
Fourier Series

1 Function types

1.1 Periodic functions

In the last chapter we have already mentioned periodic functions, but we will briefly repeat that here. A
function f is periodic is

f(x + T ) = f(x) (1.1)

for every x. Here T > 0 is the period. The smallest value of T is called the fundamental period of f .

If f and g are two functions with equal period T , then their product fg and any linear combination
c1f + c2g also have period T .

1.2 Orthogonal functions

The inner product of two functions u and v on the interval I : α ≤ x ≤ β is defined as

(u, v) =
∫ β

α

u(x)v(x)dx. (1.2)

The function u and v are said to be orthogonal on I if (u, v) = 0. A set of functions is said to be
mutually orthogonal if each distinct pair of functions is orthogonal.

Now consider the functions

um(x) = cos
mπx

L
and vn(x) = sin

nπx

L
. (1.3)

It can now be shown that (um, vn) = 0 for every m, n on an interval −L ≤ x ≤ L. Also, if m 6= n, then
(um, un) = (vm, vn) = 0 on the same interval. On the contrary, if m = n, then (um, un) = (vm, vn) = L
(also on −L ≤ x ≤ L).

1.3 Even and odd functions

A function f is said to be an even function if

f(−x) = f(x) (1.4)

for every x. An example is f(x) = x2. Let’s take a graph of a function and mirror it along the y-axis. If
we get back the same graph is we put in, then it is an even function.

A function is even if Similarly, a function f is said to be an odd function is

f(−x) = −f(x) (1.5)

for every x. So odd functions always have f(0) = 0. An example is f(x) = x or f(x) = x3. Let’s take
a graph of a function and rotate it 180◦ about the origin. If we get back the same graph as we put in,
then it is an odd function.

If f and g are even functions and p and q are odd functions, then
• c1f + c2g and fg are even.
• c1p + c2q is odd. However pq is even.
• fp is odd. f + p is neither even nor odd.
•

∫ L

−L
f(x)dx = 2

∫ 0

−L
f(x)dx = 2

∫ L

0
f(x)dx.

•
∫ L

−L
p(x)dx = 0.
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1.4 Eigenfunctions

The difference between initial value problems and boundary value problems was previously discussed.
Initial value problems concerned differential equations where y and y′ were given at a certain point, while
boundary problems have y given at two different points. While there usually is a unique solution to initial
value problems, there is often not a unique solution to boundary problems. For boundary value problems
here are either 0, 1 or infinitely many solutions.

Let’s take a look at a boundary value problem concerning a homogeneous differential equations with a
certain unknown constant. For example, let’s consider

y′′ + λy = 0, y(0) = 0, y(π) = 0. (1.6)

Here λ is an unknown constant. The above differential equation has solution y = 0 for all λ. This is the
trivial solution in which we are not interested.

Instead, it turns out that for some values of λ there are infinitely many solutions. These values of λ for
which nontrivial solutions occur are called eigenvalues. The nontrivial solutions are called eigenfunc-
tions. For the above example, the eigenvalues turn out to be

λ1 = 1, λ2 = 4, λ3 = 9, . . . , λn = n2, (1.7)

where the corresponding eigenfunctions are

y1(x) = sin x, y2(x) = sin 2x, y3(x) = sin 3x, . . . , y(x) = sin nx. (1.8)

Just like in linear algebra, any linear combination of solutions (eigenfunctions) is also a solution to the
differential equation.

2 Fourier Series

2.1 Introduction to Fourier series

Let’s suppose we have a continuous periodic function f with period T = 2L. In that case, it can be
expressed as a Fourier series, being an infinite sum of sines and cosines that converges to f(x). This
goes according to

f(x) =
a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
. (2.1)

Here the coefficients a0, a1, . . . and b1, b2, . . . need to be determined. It can be shown that

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx and bn =

1
L

∫ L

−L

f(x) sin
nπx

L
dx. (2.2)

If f is not a periodic function, it can not entirely be expressed as a Fourier series. However, the part of
f on interval −L ≤ x ≤ L can be expressed as a Fourier series, according to the above procedure.

2.2 Discontinuous functions

If the periodic function f is not a continuous function but a piecewise continuous function, it is still
possible to express the function using a Fourier series. However, at positions of discontinuity (where the
graph makes a ”jump”) the Fourier series never really converges to f(x). This behavior is known as the
Gibbs phenomenon.

2



Another interesting phenomenon always occurs. If the value of f at a certain point x jumps from y1 to
y2, then the Fourier series at point x always returns a value of y1+y2

2 .

For functions that are not even piecewise continuous (such as for example 1
x ), Fourier series often do not

converge. Therefore Fourier series are hardly ever applicable for such functions.

