
Displacements and strains

After examining forces and stresses, we will now examine displacements and strains. How are they
defined? And what can we do with them? We also examine their relation with stresses.

1 Definitions of the displacements and strains

1.1 Introduction of the strain tensor

Let’s suppose we have some object Ω, we’re deforming. Let’s examine some point P . We call its initial
position x and its final position y. The displacement of P (its movement) then is

u = y − x. (1.1)

However, we are usually interested in the deformations of the material. The movement of some point P
doesn’t say much about that. To examine the deformations, we use displacement gradients ∂ui/∂xj .
In fact, the strain tensor is defined as
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Note that the strain tensor is symmetric.

1.2 The meaning of the strain tensor

So, what is the use of the strain tensor? Well, it is closely related to the deformations in the object. To
see how, we examine two points P and Q, originally being a very small distance l0 apart. Their new
relative distance is l. We call the unit vector in the direction of the line PQ the vector n. The relative
elongation ε of the distance PQ (also known as the normal strain) can then be approximated by

ε(n) =
l − l0

l
≈

3∑
i,j=1

εijninj = nT [εij ]n. (1.3)

Using this, we can more closely examine the meaning of the strain tensor. If we examine the relative
elongation in the direction of the Cartesian unit vector e1, then we find that ε(e1) = ε11. Similarly
ε(e2) = ε22 and ε(e3) = ε33. So the diagonal components simply indicate normal strain.

The next question is, what do the non-diagonal terms of the strain tensor mean? They indicate a change in
angle of two lines that were previously perpendicular. (It’s also known as the shear strain.) Let’s examine
two lines PQ and PR. PQ is in the direction of e1, while PR is in the direction of e2. Their relative angle
is thus π/2. It can be shown that, after deformation, their relative angle is π/2− ε12 − ε21 = π/2− 2ε12.

1.3 Principal strains and their directions

Just like the stress tensor [σ], also the strain tensor [ε] is symmetric. This means that its three eigenvalues
ε(1), ε(2) and ε(3), called the principal strains, are all real. The three corresponding eigenvectors m(1),
m(2) and m(3), called the principal strain directions, are mutually perpendicular. Together, they
form the principal strain basis.
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Previously, we have built our strain tensor [εij ] with respect to our normal Cartesian basis (e1, e2, e3).
If we, however, build it with respect to the principal strain basis, we get the strain tensor

[εij ] =

ε(1) 0 0
0 ε(2) 0
0 0 ε(3)

 . (1.4)

All non-diagonal terms are zero. There is thus no shear strain. So we can conclude that, with respect to
the principal strain basis, all perpendicular angles remain perpendicular.

You may wonder whether the principal stress directions and principal strain directions are the same. They
usually are not. Only for isotropic materials (materials with the same properties in every direction)
will these directions coincide.

1.4 Finding the displacement field from the strain tensor

Let’s suppose we know the strain tensor [εij ] at every given position x. Can we then find the displace-
ments? Well, it turns out that we almost can do that. Only the so-called rigid body modes, being pure
translation and rotation (without any deformation), can’t be included. However, by using appropriate
boundary conditions, we can get rid of these rigid body modes.

So how do we find the displacement field? Since this is a rather difficult process, we only consider the
two-dimensional plane strain case. So ε13 = ε23 = ε33 = 0. The first step is to check whether the strains
ε11, ε12 and ε22 are integrable. To do this, we need to check the compatibility equation, being
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If this equation holds, there is a solution.

The next step is to use ε11 = ∂u1/∂x1 and ε22 = ∂u2/∂x2. In other words, we need to integrate ε11 and
ε22 with respect to x1 and x2, respectively. This results in certain unknown functions. These functions
can often be determined using ε12 = 1

2
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up to certain unknown constants. In the end, we

should remain with a solution with a few unknown constants, indicating the rigid body modes.

1.5 The rotation tensor

Sometimes deformations aren’t the only thing we’re interested in. Rotations can also be important. To
examine them, we use the infinitesimal rotation tensor, defined as
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Note that this matrix is not symmetric. In fact, it is anti-symmetric (ωij = −ωji). The tensor above
contains information about the average rotation. However, we’ll not go into detail about this.

