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Chapter Ten
Section 10.1

1. The general solution of the ODE is y(x) = ¢, cos x + ¢, sin x . Imposing the first
boundary condition, it is necessary that ¢, = 0. Therefore y(x) = ¢, sinx. Taking its
derivative, y'(z) = ¢, cos x . Imposing the second boundary condition, we require that
c; cosm = 1. The latter equation is satisfied only if ¢, = — 1. Hence the solution of
the boundary value problem is y(z) = — sinz.

4. The general solution of the differential equation is y(x) = ¢, cosx + ¢, sinx . It
follows that y'(z) = — ¢, sinx + ¢, cos x . Imposing the first boundary condition, we
find that ¢, = 1. Therefore y(x) = ¢, cos x + sin x . Imposing the second boundary
condition, we require that ¢, cos L + sin L = 0. If cos L # 0, that is, as long as

L # (2k — 1)7/2, with k an integer, then ¢, = — tanL . The solution of the boundary
value problem is

y(z) = —tanLcosx + sinz.

If cos L = 0, the boundary condition results in sin L. = 0. The latter two equations
are inconsistent, which implies that the BVP has no solution.

5. The general solution of the homogeneous differential equation is
y(x) =cicosz+ ¢y sinc.

Using any of a number of methods, including the method of undetermined coefficients, it
is easy to show that a particular solution is Y (x) = = . Hence the general solution of
the given differential equation is y(z) = ¢, cos x + ¢, sinx + x . The first boundary
condition requires that ¢; = 0. Imposing the second boundary condition, it is necessary
that ¢, sinm + m = 0. The resulting equation has no solution. We conclude that the
boundary value problem has no solution.

6. Using the method of undetermined coefficients, it is easy to show that the general

solution of the ODE is () = ¢, cos\/2x + ¢, sin/2x + /2. Imposing the first
boundary condition, we find that ¢; = 0. The second boundary condition requires that

¢y siny/2m+ /2 =0. It follows that ¢, = — 7r/23in\/§7r . Hence the solution of
the boundary value problem is

s x
Ylr) = — —=—sinvV2zx+ —.
@) 2siny/2 2

8. The general solution of the homogeneous differential equation is
y(x) = ¢, cos2x + ¢, sin 2w .

Using the method of undetermined coefficients, a particular solution is Y (z) = sinx /3.
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Hence the general solution of the given differential equation is
1
y(x) = ¢, cos2x + ¢, sin 2z + gsinsc .

The first boundary condition requires that ¢, = 0. The second boundary requires that
Cy SN 2T + %sin m = 0. The latter equation is valid for a// values of ¢, . Therefore the
solution of the boundary value problem is

y(x) = ¢y sin 2z + gsinx.

9. Using the method of undetermined coefficients, it is easy to show that the general
solution of the ODE is y(z) = ¢, cos 2x + ¢, sin2x + cos z/3 . It follows that

y'(x) = — 2¢, sin2x + 2¢, cos 2x — sinx /3. Imposing the first boundary condition,
we find that ¢, = 0. The second boundary condition requires that

1
— 2¢y sin 2w — §sin7r =0.

The resulting equation is satisfied for all values of ¢,. Hence the solution is the family of
functions

1
y(x) = ¢, cos2x + 3608 %.

10. The general solution of the differential equation is
1
y(z) = ¢ cos\/3x + ¢ sin/3x + 5COST.

Its derivative is y'(z) = — /3¢ siny/3z + /3¢ cos\/3x — sinx/2. The first
boundary condition requires that ¢, = 0. Imposing the second boundary condition, we
obtain — \/5 c Sin \/5 m = 0. It follows that ¢, = 0. Hence the solution of the BVP
is y(z) = cosx/2.

12. Assuming that A > 0, we can set A\ = . The general solution of the differential
equation is

y(x) = ¢, cos px + ¢, sin px,

sothat y'(z) = — pe, sin px + pe, cos px . Imposing the first boundary condition, it
follows that ¢, = 0. Therefore y(x) = ¢, cos px . The second boundary condition
requires that ¢, cos um = 0. For a nontrivial solution, it is necessary that cos umr =0,
that is, um = (2n — 1)7/2, with n = 1,2, ---. Therefore the eigenvalues are

(2n —1)*

)\n -
4

,n=1,2,---.
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The corresponding eigenfunctions are given by

(2n — 1)z

=1.2. ...
2 7n =

Yn = COS
Assuming that A < 0, we can set A\ = — p?. The general solution of the differential
equation is
y(x) = ¢, cosh px + ¢, sinh px

so that y'(z) = pe, sinh px + pc, cosh px . Imposing the first boundary condition, it
follows that ¢, = 0. Therefore y(z) = ¢, cosh px . The second boundary condition
requires that ¢, cosh yum = 0, which results in ¢, = 0. Hence the only solution is the
trivial solution. Finally, with A = 0, the general solution of the ODE is

y(x) =cx+c,.

It is easy to show that the boundary conditions require that ¢, = ¢, = 0. Therefore all of
the eigenvalues are positive.

13. Assuming that A > 0, we can set A = u?. The general solution of the differential
equation is

y(x) = ¢, cos px + ¢, sin px,

sothat y'(z) = — pc, sin px + pe, cos px . Imposing the first boundary condition, it
follows that ¢, = 0. The second boundary condition requires that ¢, sin um = 0. Fora
nontrivial solution, we must have ymr = nm,n = 1,2, ---. It follows that the eigenvalues
are

>\n :n27 n = 1327”'3

and the corresponding eigenfunctions are
Yo =cosnr, n=1,2,---.
Assuming that A < 0, we can set \ = — p?. The general solution of the differential
equation is
y(x) = ¢; cosh px + ¢, sinh px
so that y'(z) = pe, sinh px + pc, cosh px . Imposing the first boundary condition, it

follows that ¢, = 0. The second boundary condition requires that ¢, sinh um = 0. The
latter equation is satisfied only for ¢, = 0.

Finally, for A = 0, the solution is y(x) = ¢, + ¢,. Imposing the boundary conditions,
we find that y(z) = ¢,. Therefore A = 0 is also an eigenvalue, with corresponding
eigenfunction y,(z) = 1.
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14. It can be shown, as in Prob. 12, that A > 0. Setting A = p?, the general solution
of the resulting ODE is

y(z) = ¢, cos px + ¢, sin px,

with y'(z) = — pe, sin px + pe, cos px . Imposing the first boundary condition, we
find that ¢, = 0. Therefore y(x) = ¢, cos pz . The second boundary condition requires
that ¢, cos u. = 0. For a nontrivial solution, it is necessary that cos . = 0, that is,
p= 2n—1)r/(2L), with n =1,2,---. Therefore the eigenvalues are

(2n —1)* 72

)\n:T,TLZI,Q,'“.

The corresponding eigenfunctions are given by

(2n — 1)z

=1,2,--.
2L ’n ) =

Yp = COS

16. Assuming that A\ > 0, we can set A\ = 2. The general solution of the differential
equation is

y(x) = ¢, cosh px + ¢, sinh px .

The first boundary condition requires that ¢; = 0. Therefore y(x) = ¢, sinh pz and
y'(x) = ¢, cosh px . Imposing the second boundary condition, it is necessary that

¢y cosh L = 0. The latter equation is valid only for ¢, = 0. The only solution is the
trivial solution.

Assuming that A > 0, we set \ = — pu2. The general solution of the resulting ODE is
y(x) = ¢ cos px + ¢, sin px .

Imposing the first boundary condition, we find that ¢, = 0. Hence y(z) = ¢, sin px and
y'(x) = ¢, cos px . In order to satisfy the second boundary condition, it is necessary that
¢, cos pL = 0. For a nontrivial solution, u = (2n — 1)7/(2L),, with n = 1,2, ---.
Therefore the eigenvalues are

(2n —1)* 72

)\n: _T,nzl,z,"‘.

The corresponding eigenfunctions are given by

(2n — 1)z

—=1.2....
2L )n =

Yn = SIN

Finally, for A = 0, the general solution is /inear. Based on the boundary conditions, it
follows that y(z) = 0. Therefore all of the eigenvalues are negative.
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17(a). Setting A = 2, write the general solution of the ODE y” + p%y = 0 as
y(x) = ke + kye” 1,
Imposing the boundary conditions y(0) = y(7) = 0, we obtain the system of equations

kl + kg - O
ke 4 kye T =),
The system has a nontrivial solution if and only if the coefficient matrix is singular. Set
the determinant equal to zero to obtain

e T _ T — ()

(b). Let u = v +io. Then iur = ivw — or, and the previous equation can be written
as

0T~ WT _ o=0moivm _ ()

Using Euler's relation, €™ = cos vw + i sin v, we obtain

“M(cosv +isinv) =0.

e’"(cosv —isinv) —e
Equating the real and imaginary parts of the equation,

(7" —e "Mcosvm =0
(e +e "M)sinvr =0.

(c). Based on the second equation, v = n, n € . Since cosnm # 0, it follows that
e’" =e %", or 2" =1. Henceoc = 0,and p=n,n € 1.
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Section 10.2

1. The period of the function sin ax is T' = 27/a.. Therefore the function sin 5z has
period T'=27/5.

2. The period of the function cos ax is also 1" = 27/« . Therefore the function cos

2mx
has period 7' = 27 /27 = 1.

4. Based on Prob. 1, the period of the function sinnz/L is T = 27 /(w/L) = 2L.

6. Let T > 0 and consider the equation (x + T')* = 22. It follows that 2Tz + T2 = 0
and 2z + T = 0. Since the latter equation is not an identity, the function z? cannot be
periodic with finite period.

8. The function is defined on intervals of length (2n + 1) — (2n — 1) = 2. On any two
consecutive intervals, f(x) is identically equal to 1 on one of the intervals and alternates
between 1 and — 1 on the other. It follows that the period is 7' = 4.
9. On the interval L < x < 2L, a simple shift to the right results in
fx)= —(x—2L)=2L — .
On the interval — 3L < x < — 2L, a simple shift to the left results in
fle)= —(z+2L)= —2L —=z.

11. The next fundamental period to the left is on the interval — 2L < x < 0. Hence the
interval — L < x < 0 is the second half of a fundamental period. A simple shift to the
left results in

flz)=L—(x+2L)= —L—=x.