2.3 Sine and cosine series

Let’s suppose we have an even function f and want to find the corresponding Fourier series. When we are
trying to find the b-coefficients, we will be integrating over f(x) sin nπx

L . Since sin(x) is an odd function,
this product is also odd. We know that an integral from −L to L over an odd function will give 0 as
result. Therefore bn = 0 for every n.

Since bn is always zero in the Fourier series of even functions, all the terms with sines disappear. Such a
series thus only consists of cosines and is therefore called a Fourier cosine series.

Now let’s suppose f is odd. If we make use of the fact that cos(x) is an even function, we will find that
an = 0 for every n. Therefore the Fourier series for an odd function consists only of sines. and is thus
called a Fourier sine series.

3 Heat Conduction Problems

3.1 Heat conduction in a rod

Let’s consider a thin rod, ranging from x = 0 to x = L of which the sides are insulated. Heat can only
enter via the two edges. The temperature u is now only a function of x and t. To solve this problem, we
need to use the heat conduction equation

α2uxx = ut, (3.1)

where α2 is the thermal diffusivity (a material property). There are several boundary values for this
problem. First there is the initial state of the rod u(x, 0). This is simply equal to some known function
f(x), so

u(x, 0) = f(x). (3.2)

3.2 Rod with open ends at u = 0

If heat can pass in/out of the rod at the edges, then the edges will always have constant temperature.
For simplicity’s sake we will assume that this temperature is 0 for both edges. Later we will consider the
case in which this is not true. So the other boundary conditions are

u(0, t) = 0, u(L, t) = 0. (3.3)

This differential equation is hard to solve. So to solve it, we make an assumption. We assume that the
function u(x, t) can be written as

u(x, t) = X(x)T (t). (3.4)

So we assume it is a product of a function of x and a function of t. Using this assumption we can separate
the problem in two differential equations

X ′′ + λX = 0, T ′ + α2λT = 0, (3.5)
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where λ is an unknown separation constant. Now let’s look at the first equation and combine it with the
second boundary equation. Ignoring the trivial solution X = 0, we will find that the solutions are the
eigenfunctions

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . . , (3.6)

associated with the eigenvalues λn = n2π2

L2 . Inserting these values in the second differential equation gives

Tn(x) = e−
n2π2α2t

L2 . (3.7)

We can now find a solution un = XnTn. The general solution is then any linear combination of the
specific solutions, so

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cnXn(t)Tn(t) =
∞∑

n=1

cne−
n2π2α2t

L2 sin
nπx

L
. (3.8)

But we haven’t satisfied the first boundary conditions yet. Using u(x, 0) = f(x) we can find the coefficients
cn. The procedure for this is identical to finding a sine series for f(x). From this follows that

cn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx =

2
L

∫ L

0

f(x) sin
nπx

L
dx. (3.9)

3.3 Rod with open ends not at u = 0

But what if the edges don’t have u = 0? Let’s suppose u(0, t) = T1 and u(L, t) = T2. Now the problem
is not homogeneous anymore. So we will first make it homogeneous. We can see that

g(x) = T1 + (T2 − T1)
x

L
(3.10)

is a solution. In fact, this is the limit solution as t → ∞. If we now not use the initial condition
u(x, 0) = f(x), but instead use u(x, 0) = f(x)− g(x), then we once more have a homogeneous problem.
Then the coefficients can be found using

cn =
2
L

∫ L

0

(f(x)− g(x)) sin
nπx

L
dx =

2
L

∫ L

0

(
f(x)− T1 − (T2 − T1)

x

L

)
sin

nπx

L
dx. (3.11)

Note that this is equal to what we saw last chapter, except we replaced f(x) by f(x) − g(x). The
corresponding solution then becomes

u(x, t) = g(x) +
∞∑

n=1

e−
n2π2α2t

L2 sin
nπx

L
= T1 + (T2 − T1)

x

L
+

∞∑
n=1

e−
n2π2α2t

L2 sin
nπx

L
. (3.12)

This is also equal to the solution of the last paragraph, except that we put the part g(x) in front of it.

3.4 Rod with insulated ends

What happens if the ends of the rod are insulated? In that case they are no longer a constant temperature.
Instead, in that case X ′(0) = 0 and X ′(L) = 0. The solution process is more or less similar to that of a
rod without insulated ends. But instead of finding a sine series, the result now is a cosine series, given by

u(x, t) =
c0

2
+

∞∑
n=1

cne
−n2π2α2t

L2 cos
nπx

L
. (3.13)
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The coefficients are given by the equation

cn =
2
L

∫ L

0

f(x) cos
nπx

L
dx. (3.14)

A funny thing to note is that as t→∞, the temperature in the entire bar becomes equal to c0/2. It can
be shown that this just happens to be the average temperature of the bar.

