Differential Equations Tables

Function $f(t) = L^{-1}{F(s)}$	Laplace Transform $F(s) = L\{f(t)\}$	
1	$\frac{1}{s}$	
t^n	$\frac{n!}{s^{n+1}}$	
e^{at}	$\frac{1}{s-a}$	
$\sin at$	$\frac{a}{s^2+a^2}$	
$\cos at$	$\frac{s}{s^2+a^2}$	
$\sinh at$	$\frac{a}{s^2-a^2}$	
$\cosh at$	$\frac{s}{s^2-a^2}$	

Table 1: Laplace transforms of basic functions.

Eigenvalues	Type of Critical Point	Stability
$r_1 > r_2 > 0$	Nodal Source (Node)	Unstable
$r_1 < r_2 < 0$	Nodal Sink (Node)	Asymptotically Stable
$r_2 < 0 < r_1$	Saddle Point	Unstable
$r_1 = r_2 > 0$, independent eigenvectors	Proper node/Star point	Unstable
$r_1 = r_2 < 0$, independent eigenvectors	Proper node/Star point	Asymptotically Stable
$r_1 = r_2 > 0$, missing eigenvector	Improper node	Unstable
$r_1 = r_2 < 0$, missing eigenvector	Improper node	Asymptotically Stable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda > 0$	Spiral point	Unstable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda < 0$	Spiral point	Asymptotically Stable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda = 0$	Center	Stable

Table 2: Overview of behavior of linear systems.

Eigenvalues of linear system	Type of Critical Point	Stability
$r_1 > r_2 > 0$	Nodal Source (Node)	Unstable
$r_1 < r_2 < 0$	Nodal Sink (Node)	Asymptotically Stable
$r_2 < 0 < r_1$	Saddle Point	Unstable
$r_1 = r_2 > 0$, independent eigenvectors	Node or Spiral Point	Unstable
$r_1 = r_2 < 0$, independent eigenvectors	Node or Spiral Point	Asymptotically Stable
$r_1 = r_2 > 0$, missing eigenvector	Node or Spiral Point	Unstable
$r_1 = r_2 < 0$, missing eigenvector	Node or Spiral Point	Asymptotically Stable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda > 0$	Spiral point	Unstable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda < 0$	Spiral point	Asymptotically Stable
$r_1 = \lambda + \mu i, r_2 = \lambda - \mu i, \lambda = 0$	Center or Spiral Point	Indeterminate

Table 3: Overview of behavior of almost linear systems.