
The conservation laws

Very important in fluid dynamics are the three conservation laws, also known as the Navier Stokes
equations. Let’s see how they are derived, and how we can write them.

1 Two ways to describe fluids

1.1 Describing fluids

When describing fluids, we usually examine a small piece of fluid, called a fluid packet. There are,
however, two ways to represent a packet.

In the Lagrangian description, the fluid properties (like density, temperature, and such) are attached
to the packet. On top of that, the packet has a position vector x to indicate its position.

In the Eulerian description, the fluid properties are attached to the position vector. So, if we have a
position vector x, then we know the properties of the fluid packet x points to.

In solid mechanics, the Lagrangian description is more convenient. In fluid mechanics, however, we
usually use the Eulerian description.

1.2 Transforming between descriptions

There are several conservation laws. There are conservation of mass, conservation of momentum
and conservation of energy. In the Lagrangian description, these three laws are described by the
equations

dm

dt
= 0,

d

dt

(
dx
dt

)
= F and

dE

dt
=

dQ

dt
+

dW

dt
. (1.1)

m denotes mass, F the external forces, E the energy, Q the added heat and W the work done.

These laws aren’t the same in the Eulerian description. This is because in the Lagrangian description,
the position vector x changes with time. To find out how to transform these laws, we examine some
property Φ(t, x1, x2, x3). The time derivative of this property is given by

dΦ
dt

=
∂Φ
∂t

+
∂Φ
∂x1

dx1

dt
+

∂Φ
∂x2

dx2

dt
+

∂Φ
∂x3

dx3

dt
=

∂Φ
∂t

+ ui ∂Φ
∂xi

=
∂Φ
∂t

+ u · (∇Φ). (1.2)

So we see that, to transform the laws to the Eulerian description, we have to use

D

Dt
=

∂

∂t
+ u · ∇. (1.3)

This derivative D/Dt is called the Lagrangian time derivative or the material time derivative.
(Do not confuse it with the rate of strain tensor D.)

Now we know what to do with the time-derivative of a normal scalar. But what about time-derivatives of
integrals? We often integrate over volumes. However, a volume in Lagrangian space (consisting of a lot
of fluid packets) can change shape. This is rather troubling. Luckily, there is the Reynolds transport
theorem. It states that, for some variable φ, we have

d

dt

∫
V

Φ dV =
∫

V

(
DΦ
Dt

+ Φ∇u
)

dV. (1.4)

Now we also know what to do with time-derivatives of integrals.
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2 Conservation of mass

2.1 Derivation of the equation

With what we’ve just learned, let’s derive the conservation laws. First, we examine conservation of mass.
It states that the total mass doesn’t change. To find the total mass, we integrate over the density. This
gives us

dm

dt
=

d

dt

∫
V

ρ dV =
∫

V

(
Dρ

Dt
+ ρ∇u

)
dV = 0. (2.1)

This must hold for every volume. Therefore, the part within the integral must be zero. So,

Dρ

Dt
+∇u =

∂ρ

∂t
+ u · (∇ρ) + ρ∇u = 0. (2.2)

This can further be simplified to
∂ρ

∂t
+∇(ρu) = 0. (2.3)

This equation is known as the conservation of mass equation.

3 Conservation of linear momentum

3.1 Derivation of the equation

Now let’s consider the law of linear momentum. The time rate of change of linear momentum in a
direction ui must equal the force applied in that direction. We thus have

d

dt

∫
V

(ρui)dV =
∫

V

(
D(ρui)

dt
+ ρui∇u

)
dV =

∫
V

(
∂(ρui)

∂t
+ u · (∇(ρui)) + ρui∇u

)
dV =

∫
V

f i dV,

(3.1)
Again, this must hold for every volume. So we can get rid of the integral. We can then also rewrite it to

∂(ρui)
∂t

+ uiu · (∇ρ) + ρu · (∇ui) + ρui∇u =
∂(ρui)

∂t
+∇(ρuiu) = f . (3.2)

Working this out further, we get

ρ
∂ui

∂t
+ ui ∂ρ

∂t
+ ui∇(ρu) + ρu · ∇ui = fi. (3.3)

Thanks to conservation of mass, the two middle terms cancel. We remain with

ρ
∂ui

∂t
+ ρu · ∇ui = fi. (3.4)

This equation is known as the conservation of linear momentum equation.

3.2 The force time split up

The equation of the previous paragraph looked quite simple. However, we haven’t looked at the force per
unit volume f yet. (Or equivalently, at its component fi.) So let’s do that now.

The force per unit volume is made up out of a body force (per unit volume fb and a surface force (per
unit area) fs. This surface force has to be transformed to a force per unit volume as well, if we want to
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apply it in our equation. By using the stress tensor, we find that fs = σn = (−pI + τ)n. It can then be
shown that the force per unit volume due to fs is given by −∇p +∇τ . This eventually gives us

ρ
∂ui

∂t
+ ρu · ∇ui = fbi

− ∂p

∂xi
+

∂τij

∂xi
. (3.5)

Note that we have used the summation convention in the last term. By the way, we have

τij = λ(∇u)δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, (3.6)

where δij is the Kronecker delta.