4 The Wave Equation

4.1 Vibrations of an elastic string

Let’s examine an elastic string, connected at x = 0 and x = L. Every point x at a time t has a deflection
u(x, t). If the string is given an initial deflection, it will vibrate. If damping effects are neglected, the
governing equation is

a2uxx = utt, (4.1)

where a2 is a constant. This equation is called the wave equation. One of the boundary conditions of
this problem is rather trivial. As the ends of the string are fixed, we know that

u(0, t) = 0, u(L, t) = 0. (4.2)

To solve the problem, we also need to know the initial position u(x, 0). But this won’t suffice to solve
the problem. Also the initial velocity ut(x, 0) needs to be known. These boundary conditions can be
expressed as

u(x, 0) = f(x), ut(x, 0) = g(x). (4.3)

4.2 String with initial displacement

Suppose the string has been given an initial displacement, but no initial velocity. So ut(x, 0) = 0. This
implies that T ′(0) = 0. Solving the wave equation is very similar to solving the heat conduction equation.
The solution for X(x) will be exactly the same. The solution for T (t) will be

Tn(t) = cos
nπat

L
. (4.4)

The final solution will then have the form

u(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπat

L
. (4.5)

The constants cn can be found using

cn =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (4.6)

For a fixed value of n the expression sin nπx
L cos nπat

L is periodic with period T = 2L
na or equivalently having

the frequency na
2L . This frequency is called the natural frequency of the string - being the frequency at

which it will freely vibrate.

While vibrating, certain displacement patterns appear. Each displacement pattern is called a natu-
ral mode of vibration and is periodic in space. The corresponding spacial period 2L

n is called the
wavelength of the mode.
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4.3 String with initial velocity

Now let’s examine a string without initial displacement, but with initial velocity. So this time u(x, 0) = 0,
implying that T (0) = 0. Now we will find that

Tn(t) = sin
nπat

L
. (4.7)

Working out the results will give

u(x, t) =
∞∑

n=1

cn sin
nπx

L
sin

nπat

L
. (4.8)

To find the coefficients cn, we have to do a little bit more work than previously, as now we haven’t been
given an initial value but an initial velocity. Differentiating u(x, t) and solving for cn using Fourier series
will give

cn =
2

nπa

∫ L

0

g(x) sin
nπx

L
dx. (4.9)

4.4 String with both initial position and initial velocity

The two cases above have a disadvantage. To use the first case, we have to have a string of which all
points have no velocity at t = 0. For the second all points on the string have to have zero displacement
at that moment. This doesn’t always occur.

If f(x) 6= 0 and g(x) 6= 0 it is possible to solve the problem using separation of variables, as we have
previously performed. This is difficult though, and there is an easier way to solve the problem.

Let v(x, t) be the solution for the vibrating string with no initial velocity (g(x) = 0). Also let w(x, t) be
the solution for the string with no initial displacement (f(x) = 0). If we add the two solutions up, we get

u(x, t) = v(x, t) + w(x, t). (4.10)

It can now be shown that this solution satisfies all the boundary conditions. So if you have a string with
both initial displacement and initial velocity, simply split the problem up and then add up the results.

5 Problem Variations

5.1 Expanding to multiple dimensions

The heat conduction problem and the wave problem described in the previous parts are only one-
dimensional. They can be made two-dimensional or three-dimensional rather easily. We can replace
the term uxx by uxx + uyy for a two-dimensional case or uxx + uyy + uzz for a three-dimensional case.
This would make the heat conduction equation

α2 (uxx + uyy + uzz) = ut. (5.1)

The wave equation would then be
a2 (uxx + uyy + uzz) = utt. (5.2)
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5.2 Steady-State problems

In for example heat conduction problems, the variable u usually converges to a constant value in time.
But to what value does it occur? It stops changing if ut = 0 or equivalently

uxx + uyy + uzz = 0. (5.3)

This equation is called Laplace’s Equation for three dimensions. But can we solve it for a three-
dimensional problem? What do we need to know before we can solve it?

In a one-dimensional problem we needed to know either the value of u or ut at the edges of the rod. This
can be expanded to three dimensions. To solve Laplace’s equation in three dimensions, we need to know
the value of u or ut along the entire boundary of the three-dimensional space.

If u is given, the problem is slightly different than if ut is given. It therefore also has a different name. If
u is known along the edges, then the problem is called a Dirichlet problem. However, if we have been
given ut, then the problem is called a Neumann problem.

Both types of problems can be solved using the techniques demonstrated in this chapter. However, the
equations for the solution and the corresponding coefficients need to be derived once more. As there are
very many types of these problems, it is not possible to give the solution for every single type.
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