12. First note that

COS——— = — 4+ cos

mrx  nmr 1 (m —n)mrx (m+n)rz
cos— 7 5 |08 7 7

and

Ccos SIN—— = —

mrx . nrxr  1[  (n—m)rz
7 7 5 |51
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It follows that
L L
1 _
/Lcosmgmcos%dx = §/L {cosw + COSM} dx
1L {sin[(m—n)rz/L] N sin[(m +n)mz/L] ) |*
27 m—n m-+n I
=0,
as long as m + n and m — n are not zero. For the case m =n,
L L
nwx)z ﬁ{/‘[ 2nwx]
cos— ) dz = - 1+ cos dx
L/iL< L 2)_1 L
1 +_shﬂ2nﬂx/L) L
= - €T _—_—
2 2nm/L I
=1L.
Likewise,
L L
1 —
/_Lcosmgx sin—nzxd:z: = 5/_L [sm—<n 271)%:1: + sin—(m —}—Ln)mr] dx
_ 1L {fcos[(n—m)mz/L] cos[(m+n)rz/L] L
27 m-—n m+n _I
=0,
as long as m + n and m — n are not zero. For the case m =n,
/w max . PIE I{/L ,2nﬂxd
cos sin—-dxr = - [ sin x
7 L L 2)1 L
1 fcos(2nmx/L) L
2 2nm/L .

=0.
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14(a). For L =1,

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

1 L
a =7 _Lf(:c)da:

Forn >0,
1 L
a, = — f(x)cos@dx
LJj_g
1 0
= E/LcosnLﬂdx
Likewise,

/ f(z sin@d:p

nmwT
= Z/_Lsdex
=1+ (=1
- nmw

It follows that by, = 0 and by, , = — 2/[(2k — 1)7], k =1,2,3,---. Therefore the
Fourier series for the given function is

1 x 2k — )z
—5—;2 P
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16(a).

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

_ %/if(m)dm

0 1
= (x+ 1)dz + /0 (1 —2x)dx

-1

=1.
Forn >0,
/ f(z cos@dx
1
= / (x + 1)cosnmx dx + / (1 —x)cosnrx dx
-1 0
-1 —1)\"
el Gt
n2m?
It follows that a,, = 0 and ay_, = 4/[(2k — 1)*7%], k =1,2,3,---. Likewise,

/ f(z sz’nwda:

1
:/ (x+1)sznn7rmdm+/ (1 — x)sinnmzrdx
-1 0
=0.

Therefore the Fourier series for the given function is

f(x) = 7r2 Z cos(2k — )7z
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17(a). ForL =1,

1.84
1.67
1.44
1.24

0.4
0.2

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

a, = /f

1 L
—Z/_L(:c—l—L)dx+L/O Ldx

= 3L/2.
Forn > 0,
a, = / f(x cos@dx
1 (L
= E/L(JC-I-L)cos—dx L/o LCOSnLﬂdI
L(1 — cosnm)
- n2m? .
Likewise,

nmwr

b, = /f sin—da:

1 (L
= E/L( +L)sm—da:+ L/o Lsin%dm

Lcosnm

nm

Note that cosnm = (— 1)". It follows that the Fourier series for the given function is
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18(a).

1 L

Forn > 0,
1 L
an = 7 Lf(x)cos—mgxdx
]/’1 nwxd
=— | zcos—dx
2/ L
Likewise,
1 L
b, = E/Lf(x)sm—nzmdm
1//1 . nﬁxd
=— | zsin—dzx
2/, L
= — (2 sin@ — mrcosm).
n?m? 2 2
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Therefore the Fourier series for the given function is

[ 4  nr 2 nr| . nmx
flz) = ,,2_:1 [W SN~ = — oS- | sin——.

19(a).

(b). The Fourier cosine coefficients are given by

/ f(x COS@dIE

/ nm:d +1/2 mrxd
= — — cos——dzx cos——dzx
2/ 9 2 2 /o 2

=0.

The Fourier sine coefficients are given by

/ f(x sinmdx

/ ,nmcd +1/2, nwxd
= — — sin——dx sin——dx
2/, 2 2 /o 2

1 —cosnm

nim

Therefore the Fourier series for the given function is

4 1 . (2n— 1)z
f(x)_%;%—lsm 2
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20(a).

(b). The Fourier cosine coefficients are given by

/ f(x cos@dx

—/ rcosnrxdr
1
=0.

The Fourier sine coefficients are given by

page 605



CHAPTER 10. —

nmwx

1 /L
b, = Z/_Lf(x)siana:
1

= / T sinnmrdx
-1

cosnm
= -2

nm

Therefore the Fourier series for the given function is

flxz) = — % io: (= l)nsinnmc.

n=1 n

0.8
06
0.4
0.z

02 04_ 06 08 1
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22(a).

(b). The Fourier cosine coefficients are given by

/ fla

— 5/_2(x+2)dx—|— ;/02(2—23:)@3

2

and forn > 0,

/ flx cos@dx

1 2
= 5/_2(3:—#2)0057@:4- 2/0 (2 —2x)cos ?dl’

(I —cosnm)
=0 n?m?

The Fourier sine coefficients are given by

/ f(z sin@dx

1 2
= —/ (x + 2)3m—dm + / (2 — 2x)sin DY g
2/, 2/, 2
_ pcosnm
nm

Therefore the Fourier series for the given function is
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23(a).

1.8

164
1.44
1.24

084
067

0.2 x
0.4
06
0.8

(b). The Fourier cosine coefficients are given by
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| —

[ o

T I
1[0 1
:_/ (—— da:—{— /(2m——x2>dx
2/, 2
=11/6,
and forn > 0,
1 L
f(x cos@dx

L/,
1 /0 1 /2 1
= 5/_2(— g)cos%dm‘ﬁ- 2/0 (2:5‘— 5:172)603 n—gxd:z:

(5 — cosmm)

n2m2

The Fourier sine coefficients are given by

/ f(z sm@d:p

1 [? 1
= 5/_2( ;)sm?dm—l— 2/0 (2:6— ixQ)sm ?dm

4 — (4 + n*n?)cosnm
n3ms ’

Therefore the Fourier series for the given function is

= [(—1)" —5] nmwx
f(z) _E+ Z:l cos 9 +
> [4- (4+ )( n" .
LR AC
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(c).

24(a).
5]
4
3
21
1:

8 B 4 2 12 :i'}{' BB

1

(b). The Fourier cosine coefficients are given by
1 L
ay = E/Lf(x)dx
3
2

1
:5/0 (3 —x)dz
—9/4,

and forn > 0,
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/ f(x coswdaﬁ

nnx

= 5/0 2%(3 — x)cos Tdm

2

(6 — 6 cosnm + n’m*cosnr)

= —27

nimd

The Fourier sine coefficients are given by

/ f(z sin@d:p

= g/o 2*(3 — x)sin %dm

_ 5y 1+ 230038 nmw
nsm

Therefore the Fourier series for the given function is

f(z) :2—272{6[1‘(—1>"]+(—1)" T

nimd n2m? 3

54 Z 1+2(-1)"] . nmz

Sin
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m=5 m=10
0s 0.2
0.24
0.223
0.4 0.23
0.183
03 015
0.4
0,123
0.2 0.1
0,084
0,05
b 0.04
0,023
O 0040606 1 12141618 2 22242628 3 D02 040608 1 12141618 2 22242628 3
¥ H
m=20
0.124
0.14
0.084
0.06
0.044
0.024

D702 040508 1 12141618 2 222426238 3
®

It is evident that |e,,,(z)| is greatest at = + 3. Increasing the number of terms in the
partials sums, we find that if m > 27, then |e,,(z)| < 0.1, forall z € [— 3, 3].

m=27
0.14

0.084
0.064
0.044

0.024

0702040608 1 12141618 2 22242628 3
H

page 612



CHAPTER 10. —

Graphing the partial sum s,;(x), the convergence is as predicted:

527 ()
4 4

28. Let z =T +a, forsome a € [0,T]. First note that for any value of A,

fle+h)—f(z) =f(T+a+h)— f(T+a)
= fla+h)— f(a).

Since f is differentiable,

f'(w) = lim, h
o flat k)~ f(@)
h—0 h

Thatis, f'(a +T) = f'(a). By induction, it follows that f'(a + T') = f'(a) for every
value of a .

On the other hand, if f(x) = 1 + cos z, then the function

T
F(z) = / [1+ cost]dt
0
=z 4+ sinx
is not periodic, unless its definition is restricted to a specific interval.
29(a). Based on the hypothesis, the vectors v, , v, and v; are a basis for R?. Given any

vector u € R?, it can be expressed as a linear combination u = a,v; + a,V, + azvs.
Taking the inner product of both sides of this equation with v; , we have

u-v; = (a,vy + ayvy + asvs) - v;
= a; ViV,
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since the basis vectors are mutually orthogonal. Hence

u-v;

,i=1,2,3.

a,; —
V;-V;

Recall that u - v; = uv; cos 6, in which 6 is the angle between u and v;. Therefore

ucos

i =

(%

Here w cos 6 is interpreted as the magnitude of the projection of u in the direction of v; .

(b). Assuming that a Fourier series converges to a periodic function, f(z),
a o o0
f(z) = §0¢0(x) + Z U @ () + Z by ()
m=1 m=1
Taking the inner product, defined by

(u,v) = /_Lu(x)'u(m)da:,

L

of both sides of the series expansion with the specified trigonometric functions, we have

(f,qbn)— 2 (o, bn) +Zam Grm + Bn) +Zb (Vm » 6n)

m=1 m=1

forn=0,1,2,---

(c). Ttalso follows that

(f ) = 5 (@0, n) +Zam G > Vn) +Zb (¥m > )

m=1 m=1
forn =1,2,---. Based on the orthogonality conditions,

(¢m,¢n) = L(Smn ) (wmal/}n) = Lémﬂ 5
and (¥, , ) = L 6y, . Note that (¢, ¢y) = 2L . Therefore

2y = (zwo_ /f ooz

and

ap = (¢n ,¢n / f ¢n n = 1727
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Likewise,

L
= % — 1] f@unade, n=1.2
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Section 10.3

1(a). The given function is assumed to be periodic with 2. = 2. The Fourier cosine
coefficients are given by

= %/LLf(x)d:c
:/_?(—1)dw+/01(1)d:1:
-0,

and forn > 0,

/ f(x coswdac

1
— —/ cosnmzda:+/ cos nmxdx
1 0
=0.