3.3 Variants of the equation

An incompressible flow is a flow in which fluid elements don’t change in volume. This implies that
∇u = 0. It is often also assumed that ρ = ρ∞ = constant as well. If we combine these data with
equations (3.5) and (3.6), we eventually find that

ρ∞
∂ui

∂t
+ ρ∞u · ∇ui = fbi −

∂p

∂xi
+∇2ui. (3.7)

The above equation represents only one component of the linear momentum equation. We could put the
above equation back into its general vector form. Let’s do that, and rewrite it a bit, by bringing in the
vorticity vector ξ. (Okay, we rewrite it a lot.) We then get

ρ∞
∂u
∂t

+∇
(

1
2
ρ∞u2

)
= fb −∇p + u× ξ + µ∇2u. (3.8)

This is called the Lamb-Gromeka equation. Now let’s assume that the flow is steady (∂u/∂t = 0),
there is conservative body force fb (there is a function φ satisfying fb = ∇f) and the flow is inviscid
(µ = 0). The above equation then simplifies to

∇H(x) = ρ∞u× ξ, where H(x) = ∇
(

1
2
ρ∞u2 + p− φ

)
. (3.9)

Now let’s examine a curve C in space, along which H(x) remains constant, and thus u × ξ = 0. (For
example, a curve along which u = 0, ξ = 0, or where u and ξ are parallel.) In this case, along the curve
C, the above equation simplifies to

1
2
ρ∞u2 + p− φ = constant. (3.10)

You might know this equation. (In case you don’t, it’s called Bernoulli’s equation.)

4 Conservation of energy

4.1 The basic conservation of energy equation

It is time to examine conservation of energy. To find a relation for energy, we examine a small fluid
packet. This packet has a kinetic energy per unit mass of 1

2u
2 and an internal energy per unit

mass of e. So the total energy per unit mass is

E =
1
2
u2 + e. (4.1)
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Now let’s examine a very small volume. The total energy is given by mE. The change of energy depends
on the heat created Q and the work done W . So we have

d(mE)
dt

=
dQ

dt
+

dW

dt
(4.2)

We know that dm/dt = 0. Also, m = ρV . This turns the above equation into

ρV
dE

dt
=

dQ

dt
+

dW

dt
⇒ ρ

dE

dt
=

dq

dt
+

dw

dt
, (4.3)

where q is the heat added per unit volume and w is the work done per unit volume. There is just one
slight problem. The above equation is in the Lagrangian description. To transform it to the Eulerian
description, we need to use the material derivative. We thus have

ρ
DE

Dt
=

Dq

Dt
+

Dw

Dt
. (4.4)

4.2 The work done

Let’s take a closer look at the work W done. We know that work is force times distance. So dW = f ·dx.
It follows that

dW/dt = f · dx
dt

= f · v. (4.5)

The work, however, is done at the boundary of the volume. It is caused by surface forces fs = σn. If we
transform these surface forces to something having to do with volumes, we eventually find that

Dw

Dt
= ∇(σu). (4.6)

4.3 The heat added

Now let’s turn our attention to the heat added. This is a bit more difficult, since there are two ways of
adding heat. We can add a certain amount of heat per unit mass qm over the entire volume. The heat
per unit volume added then becomes ρqm. (Note that qm is a scalar.)

We can, however, also add heat per unit area qs, also known as heat flow. (This time qs is a vector.)
This heat flow is likely to depend on the temperature gradient ∇T . A temperature difference is, however,
a configuration variable, and is defined along a line. Heat flow is a source variable (it changes the
configuration) and is defined through a surface. We thus need a constitutive model connecting the two.
The most common method is Fourier’s law. It states that

q̇s = −κ∇T, (4.7)

where κ is a tensor. (The minus sign is present, because heat flow is defined to flow along negative
temperature gradients.) If the heat flow properties are isotropic (the same in all directions), then κ = κ̄I,
with κ̄ a constant. The relation q̇s = −κ̄∇T then also holds.

The heat flow per unit area needs to be converted to a quantity per unit volume. Once we have done
that, we can find that

Dq

dt
= ρq̇m +∇ · (κ∇T ). (4.8)
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4.4 The final energy equation

Let’s put all the terms we found together. We then get that

ρ
DE

Dt
= ρq̇m +∇ · (κ∇T − pu + τu). (4.9)

With quite some manipulation, we could also rewrite this equation to

ρ
De

Dt
= −p∇u +∇ · (κ∇T ) + Φ. (4.10)

The variable Φ is known as the Rayleigh dissipation function and is given by

Φ = ∇ · (τu)− u · (∇τ). (4.11)

4.5 Fixing the gaps

So, now we’ve derived all three conservation laws. A bit of counting, however, would show that we have
more unknowns then equations. So we need a few more equations. One of these equations relates internal
energy and temperature. It states that

e = cV T, (4.12)

where cV is the specific heat at constant volume. The other equation is the famous equation of
state for ideal gases, and states that

p = ρRT, (4.13)

with R being the specific gas constant. Now we have the same amount of equations as unknowns. So
we should be able to solve it.
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