
Forces and stresses

Consitutive modelling is mainly about the relation between things like forces and things like displace-
ments. In this chapter we examine the forces. In the next chapter we will discuss the displacements
and their relationship with forces. In the third and last chapter, we examine some methods for solving
problems.

1 Forces and momentum

1.1 Types of forces

We can distinguish two important types of forces. These are the (distributed) contact forces t and
the (distributed) mass forces b. They are defined as

t = lim
∆A→0

∆F
∆A

and b = lim
∆V→0

∆F
∆V

. (1.1)

Here F denotes a force, A denotes an area and V denotes a volume. Now let’s examine a certain volume
Ω. The total contact force Fs and the total body force Fb can be found using

Fs =
∫

∂Ω

t(x) dA and Fb =
∫

Ω

b(x) dV. (1.2)

(The signal ∂Ω means we integrate over the surface of the volume Ω.) Together, the total contact force
Fs and the total body force form the total external force Fext.

1.2 Linear momentum

Again, we examine a volume Ω. The total linear momentum P of the volume can be found using

P =
∫

Ω

ρv dV, (1.3)

where ρ denotes the density of the volume and v the velocity. It can be shown that Fext = dP/dt. In
other words, ∫

∂Ω

t dA +
∫

Ω

b dV =
d

dt

∫
Ω

ρv dV =
∫

Ω

ρa dV. (1.4)

1.3 Moments and angular momentum

Forces also cause moments. The moment due to surface forces Ms and the moment due to body
forces Mb can be found using

Ms =
∫

∂Ω

x× t dA and Mb =
∫

Ω

x× b dV. (1.5)

Together, these two moments form the total moment of external forces Mext. (All moments are
about the origin.)

We can also find the total angular momentum H. (Also with respect to the origin.) We do this using

H =
∫

Ω

x× ρv dV. (1.6)

1



Similar to linear momentum, it also holds that Mext = dH/dt. From this, it can be derived that∫
∂Ω

x× t dA +
∫

Ω

x× b dV =
d

dt

∫
Ω

x× ρv dV =
∫

Ω

x× ρa dV. (1.7)

2 Stress vectors and tensors

2.1 The stress vector

It’s time to examine internal forces. To examine the internal forces in an object, we make a cut along
a plane. This plane has a certain unit normal vector n. The internal forces at a given position are
now indicated by the stress vector t(n). (Note that the stress vector can be seen as a surface force.
That’s why it is also denoted by t.)

Let’s suppose that we know the stress vector t at a given point for a given normal vector n. We can
then also find normal component tn (the stress normal to the cutting plane) and the tangential
component ts (the stress parallel to the cutting plane). This can be done using

tn = (t · n)n and ts = t− tn = t− (t · n)n. (2.1)

2.2 The stress tensor

There is, however, one small problem. The stress vector t depends on the on the cutting plane normal
vector n. To know the exact stress distribution, we need to know t for every n. This may seem like a lot
of work. Luckily, there is a trick (originating from the balance of momentum) called the stress tensor.

The stress tensor [σij ] is a 3 × 3 matrix. It has thus 9 coefficients σij . Once these parameters are
known, the stress vector t for any unit normal vector n can be found using

t(n) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


n1

n2

n3

 . (2.2)

The question now remains, how can we find the stress tensor? To do that, we have to first find the
stress vector t for three (linearly independent) normal vectors n. (It is often convenient to choose the
three unit normal vectors e1, e2 and e3.) We should then find the corresponding stress vectors t1, t2
and t3. Inserting all these data into equation (2.2) gives us 9 equations and 9 unknowns. The unknown
coefficients can then be solved.

When solving for the coefficients, you can use a small trick. You can use that the stress tensor is
symmetric. (This can be derived from balance of angular momentum.) So we have

σ12 = σ21, σ13 = σ31 and σ23 = σ32. (2.3)

2.3 Stress tensor eigenvalues and eigenvectors

The stress tensor [σij ] has three eigenvalues σ(1), σ(2) and σ(3). These eigenvalues are called the principal
stresses. Because the stress tensor is symmetric, these eigenvalues must be real. We usually order them
such that σ(1) ≥ σ(2) ≥ σ(3).

Of course, there are eigenvectors n(1), n(2) and n(3) corresponding to these eigenvalues. Usually, these
eigenvectors are normalized, such that their length |n| is one. These vectors are called the principal
stress directions. It can be shown that they are mutually perpendicular. Because of this, they together
form an orthogonal basis, called the principal stress basis.
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There is something special about this basis. Previously, we have built our stress tensor [σij ] with respect
to our normal Cartesian basis (e1, e2, e3). If we, however, build it with respect to the principal stress
basis, we find a very peculiar stress tensor, being

[σij ] =

σ(1) 0 0
0 σ(2) 0
0 0 σ(3)

 . (2.4)

2.4 Relevance of principal stresses and their directions

You may wonder, what are these principal stresses and principal stress directions good for? Well, the prin-
cipal stresses are used in many stress criterions. For example, there is the tresca criterion, demanding
that

max
(
|σ(1) − σ(2)|, |σ(1) − σ(3)|, |σ(2) − σ(3)|

)
≤ σy, (2.5)

where the critical value σy is known as the (initial) yield stress. Similarly, there is the Huber-von
Mises-Hencky criterion, demanding that

σm =

√(
σ(1) − σ(2)

)2 +
(
σ(1) − σ(3)

)2 +
(
σ(2) − σ(3)

)2

2
≤ σy, (2.6)

where σm is the maximum distortion energy.

The principal stress directions are also important. They are closely related to the directions and planes
in which failure will initiate and propagate. This data is important when trying to optimize a structure.
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