 747



CHAPTER 11. ——

26(a). Let u(x,t) = X(x)T(t). Substituting into the homogeneous form of (i),
r(2)XT" = [p(x)X']'T — q(z)XT .
Now divide both sides of the resulting equation by X'I" to obtain

T XY @) _
T r(z)X r(x) '

It follows that
— [p(@)X'] + g(2) X = Ar(z) X
Since the boundary conditions (i7) are valid for all ¢ > 0, we also have

X'(0) = mX(0)=0, X'(1)+hX(1)=0.

(b). Let A\, and ¢, (x) denote the eigenvalues and eigenfunctions of the BVP in Part (a).
Assume a solution, of the PDE (i), of the form

o0

U(QS‘ ) t) = an(t)¢n(x) .

n=1
Substituting into (%),

() S bl (1)
n=1

/

¢n)’ = a(@)dn} + F(z 1)

x)on] + F(z,t).

=2
i

Rearranging the terms,
(2) Db (1) + Auba(B)] 60 = P, 1),

or

S0 (0) + Anbn(t))n = 122

n=1 T(I)

Now expand the right hand side in terms of the eigenfunctions. That is, write

t) = i’yn (t)¢n (x)

in which
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Combining these results, we have
0

S 102 () + Auba(t) — ()] bn = 0.

n=1

It follows that
b (t) + Aabn(t) = 7u(t) , n=1,2,---

In order to solve this sequence of ODEs, we require initial conditions b,,(0) and b, (0) .
Note that

0¢] 0.¢]

u(@,0) = bu(0)pn(z) and w(z,0) = b)(0)¢n().

n=1 n=1

Based on the given initial conditions,

o0

f(z) = ibnmm(as) and g(x) = 3 01(0)0(x).

n=1

Hence b,(0) = a, and b, (0) = 3, , the expansion coefficients for f(z) and g(z) in
terms of the eigenfunctions, ¢, ().

27(a). Since the eigenvectors are orthogonal, they form a basis. Given any vector b,

b= ibg@.

i=1
Taking the inner product, with £, of both sides of the equation, we have

(b,§u§ :Zy(gm,gu»_

(b). Consider solutions of the form

n
X = Zaié'(”.
i=1

Substituting into Eq. (), and using the above form of b,
D A" =Y pai? = big"
i=1 i=1 i=1

It follows that
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n

Z[az)\z —Qna; — bi]E(i) =0.

i=1
Since the eigenvectors are linearly independent,
ai\i —pa;—b; =0, fori=1,2,---/n.
That is,
a; =bi/(Ni—p), i=1,2--n.
Assuming that the eigenvectors are normalized, the solution is given by

(b€

as long as p is not equal to one of the eigenvalues.

29. First write the ODE as y” + y = — f(z). A fundamental set of solutions of the
homogeneous equation is given by

Yy, = cosx and y, = sinx.

The Wronskian is equal to Wcosx, sinx] = 1. Applying the method of variation of
parameters, a particular solution is

Y(z) = yi(@)us(w) + ya(x)us() ,

in which
u(z) = /Oxsin(s)f(s)ds and u,(z) = — /O:Ecos(s)f(s)ds.
Therefore the general solution is
y = ¢(x) = cicosx + eysinx + cos x/oxsin(s)f(s)ds — sin x/oxcos(s)f(s)ds.
Imposing the boundary conditions, we must have ¢, = 0 and
¢y sin 1+ cos 1/013in(s)f(s)ds — sin 1/Olcos(s)f(s)ds =0.