The Fourier sine coefficients are given by

/ f(x sin@dz‘

1
= —/ sin mrxd:c—l—/ sin nwxr dx
-1 0

1— cosnm
=2—
nmw

Therefore the Fourier series for the specified function is

4 & 1

= — in (2n — 1
f(x) g T sin (2n — 1)z

n=1
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(o]
[a]
—
— 4
kg
[NED.

2

The function is piecewise continuous on each finite interval. The points of discontinuity
are at integer values of x. At these points, the series converges to

[f(z =)+ flz+)]=0.

3(a). The given function is assumed to be periodic with 7" = 2L . The Fourier cosine
coefficients are given by
/ fla

and forn > 0,

1 L
=71 Lf coswda:

1

0 1 L
= E/_L(L + x)cos nzx dz + Z/o (L — z)cos n;r:z: dx

1 — cosnm

=2L

n2m?

The Fourier sine coefficients are given by

/ f(z sm—d:z:

nwT 1 [k nwT
L/_L( + z)sin 7 dx + L/o (L — z)sin 7 dx
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Therefore the Fourier series of the specified function is

L AL & 1 (2n — 1)z
f(;v)—§+?n:1<2n_1)2 cos 7
(b). For L =1,
1.4
1.2

-3 -2 -1 1 w2 3

Note that f(z) is continuous. Based on Theorem 10.3.1, the series converges to the
continuous function f(x).

5(a). The given function is assumed to be periodic with 2. = 27r. The Fourier cosine
coefficients are given by
-1 1@
/2

= ;/ﬂ/z(l)dﬂv

=1,

and forn > 0,

nmx
/ f(x)cos —dw
/2

= — 1)cos nx dx
7T/7r/2( )

2 . (nﬂ)
= —gsinl—).
nmw 2

The Fourier sine coefficients are given by
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1 /L
b, = Z/_Lf(x)sz'n?d:c
1

/2
= —/ (1)sin nx dx
™ —T/2
=0.
Observe that
nmw 0, n=2k
n|—) = k=1,2,---.
Sm(2) {(—1)k+l,n:2k:—1 ’ -

Therefore the Fourier series of the specified function is

f(x) = % - %i%cos@n—l)x.
n=1

29
1.84
167
1.44
1.24

1
0.87
064

[+]
0.44
0.24

-2
024 ®
0.44

The given function is piecewise continuous, with discontinuities at odd multiples of /2.
At x, =2k —1)7/2,k =0,1,2,---, the series converges to

|f($d_)+f($d+)|:1/2-

6(a). The given function is assumed to be periodic with 2L = 2. The Fourier cosine
coefficients are given by

ay = %/ f(x)dz

L
-
1
:/@2
0

~1/3,

dx

and forn > 0,
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/ f(z cos@dx

:/ 2’cos nrr dx
0

2cosnm
n2m?

The Fourier sine coefficients are given by

. nTx
/ f(x sm—dm
:/ x’sin nrr dx
0
2 — 2cosnm + n’w?cosnw

n3m3

Therefore the Fourier series for the specified function is

fx) = 1—1—% i(_an)n cosnmr —

6 =

n37r3 nmw

[1—( —1)" —"7 .
—Z{ )]-I-( ) SINNMTT .

n=1

161
161
1.4
1.2

0.8
067
0.43
0.23

m_
a2
A
s}
L

023 X
0.4

The given function is piecewise continuous, with discontinuities at the odd integers .
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At x;=2k—1,k=0,1,2,---, the series converges to

|f(@a =) + flza+)[=1/2.
8(a). As shown in Problem 16 of Section 10.2,

flx) = 1-+-:£-:§i ———;E——;—cos(2n/——1)wax

41 08 05 04 02 02 04,06 08 |

n= 20
0.014

0.003

0.006

0.004

1 08 06 04 02 02 04,06 08 1

n= 40
0.0054

0.004
0.003

0.002

0.001

408 06 04 02 02 04,06 08 1
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n= 21

0.008 1

0.006

0.004

0.00

41 08 06 04 02 02 04,06 08 1

9(a). As shown in Problem 20 of Section 10.2,

flx)= — % Z (=1) Ismmr,r.
n=1

n

408 06 04 02 02 04,06 08 1

n= 20

Ll

408 0B 04 02 02 04,06 08 1
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n= 40
1_
0.8
0.6
0.4
0.2
41 08 05 04 02 02 04,06 08 1

(c). The given function is discontinuous at x = £ 1. At these points, the series will
converge to a value of zero. The error can never be made arbitrarily small.

10(a). As shown in Problem 22 of Section 10.2,
1 12 & 1 (2n — 1)z

n= 10

0.5

0.6

0.4+

0.2

[gul
[gul

0.5

0.6

0.4+

0.2+

ra
ra
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n= 40

1_

0.8

06

0.4

024 FMIM
2 -1 1 2

(c). The given function is discontinuous at x = + 2. At these points, the series will
converge to a value of — 1. The error can never be made arbitrarily small.

11(a). As shown in Problem 6, above ,

1 2 o0 _1”
flx) = é—f—p;( nQ) COSNTL —

(o —(—1)"] (-1)"] .
_Zl{[ ( )]—f—( ) sinnwx .

n3m3 nmw

n= 10
0.5

0.44
0.34
0.24

0.14

408 06 04 02 02 04,06 08 1
n= 20
0.5
0.4
0.3
0.2]

0.14

R,

1 08 06 04 02 02 04,06 08 1
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n= 40
0.59

0.44

0.39

0.24

0.14

he...

408 06 04 02 02 04,06 08 |

(c). The given function is piecewise continuous, with discontinuities at the odd integers .
At x;=2k—1,k=0,1,2,---, the series converges to

|f($d_)+f($d+)|:1/2-

At these points the error can never be made arbitrarily small.

13. The solution of the homogenous differential equation is
y.(t) = ¢, coswt + ¢, sinwt .

Given that w? # n?, we can use the method of undetermined coefficients to find a
particular solution

Hence the general solution of the ODE is

y(t) = cicoswt + ¢ sinwt + ———— sinnt.
w?—n
Imposing the initial conditions, we obtain the equations
C, = O
w e =0.
> + 2
It follows that ¢, = — n/[w(w? — n?)]. The solution of the IVP is
) 1 ot n ol
= ———=sinnt — ———— sinwt.
Y w? — n? w(w? — n?)

If w? = n?, then the forcing function is also one of the fundamental solutions of the
ODE.

The method of undetermined coefficients may still be used, with a more elaborate trial
solution. Using the method of variation of parameters, we obtain
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. 2 .
sin°nt cosnt sinnt
Y(t) = — cos nt/ dt + sin nt/—dt
n n
_ sinnt —ntcosnt
- 2n2 ’

In this case, the general solution is

t
y(t) = ¢, cosnt + ¢y sinnt — 3, €08 nt.
n

Invoking the initial conditions, we obtain ¢, = 0 and ¢, = 1/2n?. Therefore the
solution
of the IVP is

t
t) = —=sinnt — — cosnt.
y(t) = 2n? 2n

16. Note that the function f(¢) and the function given in Problem 8 have the same
Fourier
series. Therefore

ft) = % + % Z mcos@n— 1)mt.

The solution of the homogeneous problem is

y.(t) = ¢, coswt + ¢, sinwt .

Using the method of undetermined coefficients, we assume a particular solution of the
form

Y(t)=A+ Z A, cosnmt.
n=1

Substitution into the ODE and equating like terms results in A4, = 1/2w? and

an
Ay = 2 —n2n2”
It follows that the general solution is
4 — cos( 2n — )t
t) =c coswt +c smwt—i— — .
Setting y(0) = 1, we find that
Cl_l__Q_ii cosQn—l)wt .
2w —(2n-1) 7T2]
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Invoking the initial condition y’(0) = 0, we obtain ¢, = 0. Hence the solution of the
initial value problem is

1 cos( 2n - 1)7rt — coswt
y(t) = coswt — 2—coswt+ 5.2 + ﬁ Z

w? —(2n —1)°x 2] .
17. Let
nmwx
by '——]
+ nz_:l [an cos + sin 7
Squaring both sides of the equation, we formally have
|f x —i—Z[a cos’ —i—bQ } +agz [an cos —&—bn sm? +
+ Z [cmn cos sm?} .
m#n

Integrating both sides of the last equation, and using the orthogonality conditions,

L 2d . La(Q)d+OO LQ 2nﬂ'xd LbQ,Qmm‘d
_L|f(x)| xr = —ax Z /_ancos I x—l—/_L nsmT T

:%L+§:aL+M

n=1

Therefore,
I 2 ag (2 2
ZZN“”MZ?+Z¥%+W‘

19(a). As shown in the Example, the Fourier series of the function

0, —L<z<0
ﬂ@_{g O<z<L,

is given by

L N 2L~ 1 (2n—1)mx
— sin
2 o — 1 3

Setting L =1,
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It follows that

ni?’ﬂl— sin(2n — 1)mx = g [f(m) — %] (i)
(b). Given that

g(x) = i% sin(2n — )7z, (1)

and subtracting Eq.(i4) from Eq.(7), we find that

T 1 — 2n —1 .
g(x) — B) [f(x) — —} = ;m sin(2n — 1)mx —

o
— Z ! sin(2n — 1)z
—2n—1

Based on the fact that
2n —1 1 1

1+@2n—17 20—1  @n-D[1+@2n-1)7"

and the fact that we can combine the two series, it follows that

glz) = g{ ] i (2n QSZ? 2n+_<;:rf ONN
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Section 10.4
1. Since the function contains only odd powers of x, the function is odd.

2. Since the function contains both odd and even powers of x, the function is neither
even nor odd.

4. We have secx = 1/cos x . Since the quotient of two even functions is even, the
function is even.

5. We can write |z|* = |z| - |2z|> = |z| - 2. Since both factors are even, it follows that
the function is even.

8. L=2.

Ewven Extension
2_

Odd Extension
2_
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9. L=2.