2 The constitutive relations

Constitutive relations relate loads with displacements. Or equivalently, they relate the stress tensor
with the strain tensor. What are the relationships between those two tensors?
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2.1 Linearly elastic solids

We want to find a relationship between the stress tensor and the strain tensor. There are, however, many
types of materials. For some weird materials, the stress depends on the strain, the strain rate and the
loading history.

Luckily, for most materials, the stress (approximately) only depends on the strain. And it does this in
a linear way. Such materials are called linear elastic solids. For these materials, the stress tensor and
the strain tensor can be related by a linear relation, such as

σij =
3∑

k,l=1

Cijklεkl. (2.1)

The numbers Cijkl are called the elastic coefficients. There are 81 of these components. Together, they
form the elasticity tensor [Cijkl] (also denoted as C). Usually, these components need to be determined
experimentally. However, they are not all independent. So, we can apply some tricks.

2.2 Voigt’s notation

We know that both the stress tensor and the strain tensor are symmetric. (So σij = σji and εij = εji.)
Because of this, we also must have Cijkl = Cijlk and Cijkl = Cjikl. (These relations are called minor
symmetries.) So, instead of 81 independent coefficients, we now only have 36. And because of this, we
can also write equation (2.1) as

σij = Cij11ε11 + Cij22ε22 + Cij33ε33 + Cij23(2ε23) + Cij13(2ε13) + Cij12(2ε12) (2.2)

However, since there are only 36 independent coefficients, it’s not useful to write 81 coefficients down
every time. That’s why Voigt’s notation is often convenient. In Voigt’s notation, the stress and strain
tensors aren’t written as 3× 3 matrices, but as 6× 1 vectors. Also, the elasticity tensor C is written as
a 6× 6 matrix. This gives us the following relation
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It’s important to note the order of the coefficients. (In other books this order may be different.) Also
note the twos in the strain vector.

The elasticity tensor above has another interesting property. By examining elastic strain energy, it can
be shown that Cijkl = Cklij . (This is a so-called major symmetry.) This implies that the elasticity
tensor above is symmetric. So there are only 21 independent coefficients left.

2.3 The compliance matrix

If we know the strain and the elasticity tensor, then we can find the stress. But, we can also do it the
other way around. For this, we use the compliance tensor S = C−1. This then gives us that

ε̄ = Sσ. (2.4)

By the way, with ε̄ we mean the new strain vector (with the added twos).
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2.4 Material symmetries

We still have 21 independent properties. But we can often reduce that number, due to geometrical
symmetries in the material. Some materials have no such intrinsic symmetries. They are called triclinic
materials and need to be described by 21 independent variables.

Some materials have a plane of symmetry. A material has such a plane of summetry if, after a reflection
about that plane, is indistinguishable from the original material.

A material that has only one such plane of symmetry is called monoclinic. For such a material, eight of
the coefficients will be zero. So there are 13 remaining independent coefficients. A material that has three
mutually perpendicular planes of symmetry is called orthotropic. Such a material has 9 independent
coefficients.

A material can also be transversely isotropic. In this case the material has three planes of symmetry,
with an angle of 60◦ between them. (Like in a honeycomb structure.) In this case, there are only 5
independent coefficients.

2.5 Isotropic materials

For some materials every plane is a plane of symmetry. Such materials are called isotropic materials.
Such materials have only two independent properties. We can write the elasticity tensor for these materials
as

[CIJ ] =



2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


. (2.5)

The parameters λ and µ are called the Lamé coefficients. µ is also known as the shear modulus. (λ
has no clear physical meaning.) From the above matrix, we can also directly find that

σij = 2µεij + λδij

3∑
k=1

εkk. (2.6)

By the way, the symbol δij is the Kronecker delta and is defined as

δij =

{
1 if i = j,

0 if i 6= j.
(2.7)

We can also invert the above relation to express the strain ε as a function of the stress σ. We then get

εij =
1
E

(
(1 + ν)σij − νδij

3∑
k=1

σkk

)
. (2.8)

Here E is the elastic modulus and ν is Poisson’s ratio.
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