
Basic Differential Equations

1 First order equations

1.1 Basic form

Equations containing derivatives are differential equations. Differential equations of the first order
(meaning only first derivatives can occur, but no second or higher derivatives) can be written as

dy

dt
= y′ = f(t, y). (1.1)

Note that to keep equations short, we write dy
dt = y′. A function y = φ(t) is called a solution if it

satisfies the above equation. No simple solution method exists that can solve all differential equations of
this form.

1.2 Linear equations

However, for some forms there are methods to find solutions. For example, if the equation is linear in
y, it can be written as

y′ + p(t)y = g(t). (1.2)

Note that sometimes differential equations have to be rewritten to bring them to the right form. To find
a solution on a particular interval (α, β), p(t) must be continuous on (α, β), that is, p(t) exists for every
t in the interval (α, β).

The technique of integrating factor can be applied to solve this form of differential equation. First
find any integral of p(t). Then define the integrating factor µ(t) as

µ(t) = e
R

p(t) dt. (1.3)

Now multiply equation 1.2 by µ(t). Using the chain rule, it can be rewritten as

d(µ(t)y)
dt

=
∫

µ(t) g(t) dt. (1.4)

The solution then becomes

y(t) =
1

µ(t)

∫ t

t0

µ(s) g(s) ds +
c

µ(t)
. (1.5)

Of this equation, the part 1
µ(t)

∫ t

t0
µ(s) g(s) ds is called the particular solution and c

µ(t) is called the
general solution. In differential equations the complete set of solutions is usually formed by the general
solution, plus any linear combination of the particular solution(s).

1.3 Separable differential equations

A differential equation is called a separable differential equation, if it can be written as

dy

dx
=

M(x)
N(y)

. (1.6)

We can rewrite it as
N(y) dy = M(x) dx. (1.7)
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The solution of this differential equation is acquired by simple integration of the equation∫
N(y) dy =

∫
M(x) dx. (1.8)

2 Second order linear differential equations

2.1 Basic form

The basic form of a second order differential equations is

d2y

dt2
= y′′ = f(t, y, y′). (2.1)

Such equations are hard to solve. So we will be looking at second order linear differential equations,
which have the form

y′′ + p(t)y′ + q(t)y = g(t). (2.2)

If a second order equation can be written in the form of the above equation, it is called linear, and
otherwise nonlinear. For such differential equations solving methods exist. However, we do assume that
the function p(t), q(t) and g(t) are continuous functions.

A second order linear differential equation is said to be homogeneous if the term g(t) in equation 2.2 is
0 for all t. Otherwise it is called nonhomogeneous.

2.2 Homogeneous equations with constant coefficients

Suppose our differential equation has the form

ay′′ + by′ + cy = 0, (2.3)

with a, b and c constants. Let’s define the characteristic equation to be

ar2 + br + c = 0. (2.4)

If we can find an r that satisfies the characteristic equation, then we know that y = ert is a solution. In
fact all linear combinations y = cert are solutions. So let’s look at three specific cases.

• b2 − 4ac > 0
There are two real solutions r1 and r2 to equation 2.4. Both y1 = er1t and y2 = er2t and all linear
combinations of them are solutions. So the general solution of the differential equation is:

y = c1y1 + c2y2 = c1e
r1t + c2e

r2t (2.5)

• b2 − 4ac = 0
There is only one solution r = − b

2a to the characteristic equation. We know that y1 = ert is a
solution. However, also y2 = tert is a solution. So the general solution of the differential equation
is:

y = c1y1 + c2y2 = c1e
rt + c2te

rt (2.6)

• b2 − 4ac < 0
There are no real solutions now, only complex ones. So if α = − b

2a and β =
√

4ac−b2

2a , and also
r1 = α + iβ and r2 = α− iβ, then y1 = er1t and y2 = er2t are solutions. Working out the complex
numbers in all linear combinations of the two solutions gives as general solution:

y = c1y1 + c2y2 = eαt (c1 cos βt + c2 sinβt) (2.7)

The solutions given by the methods above are all possible solutions of the differential equation.
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2.3 Nonhomogeneous equations - Method of undetermined coefficients

Suppose our differential equation has the form

ay′′ + by′ + cy = g(t). (2.8)

with a, b and c still constants. The function g(t) here is called the forcing function. Suppose we find any
particular solution Y (t) that satisfies the above equation. We already know from the previous paragraph
how to find the general solution set c1y1+c2y2 for the homogeneous differential equation ay′′+by′+c = 0.
If we add those two solutions up, we find all solutions for the above differential equation.