It follows that

1
sinl

Cy =

/Olsmu _ $)f(s)ds.

and
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sinx

¢(x) =

1 z
e 1/0 sin(l —s)f(s)ds — /0 sin(z — s) f(s)ds.
Using standard identities,

sinx - sin(l —s) —sinl-sin(x —s) = sins- sin(l — x).
Therefore

sinx - sin(1 — s) sins - sin(l —x)

—sin(z — s) =

sinl sinl

Splitting up the first integral, we obtain

Ysins-sin(l —x Lsina - sin(l—s
oa) = [ pgas B9 1)

sinl sinl
1
- [[Ga.s)(s)ds,
0

in which

sin z-sin(1—s) r<s<1

sin 1 ’ —

sin s-sin(l—x)
G(m,s):{T: 0<s<zx

31. The general solution of the homogeneous problem is
Yy=c +cx.

By inspection, it is easy to see that y,(z) = 1 satisfies the BC y’(0) = 0 and that the
function y,(z) = 1 — x satisfies the BC y(1) = 0. The Wronskian of these solutions is
Wy, ,y2] = — 1. Based on Prob. 30, with p(z) = 1, the Green's function is given by

1—2), 0<s<«x
G<x’s):{gl—s)), r<s<l1.

Therefore the solution of the given BVP is

mwzé7umﬁ@M+/a—@ﬂmw

32. The general solution of the homogeneous problem is
Yy=c +cx.

We find that y,(z) = = satisfies the BC y(0) = 0. Imposing the boundary condition
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y(1) +y'(1) = 0, we must have ¢, + 2¢, = 0. Hence choose y,(z) = — 2+ x . The
Wronskian of these solutions is Wy, ,v,] = 2. Based on Prob. 30, with p(x) = 1, the
Green's function is given by

_Js(x-2)/2, 0<s<z
G(%S)—{x(s—z)/m r<s<l1.

Therefore the solution of the given BVP is

b(z) = —/Oxs(as ) f(s)ds + %/ (s — 2)f(s)ds

34. The general solution of the homogeneous problem is
Y=C+CT.
By inspection, it is easy to see that y, () = x satisfies the BC y(0) = 0 and that the

function y,(z) = 1 satisfies the BC y’(1) = 0. The Wronskian of these solutions is
Wy, ,y,) = — 1. Based on Prob. 30, with p(x) = 1, the Green's function is given by

s, 0<s<z
G(x’s)_{:c, r<s<1.

Therefore the solution of the given BVP is

o) = [ sreps+ | e (s)ds.

35(a). We proceed to show that if the expression given by Eq. (iv) is substituted into
the

integral of Eq. (ii7), then the result is the solution of the nonhomogeneous problem. As
long as we can interchange the summation and integration,

Note that

Therefore
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as given by Eq. (13) in the text. It is assumed that the eigenfunctions are normalized and
Ai F

(b). For any fixed value of z, G(z, s, 1) is a function of s and the parameter 1. With
appropriate assumptions on GG, we can write the eigenfunction expansion

G(z,s,p) Zaw 1) ¢i(s

i=1

Since the eigenfunctions are orthonormal with respect to r(z),
1
/ G(x,s,u)r(s)pi(s)ds = a;j(z,p).
0
Now let
1
=[G s prosas
0

Based on the association f(z) = r(x)¢;(z), it is evident that
Llyi| = pr(z)y:(z) + r(z)di(z).

In order to evaluate the left hand side, we consider the eigenfunction expansion

£) = bide(x)
k=1

It follows that

Z ik L0
Z ik Ak () Pr () .

Therefore

and since 7(z) # 0,
mem qum + ¢i(x).

Rearranging the terms, we find that
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oi() = > b — 1)n(a)
k=1

Since the eigenfunctions are linearly independent, b;z(Ay — i) = dix , and thus

ule) = D3 ) = o).

We conclude that

which verifies that

36. First note that — d?y/ds*> = 0 for s # x. On the interval 0 < s < x, the solution
of the ODE is y,(s) = ¢; + ¢3s. Given that y(0) = 0, we have y,(s) = ¢;s. On the
interval z < s < 1, the solution is y,(s) = d, + d,s. Imposing the condition (1) =0,
we have y,(s) = d;(1 — s). Assuming continuity of the solution, at s = z,

cr=d(l—1),

which gives ¢, = d,(1 — x)/x. Next, integrate both sides of the given ODE over an
infinitesimal interval containing s = x :

+

I+d2 T
—/x_ d—s‘gds:/x_ 6(s—x)ds=1.

y'(@)—y'@") =1,
and hence ¢, — ( — d;) = 1. Solving for the two coefficients, we obtain ¢, = 1 — z and
d, = x . Therefore the solution of the BVP is given by

(s) = s(l—z), 0<s<ux
yis) = x(1—s), z<s<1,

It follows that

which is identical to the Green's function in Prob. 28.
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Section 11.4

1. Let ¢,(x) = J; (\ / An x) be the eigenfunctions of the singular problem

—(xy) =Xy, O<z<1,
v,y bounded as z—0, y(1) =0.