11. L =2.

Even Extension

0dd Extension

2

Even Extension

2
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Odd Extension
2_

am
rad

12. L=1.

Even Extension
5_

e

A7 08 05 04 02 02 04,06 08 1

Odd Extension

4_\

408 He Oa 02 03 D.'axu.'a o8 1

2

\-r

16. L = 2. For an odd extension of the function, the cosine coefficients are zero. The
sine coefficients are given by
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nmwx

b, = /f sm—d:c

2
:/ xsmwd:ﬁ—l—/ Sin@dx
0 2 | 2

2 sm7 — NT COSNT
=2 2.9
nAm
Observe that
nmw 0, n=2k
— | = ’ k=1,2,
szn(2) {( 1)k+1,n:2k_1
Likewise,
1, n=2k _
cosmr—{ .n=2k—1 yk=1,2,--

Therefore the Fourier sine series of the specified function is

D"+ -1 . (2n— 1)z

:——Z—sznnmp—i—pz n—1)2 sin 5

n=1

A
AV

17. L = w. For an even extension of the function, the sine coefficients are zero.
The cosine coefficients are given by

ay = %/OLf(x)dx
_ %/Oﬂ(l)dx

=2,
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and forn > 0,

/ fx coswdx

= —/ (1)cos nx dx
TJo

=0.

The even extension of the given function is a constant function. As expected, the Fourier
cosine series is

19. L = 3. For an odd extension of the function, the cosine coefficients are zero. The
sine coefficients are given by

/ f(x sin@d:p

3

n 2 n
sm—dac + — 2 sin—dx
T 37 x 3 3 3
2cosnm — cos%7r — cos 2’:;”
nm

Therefore the Fourier sine series of the specified function is

2 X1 nmw 2nm . nx
f(x) = — E —|cos— + cos—— — 2cosnm| sin—.
T “—~n 3 3 3
n=1
3_
—_— 2_ —_— —_—
o o o
- 1_ - -
o o [+]
20 i o, 20
[+ [+] [+]
—_— R "]_ R
o o o
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21. Extend the function over the interval [ — L, L] as

f(z) = z+ L, —L<zx<0
| L—=x, 0<z<L.

Since the extended function is even, the sine coefficients are zero. The cosine
coefficients
are given by

and forn > 0,
9 L
an = Z .

9 (L
= E/o (L — :v)cosnl_/ix dx

1 —cosnm

f(x)cos?d:c

=2L 12

Therefore the Fourier cosine series of the extended function is

L AL & 1 (2n — 1)z
f(x)—g—i—pz(%z_lfcos 7 :

n=1

In order to compare the result with Example 1 of Section 10.2, set L = 2. The cosine
series converges to the function graphed below:

3_

-1

This function is a shift of the function in Example 1 of Section 10.2.
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22. Extend the function over the interval [ — L, L] as

oy [ roL. —L<z<0
t)= L—x, 0<$§L,

with f(0) = 0. Since the extended function is odd, the cosine coefficients are zero. The
sine coefficients are given by

9 (L
b, = Z/o f(x)sinnl_/ﬂdx
9 (L

= z/o (L — x)sm? dx
B 2L
o

Therefore the Fourier cosine series of the extended function is

2L <1 . nmx
f(a:):?;ﬁsm 7
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Setting L. = 2, for example, the series converges to the function graphed below:

2_

4
e 4
o

23(a). L = 27. For an even extension of the function, the sine coefficients are zero.
The cosine coefficients are given by
=2 [ 1)

——/ rdx
T™Jo

=7/2,

and forn > 0,

/ f(z cos@dx

== " a
7'('/0 336082 x

2008( ) —H’msm(%) -2
2 T .

Therefore the Fourier cosine series of the given function is

2 & 2
flz) = Z + — nz_:l [Esmm + ﬁ<cosm — 1)]003@.

Observe that

Likewise,
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cos(@):{(_l)k’n:% k=12,

2 0, n=2k-1 T
(0).
4
3_
2_
[+] [+] [+] [+] [+] [+]
45 0 & g 10 15
®
(c).
m=10 m=40
49 4
3]
5]
1_
A I
i 2 B 5 VAR 2 B
1 1

24(a). L = 7. For an odd extension of the function, the cosine coefficients are zero.
Note that f(x) = —x on 0 < x < 7. The sine coefficients are given by

/ flx sin@dm

= — — xsmmsda:
T™Jo

2cosnm

n

Therefore the Fourier sine series of the given function is
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26(a). L =4. For an even extension of the function, the sine coefficients are zero. The
cosine coefficients are given by

L
ay = %/0 f(x)dz
1

4
_ - 2
= 2/0 (:1: 2:1:)d3:

—8/3,

and forn > 0,
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/ f(x COS@CZQT

= 5/ (x —Qx)cosan:I:

0
1+ 3cosnm

=16 22

Therefore the Fourier cosine series of the given function is

4 16 =1+3(-1)" nmx
f(x):§+pn:1 o cos— —.

=40

m
5
G- ]
44 44
21 5]
U 3 i 43 w
kS
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27(a).

Odd

=3,
and forn > 0,
o L
=7 f(x cos—da:
0

9 3
= §/0 (3— x)cos% dz
. L—cosnm
N n2m?

Therefore the Fourier cosine series of the given function is

1— —1 nmwe
9( = W2ZI 083.

For an odd extension of the function, the sine coefficients are given by

b, = / f(x zn—da:

= §/0 (3 — :z:)smn% dz

6

nmw

Therefore the Fourier sine series of the given function is
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(d). Since the even extension is continuous, the series converges uniformly. On the

other
hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for

all values of n .
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29(a).

(b). L = 2. For an even extension of the function, the cosine coefficients are given by
=2 [ e
4z — 3
= / [—a: ] dx
0 4

= —5/6,

/ f(x cos—d:c
/ [ —4x — 3] nwr
= ————— |cos—— dx
0 4 2

:41+3cosn7r

and forn > 0,

n?m?

Therefore the Fourier cosine series of the given function is

1+ 3( —1)” nwx
g(az)——— WQZ cos——.

For an odd extension of the function, the sine coefficients are given by

/ f(z sm—dm

/ [ —4x — 3] Y
= sin dx
0 4 2

32 + 3n272 + 5n?rlcos nm — 32 cosnw
2n3m3 ’

Therefore the Fourier sine series of the given function is
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Sin

1 & 32(1 —cosnn) +n’*n?(3+5cosnw) . nrw
h(z) = — 273 Z n3 9

n=1

(c). For the even extension:

m=10 m =40
121
E ]
087 0
061 06
0.43 0.4
02 0]
* 1 027 i ? 2 ! 2
047
064
0
-14

For the odd extension:

(d). Since the even extension is continuous, the series converges uniformly. On the
other

hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for
all values of n .
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30(a).

Even Odd

(b). L = 3. For an even extension of the function, the cosine coefficients are given by

/f

:—/ (w — 522 +5:L'+1)d
3.Jo

=1/2,

and forn > 0,

N
a, = /f cos—d:c

:—/ (x — 522 +5x+1)cos@da:
3Jo 3

162 — 15n27? + 6 n’w2cosnm — 162 cos nw
nimt '

Therefore the Fourier cosine series of the given function is

1 2 162(1 — cosnm) — 3n*7*(5 — 2cosnw) nmx
9(>_Z+—Z " cos—o—.
n=1

For an odd extension of the function, the sine coefficients are given by

/ f(x sm—dm

25/0 ( — 52 +5x+1)sdex

90 4+ n?n2 4+ 2n2n2cosnw + 72 cosnw

=2
n3m3

Therefore the Fourier sine series of the given function is
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sin
n3 3

2 K 18(5 +4cosnm) + n*n?(l1+2cosnm) . nmx
hiz) =5 ) .

For the odd extension:

m=10 m =40

(d). Since the even extension is continuous, the series converges uniformly. On the

other
hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for

all values of n ; particularly at x = £+ 3.

33. Let f(x) be a differentiable even function. For any z in its domain,
fl—z+h)=f(—2)=flz—h)-fz).

It follows that

page 645



CHAPTER 10. —

h—0 h
S h) - f@)
h—0 h
e fle—h) - f(=z)
= M
Setting h = — 6, we have
o @8~ f@)
—6—0 0

= @),
Therefore f/'( —xz) = — f'(z).

If f(z) is a differentiable odd function, for any z in its domain,

fl=z+h)=f(—2)= - flz—h)+ fz).

It follows that
o S =)+ (@)
h—0 h
_ o fl@=h) = f(z)
=T =R
Setting h = — 6, we have
S8~ )
—5—0 )
= f'(z).

Therefore f'( —z) = f'(x).
36. From Example 1 of Section 10.2, the function

-z, —2<xz<0
f(ac)—{ x, 0<z<?2,

(L = 2) has a convergent Fourier series
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- -4 2 2, 4 B

Since f(x) is continuous, the series converges everywhere. In particular, at x = 0,
we have

It follows immediately that

i ety
— 2n_1 32 52 72 :

40. Since one objective is to obtain a Fourier series containing only cosine terms, any
extension of f(z) should be an even function. Another objective is to derive a series
containing only the terms

(2n — 1)z
e e —-1.9....
cos 5T , N , 2,
First note that the functions
nmIT
— =12
cos 7 n ,2,

are symmetric about x = L. Indeed,
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nmw(2L — x) <2 nm;)
co§——— = cos(2nm — —
L L
B ( nm;)
= cos| — —
L
nw
= cos—.
L

It follows that if f(x) is extended into (L ,2L) as an antisymmetric function about
=1L,
thatis, f(2L —xz) = — f(z) for 0 < x < 2L, then

2L

f(x)cosw dr=0.
0 L

This follows from the fact that the integrand is antisymmetric function about x = L.
Now
extend the function f(z) to obtain

Yo f(x), 0<z<L
f(x)_{ —f(2L-1z), L<z<2L.

Finally, extend the resulting function into ( — 2L, 0) as an even function, and then as a
periodic function of period 4L.

By construction, the Fourier series will contain only cosine terms. We first note that

) 2L

Cl():_ f()

_ / f(z)dz — —/ F2L — 2)da
_ f/o F(z)da — f/o F(u)du

=0.
Forn > 0,
2 [~ nmr
n — 571 —d
a f (x)cos 5L 4%
1 2L
/ f(x cos@dx— /), f(2L—x)cos%dx.
For the second integral, let ©w = 2L — x. Then
2L
cos L COSM =(-1)" cos

2L 2L 2L
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and therefore

2L L
/L f2L — x)cos%dw =(- 1)”/0 f(u)cos%du.
Hence
1—(—-1 n L
a, = #/0 f(m)cos%dm.

It immediately follows that a,, = 0 forn =2k, k=0,1,2,---, and

2 F 2k — 1
o1 = E/ f(x)cos%dm, for k=1,2,---.
0

The associated Fourier series representation

R (2n — )7z
f(x) = 7;0@2,,,,_1605 5T

converges almost everywhere on ( — 2L ,2L) and hence on (0, L).