So the trick is to find a single Y (t) that satisfies the differential equation. One way to do that is to
use the method of undetermined coefficients. We make an initial assumption on the form of Y (t)
(called the auxiliary equation), with a couple of undetermined coefficients, and then try to find the
coefficients. The downside of this method is that it only works on equations that contain terms atn, eαt
and sinβt, or combinations of those terms.

First take a look at g(t). If it consists of multiple parts, separated by plus or minus signs (for example,
g(t) = t+sin t− et), then split the problem up in parts and find a particular solution Yi(t) for every part
gi(t).

To find a particular solution for gi(t), use the auxiliary equation

ts
((

a0 + a1t + a2t
2 + . . . + antn

)
eαt cos βt +

(
b0 + b1t + b2t

2 + . . . + bntn
)
eαt sinβt

)
. (2.9)

The variables α, β and n can be found in gi(t). (For example, for gi(t) = te2t the auxiliary equation
becomes ts

(
(a0 + a1t) e2t

)
.) The variable s, however, is a different story. It’s a matter of trial and error.

Usually s = 0 works. If this doesn’t work, try s = 1. If it still doesn’t work (unlikely, but possible), try
s = 2.

Now we have an auxiliary equation Yi(t) with undetermined coefficients a0, . . . , an, b0, . . . bn. First find
Y ′

i (t) and Y ′′
i (t). Then write down the equation

aY ′′
i (t) + bY ′

i (t) + cYi(t) = gi(t). (2.10)

Use this equation to solve the undetermined coefficients and find the particular solution for ay′′+by′+cy =
gi(t).

So having found all the particular solutions Yi(t) for ay′′ + by′ + cy = gi(t), add them all up to find the
particular solution Y (t) = Y1(t) + . . . + Yn(t). Now add this up to the general solution c1y1 + c2y2 of the
homogeneous equation ay′′ + by′ + cy = 0 to find the full solution set of the differential equation:

y = c1y1 + c2y2 + (Y1(t) + . . . + Yn(t)). (2.11)

2.4 Nonhomogeneous equations - Variation of parameters

The method variation of parameters is applied to differential equations of the form of equation 2.8
and goes as follows. First find the solution y = c1y1 + c2y2 of the differential equation ay′′ + by′ + c = 0.
Now replace c1 by u1(t) and c2 by u2(t) to get y = u1(t)y1 + u2(t)y2. Now it is possible to find y′ and
y′′. Let’s first (for no specific reason but that the outcome will be convenient) assume that

u′1(t)y1(t) + u′2(t)y2(t) = 0. (2.12)

Working everything out, we eventually find that

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = g(t). (2.13)
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Now, let’s define the Wronskian determinant (or simply Wronskian) W (y1, y2) as

W (y1, y2)(t) =

∣∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ = y1(t)y′2(t)− y′1(t)y2(t). (2.14)

If we solve for u′1 and u′2 in equations 2.12 and 2.13, we find that

u′1(t) = − y2(t)g(t)
W (y1, y2)(t)

and u′2(t) =
y1(t)g(t)

W (y1, y2)(t)
. (2.15)

Solving this gives as a particular solution for the differential equation

Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)
W (y1, y2)(s)

ds + y2(t)
∫ t

t0

y1(s)g(s)
W (y1, y2)(s)

ds, (2.16)

for any convenient t0 in the interval. So this makes the general solution for the differential equation:

y = c1y1 + c2y2 + Y (t). (2.17)

3 Initial value problems and boundary value problems

3.1 Initial value problems

Sometimes, next to a differential equation, also certain conditions are given. For example, the values of
y and y′ at a given time t0 are given:

y(t0) = y0, y′(t0) = y′0. (3.1)

Such conditions are called initial conditions. If these conditions are given, the problem is called an
initial value problem. Finding the general solution for the differential equation isn’t sufficient to solve
the problem. You have to find the values c1 and c2 such that the initial conditions are met.

3.2 Boundary value problems

Sometimes not the initial conditions at a time t0 are given, but the conditions are two different times are
given:

y(α) = y0, y(β) = y1. (3.2)

Such conditions are called boundary conditions. If these conditions are given, the problem is called
a (two-point) boundary value problem. Once more the values c1 and c2 should be found such that
the boundary conditions are met, to solve the problem.
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