Let ¢(z) be a solution of the given BVP, and set

=S bn(a). (+)
n=>0

Then
—(20) = pxo + f(x)
:uxqb+x@.

Substituting (), we obtain

Zb A Op(x) = px anqbn + xicngbn(x)
n=>0

in which the ¢, are the expansion coefficients of f(z)/x forz > 0. That s,

YA€
[0Sy

1
rwuxna/f =)n(z

Cp =

It follows that if « # 0,
Z[Cn —by(An — #)]Cbn(x) =0
n=0

As long as u # A, , linear independence of the eigenfunctions implies that

Cn

bn: 5
Ap — b

n=12:--.
Therefore a formal solution is given by
= i)\ . JO( v )\nx),
n=0""1" " K

in which /J\,, are the positive roots of J;(z) = 0.
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3(a). Setting ¢t = /A z, it follows that

dy dy d’y d*y
Y A and &Y 22
dz VA at Mg TN ae

The given ODE can be expressed as

—ﬁ%(%ﬁ‘;—i)ﬁgf i,

or

AR
a\"at) "t Y
An equivalent form is given by

dy dy

= +t—+ F-k)Ny=0

at lar T )y =0,

which is known as a Bessel equation of order k. A bounded solution is Jj(t) .

(b). Jy (\/X a:) satisfies the boundary condition at x = 0. Imposing the other
boundary
condition, it is necessary that Jj <\/X ) = 0. Therefore the eigenvalues are given by

An,n =1,2--- where y/\, are the positive zeroes of J;(z). The eigenfunctions of
the BVP are ¢,(z) = Ji,(v/ Ao 7).
(¢). The BVP is a singular Sturm-Liouville problem with

]{72

Ly = — (zy") + —yand r(z) = 1.

We note that

1

)\n/o x ¢On(x) o (x)dx :/0 L{oy] ¢m(z)dx

1
= )\m/o x On(x)om(z)dx .

Therefore

1
()\’n, - )\m)/o 3:¢n($)¢m($)dx =0.
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So for n # m, we have A\, # A\, and

1
/0 x ¢p(x)dm(z)dz = 0.

(d). Consider the expansion

= iand)n(x)

Multiplying both sides of equation by x ¢;(x) and integrating from 0 to 1, and using the
orthogonality of the eigenfunction,

/ F(2)éi(z)dw _Zan/ T ¢j(z)pn(z)dx
—af 1x¢j<x>¢j<x>dx

Therefore

o= [ @ s [ sl @Par, =12,

(e). Let ¢(z) be a solution of the given BVP, and set

_ ibnm:c), (+)

where ¢, (z) = Jk(mx) Then

L[¢] = pxo + f(x)

:,ux¢+x@.

Substituting (*), we obtain

an)\,,x On(x) = px an¢n +z icnﬁbn(x)
n=>0

in which the ¢, are the expansion coefficients of f(x)/x for x > 0. That is,

= L le(:z:) z)dz
o = ||¢n<x>||2/o z n(@)

1 1
= it/ Fn (V) ds,
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It follows that if  # 0,
Z[Cn - bn()\n - U)]Jk<\/ )\’n, «'13> =0.
n=>0

As long as i # A, , linear independence of the eigenfunctions implies that

, n=1,2 -

Therefore a formal solution is given by

5(a). Setting A = o in Prob. 15 of Section 11.1, the Chebyshev equation can also be
written as