For example, if f(z) = x for 0 < x < L = 1, the graph of the extended function is:
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Section 10.5

1. We consider solutions of the form u(z,t) = X (z)T'(¢). Substitution into the partial
differential equation results in

2 X"T+ XT' =0.
Divide both sides of the differential equation by the product X'7T" to obtain

X// + T/ B O
Tx T T
so that
X// B T/
X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say A. We obtain the ordinary differential equations

X" - AX=0and T'+ \T =0.

2. In order to apply the method of separation of variables, we consider solutions of the
form u(x,t) = X(z)T'(t). Substituting the assumed form of the solution into the partial
differential equation, we obtain

tX'"T+xXT' =0.
Divide both sides of the differential equation by the product ¢t X7 to obtain

XII T /
X T =Y
so that
X// T !/
X T

Since both sides of the resulting equation are functions of different variables, it follows
that
X// T/
— = - — =\
X tT
Therefore X (x) and 7T'(¢) are solutions of the ordinary differential equations

X' X X=0and T+ MT =0.
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4. Assume that the solution of the PDE has the form w(z,t) = X (z)T'(¢). Substitution
into the partial differential equation results in

[p(x)X')'T —r(z)XT" = 0.

Divide both sides of the differential equation by the product r(x) X7 to obtain

p@x) T
r(z)X T ’
that is,
pl) X _T"
r(r)X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A. We obtain the ordinary differential equations

[p(2)X'] + Mr(z)X =0 and T" + AT =0.

6. We consider solutions of the form u(x,y) = X(z)Y (y). Substitution into the partial
differential equation results in

X"Y + XYY" +2XY =0.
Divide both sides of the differential equation by the product XY to obtain

X// Y//

x Ty te=0
that is,

X// Y/l

X Ty

Since both sides of the resulting equation are functions of different variables, it follows
that
X// Y//

2 4= -1 = .
x 7 Y

We obtain the ordinary differential equations

X'+ (xz+MN)X=0and Y- XY =0.

7. The heat conduction equation, 100 u,, = u;, and the given boundary conditions are
homogeneous. We consider solutions of the form u(z,t) = X(z)7'(t). Substitution
into

the partial differential equation results in
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100 X"T = XT'.
Divide both sides of the differential equation by the product X7 to obtain
X/l T/
X 1007

Since both sides of the resulting equation are functions of different variables, it follows
that

X// T/

= = — .
X 100T

Therefore X (x) and T'(t) are solutions of the ordinary differential equations
X"+AXX=0and T'+100AT =0.

The general solution of the spatial equation is X = ¢,cos \?*x + ¢, sin A\V?z . In order
to satisfy the homogeneous boundary conditions, we require that ¢, = 0, and

A2 =,

Hence the eigenfunctions are X,, = sin nwx , with associated eigenvalues \, = n’7?.

We thus obtain the family of equations 7"/ + 100\, 7" = 0. Solution are given by
T — o 1000t

Hence the fundamental solutions of the PDE are

—100n27%t

u,(x,t) =e sinnme,
which yield the general solution
> 2,2
u(x,t) = g ¢, e 0T sin nra
n=1

Finally, the initial condition u(x,0) = sin 27z — sin 5mx must be satisfied. Therefore
is it necessary that

o0

ch SINNTE = SN 27T — SINOHTX .
n=1
It follows from the othogonality conditions that ¢, = — ¢; = 1, with all other ¢, = 0.

Therefore the solution of the given heat conduction problem is

6—25007r2t

T :
u(z,t) = e " sin 2w — sin b .

page 652



CHAPTER 10. —

9. The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<40, t>0;
u(0,t) =0, u(40,t) =0, t > 0;
u(z,0) =50, 0 <z <40.

Assume a solution of the form w(z,t) = X (z)T'(t). Following the procedure in this
section, we obtain the eigenfunctions X,, = sinnmx /40, with associated eigenvalues
A\, = n?72/1600. The solutions of the temporal equations are

T, = e M,

Hence the general solution of the given problem is

d > nwx
— 2 :C —n’r t/1600 sin )
40

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = 50. That is,

/ f(x sinwdx

nmwx
= - —d
2/0 sin 10 ®

The sine series of the initial condition is

sin

1001 — cosnm . nrx
50 = T Z n 40 -

n=1

Therefore the solution of the given heat conduction problem is

100 1 —cosnm 20 nw
u(z,t) = - Zl b e £/1600 mﬂ'

11. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by

0, 0<z<10,
u(z,0)=< 50, 10<z <30,
0, 30<x<40.

All other data being the same, the solution of the given problem is
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o0

nmTx
U(:L‘ ’ t) _ ch e " 7r2t/1600 znﬂ .

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0). Thatis,

/ f(x sin@dm

. nrT
= — sin——dx
2 /10 40

nro__ 3nm
cos™ 4 COS=5~

=100
nmw

Therefore the solution of the given heat conduction problem is

0 nm 3nm
100 COST™ — COSTm 21600 . ML
e sin——.
n 40

u(x,t) = -
n=1

12. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by
u(z,0) =z, 0<ax<40.

All other data being the same, the solution of the given problem is

00
_ 2 nmTx
_ 207 n’r f/lGOO sin )
a 40

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = = . That s,

/ f(x sin@dx

Therefore the solution of the given heat conduction problem is

n+1

80 oA /1600 o) ML
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13. Substituting x = 20, into the solution, we have

100 X1 — ‘
u(20,t) = - Z c:s o e_"zﬂ/moosin% :

n=1

We can also write

200 - (—1)k+1 —(2k—1)*7%t/160
u(20,t) = e~ (2k—1)"mt/1600
T ]; 2k -1

Therefore,

00 k’+1 2 s
(20,5) Z ~(2k=1)"72/320

Let

n+1
A, = (-1 1200 67(21671)271'2/320
m(2k — 1) '

It follows that | A;| < 0.005 for k > 9. So for n = 2k — 1 > 17, the summation is
unaffected by additional terms.

For t = 20,

00 k+1 2

Let

A, = (— 1)n+1200 67(%71)2#2/80
m(2k — 1) '

It follows that | A;| < 0.003 for k > 5. So for n = 2k — 1 > 9, the summation is
unaffected by additional terms.

For t = 80,
o0 k'+1
(20 80 Z 2k 1)2 2/20
Let
Ay = (- 1)n+1200 e—(2k—1)27r2/20.
m(2k — 1)

It follows that | A;| < 0.00005 for k > 3. So for n = 2k — 1 > 5, the summation is
unaffected by additional terms.
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The series solution converges faster as t increases.

14(a). The solution of the given heat conduction problem is

[o¢]
100 T COSTUT__n2r2i/1600 o, VT
40

M

U

Setting ¢ = 5, 10, 20, 40, 100, 200 :

a0

401

307

u

207

104

(b). Setting x = 5,10, 15,20 :

501
45
40

U35_
30

257

201

30 40 50
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(c). Surface plot of u(x,t) :

(d). 0 <wu(x,t) <1 fort>675sec.

t=675

14

0.8

0.6

u

0.4

0.2

a 10 0 30 40

16(a). The solution of the given heat conduction problem is

3nm
100 X cos™™ — cos™2 ™ 4, . nTx
u(z,t) = Z 1 ,—n?rt/1600
T n=1

4
n zn40
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Setting ¢ = 5, 10, 20, 40, 100, 200 :

504
400
307

201

(b). Setting = = 5,10, 15,20 :
50
407
307

u
201

. 10 0, W 40 £0

(¢). Surface plot of u(x,1t) :
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(d). 0 <wu(x,t) <1 fort>615sec.

t=E15
1 4
0.5
0.6
u
0.41
0.2
u 10 20 30 40

17(a). The solution of the given heat conduction problem is
80 <X (— )" s
u(z,t) = ;;';ggg——jﬁl——-6_”7r”1mm3inzzgg.
Setting ¢ = 5,10, 20, 40, 100, 200 :

307
25—3
20
U5
10—3

5

T - -

(b). Analyzing the individual plots, we find that the 'hot spot' varies with time:

t |5 | 10|20 |40 | 100 | 200
T, 331311292622 |21
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Location of the 'hot spot', x;, , versus time :

@

324
304
281
xh
26 .

24

221 ¢

0740 B0 8D 1@ BT T8 30
Evidently, the location of the greatest temperature migrates to the center of the rod.

(¢). Setting x = 5,10,15,20 :

304
281
26
244
224
U2D-
184
16
144
123
10

0 20 0, 60 a0 100

(d). Surface plot of u(x,t) :
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(e). 0 <wu(x,t) <1 fort>525sec.

t=45825

0.84
0.6
0.4

0.2

19. The solution of the given heat conduction problem is

n

200 =1 — :
u(x , t) _ - Z CT(ZS nm 6_”2720‘2’5/40051' n;)x .

n=1

Setting x = 10cm,,

w(10,1) = 200 i 1 —cosnm eanWzazt/Zloosin% '
7T

n=1 n

A two-term approximation is given by

u(10,t) ~ 40—0 [3 e~ t/400 _ —97m%a?t/400 |
3m
From Table 10.5.1 :
o2
silver 1.71

aluminum | 0.86
cast iron 0.12
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2

(a). a* =1.71:

100

50

50

404

20

(b). a® = 0.86 :

1001

804

G0

404

204

(c). > =0.12:
1004
80
G0
404

204

u(10 4

0 40 B0 &0 100

w10,y

20 40 80 100 120 140

[}

w104

[am)

200 400 500 800 1000
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21(a). Given the partial differential equation
aUyy —bus +cu=0,

in which a, b, and c are constants, set u(x,t) = e*w(z,t). Substitution into the PDE
results in

aew,, — b(6 elw + e‘%wt) +ecefw=0.
Dividing both sides of the equation by e, we obtain
AWy —bw, + (¢ —bd)w =0.
Aslong as b # 0, choosing 6§ = ¢/b yields

a
_w:px_wt:():

b

which is the heat conduction equation with dependent variable w .

23. The heat conduction equation in polar coordinates is given by
9 1 1
« urr+_u7'+_2u90 = Ut .
r r

We consider solutions of the form u(r, 6 ,t) = R(r)O(0)T'(t). Substitution into the
PDE
results in

o’ [R”@T +irery % R@”T] = ROT'.
r r

Dividing both sides of the equation by the factor RO, we obtain
R"” 1R 16" T’

R rR 720 o
Since both sides of the resulting differential equation depend on different variables, each
side must be equal to a constant, say — \. That is,

R/l 1 R/ 1 @// T/
R rTRTEe T ar
It follows that T/ + o?X?>T = 0, and
R/I 1 RI 1 @Il
RTRTPe

— A2,

— — 2.

