
Power Series Solutions

1 Power Series for Ordinary Points

1.1 Power series

A power series f(x) is a series given by
∞∑

n=0

an(x− x0)n = lim
m→∞

m∑
n=0

an(x− x0)n. (1.1)

It is said to converge if this limit exists. Otherwise it diverges. There is a radius of convergence ρ
such that the series converges for |x− x0| < ρ and diverges for |x− x0| > ρ. For |x− x0| = ρ the series
may either converge or diverge. This needs to be tested separately.

The radius of convergence can often be found using the ratio test. Consider the limit of the absolute
value of the ratio of two subsequent terms in the summation, being

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x− x0|L. (1.2)

The series converges if |x − x0|L < 1 and diverges if |x − x0|L > 1. In other words, the radius of
convergence here is ρ = 1/L.

Series can also be tested for equality. If we have two series a and b such that
∞∑

n=0

an(x− x0)n =
∞∑

n=0

bn(x− x0)n, (1.3)

then all coefficients must be equal. So an = bn for every n.

Let f (n)(x) denote the nth derivative of f(x). If the coefficients an are such that

an =
f (n)(x0)

n!
, (1.4)

then the series is called a Taylor series for the function f about x = x0.

1.2 Ordinary and singular points

Let’s consider second order linear differential equations, where the coefficients are functions of the inde-
pendent variable (which is usually x). The general form of the homogeneous equation is

P (x)y′′ + Q(x)y′ + R(x) = 0. (1.5)

For simplicity we will assume that P (x), Q(x) and R(x) are all polynomials. Let’s suppose we want to
solve this equation in the neighborhood of a point x0. Such a point x0 is called a ordinary point if
P (x0) 6= 0. If, however, P (x0) = 0, then the point is called a singular point.

1.3 Series solutions near an ordinary point

It’s often hard to find a normal solution for equation 1.5. But let’s suppose that we look for solutions of
the form

y = a0 + a1(x− x0) + . . . + an(x− x0)n + . . . =
∞∑

n=0

an(x− x0)n. (1.6)
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We assume that this series converges in an interval |x− x0| < ρ for some ρ > 0. For example, if we want
to solve the differential equation y′′ + y = 0, we can first find that

y′′ = 2a2 + 6a3(x− x0) + . . . + n(n− 1)an(x− x0)n−2 + . . . =
∞∑

n=0

(n + 2)(n + 1)an+2(x− x0)n. (1.7)

The differential equation thus becomes
∞∑

n=0

(n + 2)(n + 1)an+2(x− x0)n + an(x− x0)n = y′′ + y = 0 =
∞∑

n=0

0(x− x0)n. (1.8)

We now have an equation with two sums. The two sums are only equal if all the coefficients are equal.
This results in

(n + 2)(n + 1)an+2 + an = 0 ⇒ an+2 = − an

(n + 2)(n + 1)
. (1.9)

This relation is a recurrence relation, expressing a coefficient as a function of its predecessors. For
arbitrary coefficients a0 and a1 we can find all the coefficients, and thus find the solution to the differential
equation.

1.4 Convergence of the solution

The solution found in the last paragraph converges around x0. But what is the radius of convergence?
It turns out that this depends on the roots of P (x) (being the values x such that P (x) = 0). Let’s
consider all the roots of P (x) and draw them in the complex plane. Now let’s also draw x0. The radius
of convergence is the minimum distance between x0 and any root of P (x).

For example, if P (x) = x2−2x+2 = (x−1)2 +1, then the roots are 1± i. If also x0 = 0, then the radius
of convergence is simply

√
2.

2 Singular Points

2.1 Regular singular points

Let’s define p(x) = Q(x)
P (x) and q(x) = R(x)

P (x) . Normally we could rewrite the differential equation to

y′′ + p(x)y′ + q(x)y = 0. (2.1)

For singular points this isn’t possible since P (x0) = 0. In this case using power series gives problems.
That’s why we need to find other ways to solve these problems. Solving this problem can be split up in
two separate cases, depending on whether x0 is a regular singular point or an irregular singular
point. To determine this, we need to examine the limits

p0 = lim
x→x0

(x−x0)p(x) = lim
x→x0

(x−x0)
Q(x)
P (x)

, and q0 = lim
x→x0

(x−x0)2 = q(x) = lim
x→x0

(x−x0)2
R(x)
P (x)

.