Note that

plx) =vV1—2?,q(x)=0,and r(z) =1/V1— 22,

hence both boundary points are singular.
(b). Observe that p(1 —¢) = /2e —¢? and p(—1+¢) = /2e —? . It follows
that if u(z) and v(x) satisfy the boundary conditions (i7i), then
lin&p(l —g)u'1—ew(l—¢e)—u(l—¢e)'(1-¢)]=0
g —

and

limp(—1+4+e)u'(-1+e)v(—1+¢)—u(—1+e)w'(—1+¢)]=0.

e— 0t

Therefore Eq. (17) is satisfied and the boundary value problem is self-adjoint.

(c). Forn #0,

n2/_j%\/%(f)dx = /lTu(a:)LT dz

Il
)
I~
!

since L[T)] =0T, = 0. Otherwise,
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lTn
2 [ B [ i o
-1 1——x2
:/ ) L[T,]d
LT, (2) T,
V1— 22
Therefore
(nQ—m2)/ —@dx:().
1 A1 = 2
So for n # m,
x)dfz::O.

Lﬁ
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Section 11.5

3. The equations relating to this problem are given by Egs. (2) to (17) in the text. Based
on the boundary conditions, the eigenfunctions are ¢, (x) = Jy(A,7) and the associated
eigenvalues Aj, \,,--- are the positive zeroes of Jy(A). The general solution has the
form

0
Z CnJo(Ant) cos Apat + kyJy (A1) sin Aat].
The initial conditions require that

= icn']()()‘nr) = f(r)

and
0) = > alikndo(Aar) = g(r).
n=1

The coefficients ¢, and k, are obtained from the respective eigenfunction expansions.
That is,

cp = r)Jo(Anr)
”JO nT)|? / ol

and
1 1
k, = /r ) Jo(Anr)dr,
O f, T (ar)
in which
1
1o ()2 = / ()
0
forn=1,2, ---

8. A more general equation was considered in Prob. 23 of Section 10.5. Assuming a
solution of the form u(r,t) = R(r)T(t), substitution into the PDE results in

1
o’ {R”T + = R’T} = RT'.
T

Dividing both sides of the equation by the factor RT', we obtain
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R// 1 R/ T/
R TR T

Since both sides of the resulting differential equation depend on different variables, each
side must be equal to a constant, say — A\?. That s,
Rl/ 1 R/ T/
— - — = = — )2,
R * r R T
It follows that T/ + o?X?>T = 0, and
R" 1R
R FR
which can be written as 72R” +r R’ + A\?>r R = 0. Introducing the variable £ = \r,
the last equation can be expressed as £&2R” + ¢ R’ + ¢2R = 0, which is the Bessel
equation of order zero.

= —)\?

The temporal equation has solutions which are multiples of 7'(¢) = exp( — a?A*t). The
general solution of the Bessel equation is

R(r) = by Jy( A1) + b Yo (A\yr) .

Since the steady state temperature will be zero, all solutions must be bounded, and hence
we set b, = 0. Furthermore, the boundary condition u(1,¢) = 0 requires that R(1) = 0
and hence Jy(\) = 0. It follows that the eigenfunctions are ¢,(z) = Jy(A\,r), with the
associated eigenvalues A;, Ay, -+ , which are the positive zeroes of J;(\). Therefore
the fundamental solutions of the PDE are w,(r,t) = Jy(A,7)exp( — a?A2t), and the
general solution has the form

o0

u(r,t) = ZCRJO()\nT)exp( — a®A2t).

n=1

The initial condition requires that
u(r,0) = chJo()\nr) = f(r).
n=1

The coefficients in the general solution are obtained from the eigenfunction expansion of
f(r). Thatis,

1 1
Cp = —HJO()\ 7’)”2/(; Tf(T)JO()\nT)dr,
in which

||J0()\nr)||2:/0r[JO(Anr)]er (n=1,2, ).
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Section 11.6

1. The sine expansion of f(z) =1,0n 0 < x < 1, is given by

.1 —cosmm
flx) = 22 Tsinmmc,
m=1

with partial sums

n

1—
Sp(x) =2 Z S cosmm SINMTT .