Multiplying both sides of this differential equation by 72, we find that

" / "
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which can be written as

R// RI @//
2°v v 22: _
r I +7r 7 + \°r 5

Once again, since both sides of the resulting differential equation depend on different
variables, each side must be equal to a constant. Hence
1 !/ @ 1/

7“2%4—7“?—#)\21"2:#2 and — 5

The resulting ordinary equations are
?R"+rR' + (Nr? — > )R =0
0"+ u*0=0
T' 4+ a*X°T =0.
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Section 10.6

1. The steady-state solution, v(x), satisfies the boundary value problem

v"(z) =0, 0 <z <50, v(0) =10 ,v(50) = 40.
The general solution of the ODE is v(x) = Az + B. Imposing the boundary conditions,
we have

40 — 10 3T
50 T+ 5 +

v(x)

2. The steady-state solution, v(x), satisfies the boundary value problem
v"(z) =0, 0 <z <40, v(0) =30 ,v(40) = —20.

The solution of the ODE is /inear. Imposing the boundary conditions, we have

—20 — 30 5
— i E+30=— - +30.

v(x) =

4. The steady-state solution is also a solution of the boundary value problem given by
v"(z) =0, 0 <z < L, and the conditions v’(0) = 0, v(L) = T. The solution of the
ODE is v(x) = Az + B. The boundary condition v’(0) = 0 requires that A = 0. The
other condition requires that B = T'. Hence v(z) =T .

5. Asin Prob. 4, the steady-state solution has the form v(x) = Az + B. The boundary
condition v(0) = 0 requires that B = 0. The boundary condition v’(L) = 0 requires
that A = 0. Hence v(z) =0.

6. The steady-state solution has the form v(z) = Ax + B. The first boundary
condition, v(0) = T, requires that B = T'. The other boundary condition, v'(L) =0,
requires that A = 0. Hence v(z) =T .

8. The steady-state solution, v(x), satisfies the differential equation v”(z) = 0, along
with the boundary conditions
v(0)=T , v'(L)+v(L)=0.

The general solution of the ODE is v(z) = Ax + B. The boundary condition v'(0) = 0
requires that B = T'. It follows that v(z) = Az + T, and

v'(L)+v(L)=A+ AL+T.

The second boundary condition requires that A = — 7'/(1+ L). Therefore

o(z) = — Tx

T.
1—|—L+
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10(a). Based on the symmetry of the problem, consider only /eft half of the bar. The
steady-state solution satisfies the ODE v” (z) = 0, along with the boundary conditions
v(0) = 0 and v(50) = 100. The solution of this boundary value problem is v(z) = 2.
It follows that the steady-state temperature is the entire rod is given by

fz) = 20, 0<x<50
T)'T1200— 22, 50 <z < 100.

(b). The heat conduction problem is formulated as

Py, = Uy, 0<z<100, t>0;

w(0,1) = 20, w(100,4) =0, ¢t > 0;

u(z,0) = f(z), 0<x<100.
First express the solution as u(x ,t) = g(x) + w(z,t), where g(x) = — x/5 + 20 and
w satisfies the heat conduction problem

Qwg, = wy, 0<xz<100,t>0;

w(0,t) =0, w(100,t) =0, t > 0;

w(z,0) = f(z) —g(x), 0<x<100.

Based on the results in Section 10.5,

o0

—n2r2a2 . nNTx
w(x t) — c, e n o t/IOOOOSZ’N,—
’ 100’

n=1

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — g(x). That is,

L s
o =1 [ V@)= g(@)sin™ T da
1 [0 nmwx
= 50/, [f(z) — g(@)]sinq5dz

20 sm”{ —nm
=40

n2m?
Finally, the thermal diffusivity of copper is 1.14 cm?/sec . Therefore the temperature
distribution in the rod is

w(z t) = 20 — x N @ ©_9() sin% —nm o1 14n22%/10000 nwL '
b n? 100
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(c). t =5,10,20,40 sec :

501
B0
401

20

t = 100, 200, 300, 500 sec :

. 20 0, & 80 100

w=25cm
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=150 cm
95
954
94
924
90
85
854
84
824
804
784
761 .
0 20 440 4 ED a0 100
¥=75cm
a0+
49.84
49,64
49.44
49.21
494
43.84
0 20 40 &0 a0 100

(d). The steady-state temperature of the center of the rod will be g(50) = 10°C'.

¥ =4a0cm
1001
801
B0
401
20
D 1000 2000 2000 1000 5000

t

Using a one-term approximation,

800 — 407 o~ 11472/10000

u(z,t) ~ 10 + 5

™

Numerical investigation shows that 10 < u(50,t) < 11 fort > 3755 sec.
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11(a). The heat conduction problem is formulated as

Upy = Ut , 0<xz<30,t>0;
u(0,t) = 30, u(30,t) =0, t > 0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = x(60 — x)/30. Express the solution as
u(z,t) = v(z) +w(x,t), where v(z) = 30 — = and w satisfies the heat conduction
problem

Wy = Wy, 0<xz<30,t>0;
w(0,t) =0, w(30,6)=0, t>0;
w(z,0) = f(z) —v(x), 0<z<30.

As shown in Section 10.5,

o
Z o nAmt/900 o VT
n b
— 30

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — v(x). That s,

g m
Cp = %/0 [f(z) — g(x )]sznan;c
30 -
— 5| @)~ gosin’s do
60 2(1 — cosnm) — n?m*(1 + cosnm)

n3ms

Therefore the temperature distribution in the rod is

w(z,t) =30 —x+ i_o HZ:I 2(1 — cosnm) *nng 731+ cosnm) /900 n% ‘

(b). t =5,10,20,40 sec :
304
25
20
u15

107
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t = 50, 75,100,200 sec :
304
251
201

U154

¥=75
244

229

201

o

20 0, & 80 100

22
214

U204

100

[}
[ou]
[}
=
51
(s3]
o
o
(=)

page 670
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x=225

214
20,61
2061
20.43
20.2

201

RREEE
19.6
19.4
19.23

19
18.8
0 20 0, &0 80 100

Based on the heat conduction equation, the rate of change of the temperature at any given
point is proportional to the concavity of the graph of u versus x, that is, u,, . Evidently,
near ¢t = 60, the concavity of u(z,t) changes.

13(a). The heat conduction problem is formulated as

Upw = duy, 0<xz<40,t>0;
uz(0,t) =0, uy(40,t) =0, t > 0;
u(z,0) = f(z), 0<x <40,

in which the initial condition is given by f(z) = (60 — x)/30.

As shown in the discussion on rods with insulated ends, the solution is given by

00
Co 22,2 nmx
u(x,t):5+ § :cne n7rat/160()cosﬂ,

n=1

where ¢, are the Fourier cosine coefficients. In this problem,
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/fdx

0 2(60 — x)
)y
20 . 30 °
— 400/9,

and forn > 1,

/ f(x coswdm

02(60 — ) nwx
= d
20 . 30 “a ™
_ 160(3 + cosnm)

3n2m2

Therefore the temperature distribution in the rod is

200 160 = (34 cosnm) 20 nwL
u(r,t) = 5 " 3.2 - e t/64oocosﬁ.
n=1

(b). t = 50,100, 150,200 sec :

26
263
24
224
20

183
163
14
123
10

8_
0 10 20 0 40
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t = 40, 600, 800, 1000 sec :

25
24 1
u2217
201
18
16- T T T ]
1] 10 20 an 40
X
x=a x=10
164
184
141 17.64
129 17.64
17.43
107
17.2]
ugy ERFE
ol 16.8]
166
4 16.4
21 16.2
16
0 100 200 300 00 0 100 200 300 400
t t
- ®=40
"= 88
2851
% 28.47
2821
269
] 78
u uet
2757
241 27.43
2723
] 273
6587 ‘ .
o 100 200 ] 4o i 100 0 300 400
t
(c). Since
2.2 nmwx
: —n m-t/6400
lim e /6400065~ = )
t— o0 40

for each x, it follows that the steady-state temperature is u,, = 200/9.
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(d). We first note that

200 160 o~ (= 1)"(3+ cosnm) 2026000
_ (& .

9 32 n?
n=1

u(40,t) =

287
27
287
287
247

237

0 200 400 600 800 mt'nuubnmbmahmabn 2000

For large values of ¢, an approximation is given by

200 320
u(40,t) ~ ? + ﬁ e*Tl'Qt/6400'

Numerical investigation shows that 22.22 < u(40,t) < 23.22 fort > 1550 sec .

16(a). The heat conduction problem is formulated as

Ugy = Ut , O0<x<d30,t>0;
u(0,t) =0, uz(30,t) =0, t >0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = 30 — x. Based on the results of Prob.
15,
the solution is given by

o0
2, nmwTx
w(z,t) = c, e—(2n—1)z7rzt/36005in_’
@)= e -

in which

L
c, = %/0 f(x)sin%dm
1 (2n — 1)z
T 15/, 60
2cosnm+ (2n — )7

(2n — 1)*n?

(30 — x)sin dz

=120
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Therefore the solution of the heat conduction problem is

Sin

2003n7r+ 2n— D7 o0 12223600 . NI
xt-l?OZ e o~ (n—17%/ -0 -

n=1

(b). t = 10,20, 30,40 sec :

20
18
16
14

¢ = 40, 60,80, 100 sec :
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¢ = 100, 150, 200, 250 sec :

E_
E.
1]
44
2-
0 5 10 15 25 30
¥
x=10 w=20
204
104
184
164 3
144 g
121 71
u u
104
E_
B_
B 59
4 47
2 : : . . 3 : : . : ]
u] 100 200 t 300 400 s00 0 100 200 t 300 400 500
¥ =230
8_
E_
u
44
2_
0 100 200 300 400 500

page 676



CHAPTER 10. —

20 40 B0 , B0 100 120 140
The location of x5, moves fromz = 0 to x = 30.

(d).