(2.2)
If both these limits exist (they are finite), then the point x0 is a regular singular point. If either of these
limits (or both) do not exist, then x0 is an irregular singular point.

2.2 Euler equation

A relatively simple differential equation with a regular singular point is the Euler equation, being

x2y′′ + αxy′ + βy = 0. (2.3)
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Let’s assume a certain solution has the form y = xr. The differential equation then becomes

x2(xr)′′ + αx(xr)′ + βxr = xr (r(r − 1) + αr + β) = 0. (2.4)

So we need to solve (r(r − 1) + αr + β) to find r. There are three given possibilities. If r has two real
distinct roots r1 and r2, then the general solution is

y = c1x
r1 + c2x

r2 . (2.5)

If the roots are real, but equal, then the general solution can be shown to be

y = (c1 + c2 lnx)xr1 . (2.6)

If the roots are complex, such that r = λ± µi, then the general solution is

y = xλ (c1 cos (µ lnx) + c2 sin (µ lnx)) . (2.7)

2.3 Negative x

The above solutions are correct for positive x. If x < 0 strange situations occur with possibly complex
or undefined numbers. But if we define ξ = −x, then we find the same solutions (with ξ instead of x).
So we can rewrite the equations of the last paragraph to

y = c1|x|r1 + c2|x|r2 , (2.8)

y = (c1 + c2 ln |x|)|x|r1 , (2.9)

y = |x|λ (c1 cos (µ ln |x|) + c2 sin (µ ln |x|)) . (2.10)

2.4 Series solutions near a singular point

Let’s consider a regular singular point. We assume this point is x0 = 0. (If x0 6= 0 simply make the
change of variable t = x− x0.) We can rewrite our differential equation to

y′′ + p(x)y′ + q(x)y = x2y′′ + x(xp(x))y′ + x2q(x)y = 0. (2.11)

Note that for a regular singular point the parts xp(x) and x2q(x) have a value as x → 0. Let’s now
assume that a solution has the form

y = xr
∞∑

n=0

anxn =
∞∑

n=0

anxr+n. (2.12)

We only need to find the values of r and the coefficients an. If we calculate y′ and y′′ and put this back
in the differential equation, we find that

F (r) = r(r − 1) + p0r + q0 = 0. (2.13)

This equation is called the indicial equation. Its roots r1 and r2 (in which we suppose that r1 ≥ r2)
are called the exponents of singularity. We have now found r. The coefficients can be found using
the recurrence relation

F (r + n)an +
n−1∑
k=0

ak ((r + k)pn−k + qn−k) = 0. (2.14)
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Note that the coefficients depend on the values of a0 and r. a0 is arbitrary, and for simplicity usually
a0 = 1 is chosen. r is not arbitrary though. To indicate which r has been used to calculate the coefficients,
the coefficients are usually written as an(r1) or an(r2). Now that we have found the coefficients, we can
write the solutions. Since we have two solutions r1 and r2, we have two solutions, being

y1(x) = |x|r1

(
1 +

∞∑
n=1

an(r1)xn

)
and y2(x) = |x|r2

(
1 +

∞∑
n=1

an(r2)xn

)
. (2.15)

Note that we have taken the absolute value of x again, according to the trick of the previous paragraph.
The general set of solutions now consists of all linear combination c1y1 + c2y2 of these solutions.

2.5 Equal roots

There are, however, a few catches to the method described in the last paragraph. If r1 = r2 we will find
the same solution twice. We want two solutions to find the general solution set, and we only have one,
being y1. So we need another method to find a new solution. Let’s assume that the new solution has the
form

y2(x) = y1(x) ln |x|+ |x|r1

∞∑
n=1

bnxn. (2.16)

All we need to do now is find the coefficients bn. The procedure for this is simple. First calculate y′2 and
y′′2 . Then substitute these in the differential equation, and solve for the coefficients bn.

2.6 Roots differing by an integer

Let’s consider the term F (r + n) of the recurrence relation. If this term is 0, it is impossible to find
an. If r = r1 we will always find a correct solution y1. But if r = r2 and n = r1 − r2 we find that
F (r + n) = F (r2) = 0. So there is a problem. Now let’s assume the second solution has the form

y2(x) = ay1(x) ln |x|+ |x|r2

(
1 +

∞∑
n=1

cnxn

)
. (2.17)

Just like in the previous paragraph, the values of the constant a and the coefficients cn can be found by
substituting y2, y′2 and y′′2 in the differential equation.
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