m=1 mi

The mean square error in this problem is

1
R, = / 11— S, (x)*dz.
0

Several values are shown in the Table :

n |95 10 15 20
R, 1 0.067 | 0.04 | 0.026 | 0.02

Further numerical calculation shows that R,, < 0.02 for n > 21.
3(a). The sine expansion of f(x) =xz(1 —z),on 0 < x < 1, is given by

o0 1_
flx) = QZﬂsinmwx,

—  mr
with partial sums
"\ 1 —cosmm
Sp(x) =4 E ——— 5 sinmmz.
— mir

(b, ¢). The mean square error in this problem is

1
an/o |z(1 —2) — Sp(x)|"dx.
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hean Sguare Error
Se-051

d4e-051

Je-05

2e-051

1e-051

o 2 3 4 5
We find that R, = 0.000048. The graphs of f(x) and S,(x) are plotted below :

n=1

0.264
0.247
0.224
0.24
0184
0167
0.144
0124
0.14
0.054
0.06
0.044
0024

0 02 0.4 05 0.5 1

6(a). The function is bounded on intervals not containing = = 0, so for € > 0,
1 1
/ flx)dx = / eV dr =2 —24/¢.
£ &

Hence the improper integral is evaluated as

1 1
/ f(z)de =lim [ 72 dz=2.
0

e—07 [
On the other hand, f?(z) = 1/z for x # 0, and
1 1
/ fA(z)dx = / e dr = —Iny/e.
3 &

Therefore the improper integral does not exist.

(b). Since f*(x) = 1, it is evident that the Riemann integral of f*(z) exists. Let
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Py = {02151751/’27"';37N+1 = 1}

be a partition of [0, 1] into equal subintervals. We can always choose a rational point,
&, , in each of the subintervals so that the Riemann sum

a 1
R(éla&% "'75]\’) - Zf(gn)ﬁ =1.
n=1

Likewise, can always choose an irrational point, 7; , in each of the subintervals so that
the Riemann sum

N 1

R(mﬂh, "'7771\*) = Zf(nn)N = —1.
n=1

It follows that f(z) is not Riemann integrable.

8. With Py(z) =1 and P,(z) = x, the normalization conditions are satisfied. Using
the usual inner producton [ —1,1],

/1 Py(2) P, (x)dz = 0

1
and hence the polynomials are also orthogonal. Let P,(z) = ayz* + a,x + a,. The
normalization condition requires that a, + a, + a, = 1. For orthogonality, we need

1

1
/ (anQ + ax + ao)dx =0 and / x(a2m2 +ax+ ao)d:): =0.
-1 -1

It follows that a, = 3/2,a, =0 and a, = — 1/2. Hence Py(z) = (32* —1)/2.
Now let Py(z) = a3x® + a,x® + a,z + a,. The coefficients must be chosen so that
as + a, + a; + a; = 1 and the orthogonality conditions

1
| P@P@is=0 (£
~1
are satisfied. Solution of the resulting algebraic equations leads to a; = 5/2,a, =0,

a, = —3/2 and ay = 0. Therefore Py(z) = (523 — 3z)/2.

11. The implied sequence of coefficients is a,, = 1,n > 1. Since the limit of these
coefficients is not zero, the series cannot be an eigenfunction expansion.

13. Consider the eigenfunction expansion

@)= aii(a).

1=1

Formally,
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fx) = Zafcb?(fﬁ) +2) aia;¢i(w)¢;(x).

i=1 i#j

Integrating term-by-term,

17“:1: 2(x :l::oo 1a27“x 2 \dx 1@,@_7,3741, () d
[ r@p@is = Y- [Car@et @iz + 2 [ s r@ot

i=1 i#j V0
00 1

= Za?/ o2 (z)dz,

i=1 J0

since the eigenfunctions are orthogonal. Assuming that they are also normalized,

o0

/Olr(x)fQ(x)da: = Za? :

1=1
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