304
251
261
24
22
uh 207
184
161
144
124
104 e

17(a). The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<30,t>0;
u(0,t) = 40, uz(30,t) =0, t > 0;
u(z,0) =30 —x, 0<x<30,

The steady-state temperature satisfies the boundary value problem
v" =0, v(0) =40 and v'(30) = 0.
It easy to see we must have v(x) = 40. Express the solution as

u(z,t) =40+ w(z,1),
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in which w satisfies the heat conduction problem

Wyy = Wi, 0<ax<30,t>0;
w(0,t) =0, w,(30,t) =0, t>0;
w(z,0)= —10—=x, 0<x<30.

As shown in Prob. 15, the solution is given by

00
_ _1)2.2 . nmx
w(sc t) _ c, e (2n 1)7rt/360087,n—,
)
n=1

60
in which
2 [* 2n — 1
Cn = Z/o f(x)sin%dx

I 2n — 1
=15 i (—10— x)sin%dz
_ 4060087’Lﬂ' - (2721 — )

(2n — 1) 72

Therefore the solution of the original heat conduction problem is

6 —(2n -1 2
cos nm — ( ? )T o~ (2n—1)7/3600 o VL
(2n — 1)"7? 60

u(z,t) =40+40 )

n=1

(b). t =10,30,50,70 sec :
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t = 100, 200, 300, 400 sec :

w =30

x=1a 204
28
2] 5
30 247
221
28 20
254 184
u 163
u 244 143
] 12_
22 123
204 5
E B3
18 ]
16 23

0 o 2W 30 4l 500 0 100 20, 30 400 500

(c). Observe the concavity of the curves. Note also that the temperature at the insulated
end tends to the value of the fixed temperature at the boundary x = 0.

18. Setting A = p2, the general solution of the ODE X" + p2X = 0 is
X(2) = ke’ 4 ko™ 7,
The boundary conditions y’(0) = y'(L) = 0 lead to the system of equations

| why — gk2 =0 (%)
pkie™t — pk,e” M = 0.

If © = 0, then the solution of the ODE is X = Az 4+ B. The boundary conditions
require that X = B.

If p # 0, then the system algebraic equations has a nontrivial solution if and only if the
coefficient matrix is singular. Set the determinant equal to zero to obtain

e~ b _ ginl —
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Let 4 =v + 0. Then iyl =L — oL, and the previous equation can be written
as

eGLeAWVL __efaLezVL =0.

Using Euler's relation, e’ = cosvL + i sinvL , we obtain

—UL(

e"F(cosv —isinv) —e L(cosv +isinv)=0.

Equating the real and imaginary parts of the equation,

(e”L - e_”L) cosvL =0

(e”L + e_"L) sinvL = 0.

Based on the second equation, vL. = nmw, n € . Since cosnL # 0, it follows that

el =e L or et =1. Henceoc =0,and y=nw/L,n €.

Note that if o # 0, then the last two equations have no solution. It follows that the
system
of equations (x) has no nontrivial solutions.

20(a). Consider solutions of the form u(z,t) = X (x)T'(¢). Substitution into the partial
differential equation results in

*X'T =T’

Divide both sides of the differential equation by the product X7 to obtain
)(H IM
X Q2T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A\. We obtain the ordinary differential equations

X'+AX=0and 7'+ Xa’*T =0.
Invoking the first boundary condition,
u(0,t) = X(0)T(t) =0.
At the other boundary,
uy(L,t) +yu(L,t)=[X"(L)+~vyX(L)]T(t) =0.
Since these conditions are valid for all ¢ > 0, it follows that

X(0)=0and X'(L)+~vX(L)=0.
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(b). We consider the boundary value problem

X' +XX=0,0<z<0L; (%)
X(0)=0, X(L)+~vX(L)=0.

Assume that \ is real, with A\ = — p2. The general solution of the ODE is
X(z) = ¢icosh(ux) + cysinh(ux) .

The first boundary condition requires that ¢; = 0. Imposing the second boundary
condition,

¢y peosh(puLl) + vy cysinh(pul) = 0.
If ¢, # 0, then pcosh(puL) + 7 sinh(uL) = 0, which can also be written as
(n+7)e't = (+y)e ™ =0.

If vy = — p, then it follows that cosh(uL) = sinh(uL), and hence pp = 0. Ify # — p,
then e*f = e # again implies that u = 0. For the case . = 0, the general solution is
X(x) = Az + B. Imposing the boundary conditions, we have B = 0 and

A+~AL=0.
Ify= —1/L,then X(x) = Az is a solution of (x). Otherwise A =0.

(c). Let A = p?, with u > 0. The general solution of (*) is
X(x) = eicos(pux) + eysin(pr) .

The first boundary condition requires that ¢, = 0. From the second boundary condition,
¢y peos(pul) + vy casin(ul) = 0.
For a nontrivial solution, we must have

pcos(pL) + v sin(pL) =0.
(d). The last equation can also be written as
tanul = — ) (k)
g

The eigenvalues A obtained from the solutions of (), which are infinite in number.
In the graph below, we assume vL = 1.
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rnul
245 810,12 14 18 18,70 22 24

[ Y
Lo

'
o
|

12
143
16
18
.20
222
224

For vL = —1:

244
229
204
1849
169
144
Y124
104

L

27476 8 10 12 14 18 18 20 22 24
rul

Denote the nonzero solutions of (k) by 14, o, i3, -+ .

(€). We can in principle calculate the eigenvalues )\, = u? . Hence the associated
eigenfunctions are X, = sin u,r . Furthermore, the solutions of the temporal equations
are T, = exp( — o?p? t). The fundamental solutions of the heat conduction problem
are given as

o2t
uy(z,t) = e “Flsinp,x,

which lead to the general solution

o0

—a2y? .
u(z,t) = E c, e “Fnlsin

n=1

page 682



CHAPTER 10. —

Section 10.7

2(a). The initial velocity is zero. Therefore the solution, as given by Eq. (20), is

o0
nmwe nrat

t) = n n— )
u(x,t) Cn SIN—F— COS—F

n=1

in which the coefficients are the Fourier sine coefficients of f(x). That is,

/f sin@dm
2

/L/44J: ) nm:d +/3L/4 . mrxd +/L 41, — 4x . nm:d
= — —sin——dzx sin——dx sin T
Llj), L L L/4 srja L L

sinnm/4 + sin 3n7r/4
8 2.2
n’m

Therefore the displacement of the string is given by

8 & [ ) BnW] . nrx nmat
= — Z n— + sin Sin coS .
72 —

4 L L

(b). Witha =1 and L = 10,

8 & 3 t
= —Z sinﬂ—l—sm nn sinmm cosn7T
7r2n:1 4 4 )

10 10

0.8 -0.24
0.6
u

0.44
0.2

-0.4]

021 x
0.4
061 -0.81
-0.89
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0.8

0.67
u

0.44

0.2

t=20
1
t=15

13

08 0.8

067
u

0.4 0.6

024 u

0 3 T8 5 w04

024

049 0.2

057

087

1 o P i, 6 g 10

x=25 ¥=h

14 L

0.5 0.84
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3(a). The initial velocity is zero. As given by Eq. (20), the solution is

o0

t
u(x,t) = ch sinn% cos m;a ,

n=1

in which the coefficients are the Fourier sine coefficients of f(z). That is,
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/ f(x sinwda}

L 2
8z(L —x)" . nmx
= E/O 73 sin— dx

2+ cosnm

=32 373

Therefore the displacement of the string is given by

3224 cosnm . nmx nmat
u(:v,t)—; 3 sin—— cos—

n=1

(b). Witha =1 and L = 10,

o0
(2.1) 32 24 cosnm | nmx nmt
u\x , = — Sin coSs .
3 = n3 10 10
n=1
t=25
t=5
071 0.41
069
051 ulz2
4 0.49
0.3 B & 10
0.29
-0.2-
014
0 2 i, 6 E gl
t=10 t=125
2 4 * g g 10 2 4 F g g 10
0 0
0.2 0.1
-0.21
-0.41
-0.3]
u-0.67 U4
0.8 051
067
214
0.7
-1.21
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t=15 t=20
0.4+ 1.2
13
024
081
u0.B
[3 ) 10
0.49
029
]
2 i, . g 10
(c).
x=5
¥=25
1_
14 087
sl 05
0.44
4067
024
0.4
0 10 a0 e 40 a0
021 02] !
o 10 D ® 40 g0 0.4
024 0.6
0.4 0.8
RE
¥=7Ah
0.4
0.2
10 2 o 40 50
]
029
049
U059
089
-1
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4(a). As given by Eq. (20), the solution is

in which the coefficients are the Fourier sine coefficients of f(z). That is,
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/ f(x sin@dx

/L/2+1 NI
= — sin——dx
LJppa L

0 I i) N0
siny sin'y
nmw

Therefore the displacement of the string is given by

(z.1) 4 i 1 [ onm . nw] . nmx nmat
u(z ,t) = — — |sin— sin— | sin—— cos )
’ T n 2 L L L

n=

(b). Witha =1 and L = 10,

. nmwl . NTT nmt
Z [sm— sm—} SIN—— COS—— .
— 10 10 10

t=0 t=25
1 ns
0.8 0.4+
05 0.3
u u
0.4 0.2
0.2 0.1
0 h 0
2 4, 6 B 10 2 4, B 8 10
t=75
t=5
2 4 F 5 g 10
= o
0.8
UD.E- 014
0.4
0.2 02]
0 3 17778 3 10 u
024 0.3
-0.49
069 4]
089
1 s
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t=10 t=125
x 10 2 4 * B 1n
] i
-0.24 0.1
0.4 021
u u
067 03]
0.8] 041
K 0.5
=248 ®=45
13
0.4 0.
" 05
0.24 n.44
0.2
o g] a0 h2 ha e B 2 07 2T 46 8 1012 14 18 18 20
t 024 t
-0.21 0.4
05
0.4 0.8
14
=75
0.4
u
0.2
u 24 I 14 15 18 20
-0.24
-0.44
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5(a). The initial displacement is zero. Therefore the solution, as given by Eq. (34), is

o
t
u(x,t) = an sz’nnLﬂ sinm;a ,
n=1

in which the coefficients are the Fourier sine coefficients of w;(x,0) = g(z). It follows
that
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L

2 . nmx
k, = — [ g(z)sin—dzx
nwa Jo L
2 2oy nrx oL —z) . nrx
= — —sin——dx + sin dx
nma 0 L L L/2 L L
sinnm/2
=8L—5—5—
n’mla
Therefore the displacement of the string is given by
(2.1) 8L X1 . nm . nwxr . nrmat
u(x,t) = — — SIN— Sin—— Sin
’ am? n3 2 L L
n=1
(b). Witha =1 and L = 10,
(z.1) 80 <=1 . nw . nwx . nut
u(x,t) = — — SIN— Sin—— Sin——.
’ 3 n3 2 10 10
n=1
t=25 t=5
1.84 249
164 229
2
1.4 15
124 164
uq_ u1.4'
0.5 1?:
067 0.8
0.4 b3
0.44
0.2 0o
o 3 1, 6 g 10 a 2 i, 8 g 10
t=7.58 t=10
181 13
16 083
141 06
121 0.4
E 024
0.8 n] J 7 ; I z n
05 02
0.4 04
-0.64
0.24
-0.54
o 2 i B B 0 RE
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02
0.4
06
08

-1.2
-1.4
-1.6
-1.8

ul

045

¥=25

w=7.45
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20
S
R
%%:Wmf

o e
SRe

]

=

7(a). The initial displacement is zero. As given by Eq. (34), the solution is

(o ¢]
t
u(zx,t) = an sin? sinm;a ,
n=1

in which the coefficients are the Fourier sine coefficients of w;(z,0) = g(x). It follows
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that

2 L nwT
k, = — in—:d
ol g(x)sin 7 de

2 [(l8x(L—2z)* . nmx
= ) d
nwa/o L3 s

2+ cosnmw

= 32L

niria
Therefore the displacement of the string is given by

(2.1) 2L KX 2+cosnm . nmx . nmat
u(z,t) = sin sin
amt — nt L L

(b). Witha =1 and L = 10,

320 X 2+ cosnm . nmx . nmt

u(x,t) = sin sin :
md n* 10 10
n=1
t=25 t=5
267
2.43
22 3
2 25
18]
157 2
RE: )
1]
0.6 1
0.6
0.4 05
0.2
o 2 i, 8 ) 10 o 3 i, B g 10
1=75 t=10
26
2.4] ]
2.2 0.59
2 4053
18 3
s 0.4
o 14 023
12 0 :
3 3 & g 10
! 0.2 x
0.8
0 0.4
0.4 067
0.2 08
] 2 2 B g 10 1
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t=125 t=15
2 4 % g g 10 2 4 X g 3 10
0 0
029
0.4 05
0]
089 1
=11
4.2 14
YUoyad
169 2
-1.89
o 25
229
243 3
264
(c).
¥=25 =5
3
2]
5]
u u

¥=74
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15
S
t\tﬂ“ m }} 5'! 4

""’ "I J.ll

8(a). As given by Eq. (34), the solution is

in which the coefficients are the Fourier sine coefficients of w;(z,0) = g(x). It follows
that
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2 [F nmwx
k, = — n—d
= ma ), g(x)sin 7 de

2 L/2+1 nrx
= — sin——dx
nma. )1 L
szn% szn"L—7r
=4 —
nmia

Therefore the displacement of the string is given by

4L XK1 [ nr . nﬁ} _nmr . nwat
— $in— Sin— | sin—— sin
am? n:1n2 2 L L L

u(x,t) =

(b). Witha =1 and L = 10,

o
40 1. nr  nmy . nmx . nut
u(z,t) = = ) —|sin— sin—|sin—— sin—
’ 72 L= n?
n=1

t=25 t=§
1 1
0.6 0.8
0.6 0.6
u u
0.4 0.4
021 0.2
0 z i, 6 g 10 0 2 i, 6 E 10
t=75 t=10
14 1
0.6
0.6
,08
0.4
0.6 0o
| )
04 o p) ik a 1
0.2
0.4
0.2
0.6
0.8
0 3 3 & 8 10 1
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u
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11(a). As shown in Prob. 9, the solution is

= (2n—Dmz  (2n—1)wat

u(x,t) = ;cn sin 5T cos 5T

in which the coefficients are the Fourier sine coefficients of f(x). It follows
that
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/f )sin 2= Ve 2n—1) z
:_/0 (L_““)Qsm(zn_l) dz

L L3 2L
2n —1
519 3cosn7r+(11 )
(2n — 1) 7

Therefore the displacement of the string is given by

2n _ 1) sStn o7, COS o7,

_ 512 i 3cosnrt+ (2n—1)r . 2n—1)mz  (2n— 1)mat
Note that the periodis T'=4L/a.

(b). Witha =1 and L = 10,
512 K 3cosnm+ (2n— 1) . 2n—Drxz (2n— 1)t

u(x,t) = sin cos
4 4 2 2
d n=1 (277, - 1) 0 0
t=0 t=25
1.2
074
1]
067
0.8 T
UG w04
0.39
0.4
0.24
0.24 1]
L P i, b g 10 o P i, 6B g 10
t=5 t=10
14 1
0.89 089
057
0.6
) 0.4
044 0.24
0 : : :
0.2 o] 2 4B E] 10
: 0.4
L p) i B g 10
X 057
0.2 0]
0.4 -3
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t=125 t=15
0.4
0.4 02
0.24 2 Foog 10
2 4 7 1n 0 ' t ' : '
]
0.2 -0.2
0.4 -0.49
| 4 u
0.6 e
-0.84
-0.89
-14
-1
t=175 t=20
2 4 * 1n 2 4 * g ] 10
0 0
0.1 221
-0.29
0.4
0.3
U4 u-064
-0.57 -084
069
14
079
-1.24
(c).
x=7.h =5
1_
1_
089
0.8
u0.64 uD'E_
E 0.49
L REVANEA
o i a0 40 u D 20 3 40
0.2 t 029 t
-0.41 YE
0.6 s
0.8
-0.eq
=14 !
®¥=75 w=10
1.29
0.6 1]
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uld.44 MiL:E
0.2 049
029
0 1 D i 0 1 i Ihi
029 '0'4 t
049 0.6
0ed
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*‘"":'ﬂfrir-

Il/f*'

*;.:m
i
\\\\ I;/’ Ve

12. The wave equation is given by
20U
“orr T e
Setting s = /L, we have
Ju Ouds 10u

Or Osdr LOs’
It follows that

page 703



CHAPTER 10. —

Pu 1 du
Ox?2 L2 0s?
Likewise, with 7 = at/L,

o _atu | Ou_ a0
ot Lot o2 L2972’

Substitution into the original equation results in

?u  O*u

s> or?

15. The given specifications are L = 5ft,T = 501b, and weight per unit length
v = 0.026 Ib/ft. 1t follows that p = 7/32.2 = 80.75 x 10~° slugs/ft.

(a). The transverse waves propagate with a speed of a = /T'/p = 248 ft/sec .

(b). The natural frequencies are w, = nma/L = 49.8 mn rad/sec .

(¢). The new wave speed is a = /(T + AT')/p . For a string with fixed ends, the
natural modes are proportional to the functions

nwx
n = s1 o
M, (x) = sin 7

which are independent of a .
19. The solution of the wave equation
a*0yy = vt
in an infinite one-dimensional medium subject to the initial conditions
v(xz,0) = f(z), w(x,0)=0, —oco<z<o0

is given by

[f(x —at) + f(z + at)].

N | —

v(x,t) =

The solution of the wave equation
@’ Wey = Wy ,
on the same domain, subject to the initial conditions
w(z,0) =0, w(z,0)=g(zr), —c0<z<0

is given by
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r+at
wait) =5 [ o€,

—at

Let u(x,t) = v(x,t) + w(z,t). Since the PDE is linear, it is easy to see that u(z , )
is a solution of the wave equation a’u,, = uy . Furthermore, we have

u(z,0) =v(z,0) +w(z,0) = f(x)
and
ug(x,0) = v(2z,0) + w(x,0) = g(x) .

Hence u(z,t) is a solution of the general wave propagation problem.

20. The solution of the specified wave propagation problem is

(z.1) > . nrx nrat
u(x,t) = E ¢, Sin—-— cos )
— L L

Using a standard trigonometric identity,

. nmx nrat B 11 . nmwx n nrat 4 s nmwe nmat
sin i cos I~ 3 sin i i sin i i

—1['@( +at) + sin" (v — at)]
—2SZan a SZan a .

We can therefore also write the solution as

1 (0.¢]
u(zx,t) = 3 ch [smn%(x + at) + sm%(m - at)} :
n=1

Assuming that the series can be split up,

1 0.¢] [o¢]
u(z,t) = 3 [ch smn—;(m —at) + ch szn%(z + at)
n=1

n=1

Comparing the solution to the one given by Eq. (28), we can infer that

00
. T

h(z) = nr.
(z) C ST~

n=1

21. Let h(€) be a 2L-periodic function defined by

_ f(§), 0<¢<L;
MO_{—fo% L<e<o.

Set u(z,t) = 3[h(x — at) + h(z + at)]. Assuming the appropriate differentiability
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conditions on A ,

% = %[h’(w —at) + h'(x + at)]
and

% — %[h”(m —at) +h"(z + at)].
Likewise,

% — a;[h”(x —at) + h"(x + at)].

It follows immediately that

,0%u  O%u
Q' —— =

ox? o2
Lett > 0. Checking the first boundary condition,
(0 1) = %[h( — at) + h(at)] = %[ ~ h(at) + h(at)] = 0.
Checking the other boundary condition,
w(L,t) = =[h(L — at) + h(L + at)]

[ — h(at — L) + h(at + L)].

N =D =

Since h is 2L-periodic, h(at — L) = h(at — L + 2L). Therefore u(L,t) =0.
Furthermore, for0 < z < L,

1
u(z,0) = 5[h(z) + h(z)] = h(z) = f(=).
Hence u(z,t) is a solution of the problem.

23. Assuming that we can differentiate term-by-term,

ou icnn . nmx . nrwat
— = —T7a 5in sin
ot 2. 3
and
ou X.c,n  nTT nmat
B = W; 7 Cos—— Cos—
Formally,
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(5i) = o B () o M i

+ 72a? Zan z,t)
n#m

and

in which F,,,(z,t) and G, (x,t) contain products of the natural modes and their
derivatives. Based on the orthogonality of the natural modes,

ou L& /c,n\2 . ,nmat
[ (5 ae- 5> () o'

1

and

0 L3N /e,n\2 t
/0 (GZ) dx—7r2§Z(CLn> cos® n7;a .

n=1

Recall that a> = T'/p. It follows that

LErou\? ou\ ZyTLNyc,n\2 . 4nmat
/0 [,O(E) +T(%) der=m TZ( ) sin I +
2

Therefore,
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