
Coordinates, vectors and tensors

To express properties like location in our world, we need coordinates. How do coordinates work? And
what fun things can we do with them? That’s what this chapter is about.

1 Coordinates and 1-vectors

1.1 Coordinate systems

Let’s consider an n-dimensional space. A coordinate system is a function X(x1, x2, . . . , xn), which
assigns to every point in space n numbers x1, x2, . . . , xn. These numbers are called the coordinates. A
point can have different representations in different coordinate systems.

Suppose we have a coordinate system. We can then draw coordinate lines. Coordinate lines are lines
for which n − 1 coordinates are fixed. As the non-fixed coordinate varies, a line is drawn. (Note that
these aren’t always straight lines.)

1.2 Base vectors

A coordinate system also has base vectors. Thse vectors are vectors tangent to the coordinate lines.
Together, they form the (covariant) basis of the system. The base vectors are defined as

e1 =
∂X
∂x1

, e2 =
∂X
∂x2

, . . . , en =
∂X
∂xn

. (1.1)

The base vectors can be different at different points in the coordinate system. Also, they do not necessarily
have length 1.

A covariant basis also has a corresponding contravariant basis (also known as the dual basis). Th
contravariant base vectors ej are defined such that

ej · ei =

{
0 if i 6= j,

1 if i = j.
(1.2)

Note that the contravariant basis is denoted by superscripts, while the covariant basis uses subscripts.
To find the contravariant basis, you could take the matrix of covariant base vectors [e1 . . . en]. If we
invert it, we get the matrix of contravariant base vectors.

1.3 Normal vectors

Suppose that we have two points A and B. We can indicate their relative position by a vector. We can
write down a vector a in the covariant basis as

a = a1e1 + a2e2 + . . . + anen =
n∑

i=1

aiei. (1.3)

The coefficients ai are called the contravariant coefficients, since they have a superscript. We could
also express the vector in the contravariant basis. We would then write it as

a = a1e1 + a2e2 + . . . + anen =
n∑

i=1

aiei. (1.4)
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The coefficient ai are the covariant coefficients, since they have a subscript. Of course, there is a
relation between these coefficients. By using the definition of the dual basis, we can find that

aj =
n∑

i=1

aiei · ej = a · ej =
n∑

i=1

aiei · ej. (1.5)

1.4 The Einstein summation convention

We just saw that, to express a vector, we needed to add up n values. For that, we could use dots . . . or
the summation sign

∑
. However, doing this every time could be a bit tiring. Therefore, from now on,

we will use the Einstein summation convention. When, in a single term, there is both a subscript
and an equal superscript, we make a summation. This means that

n∑
i=1

aiei means the same as aiei and
n∑

i=1

aiei means the same as aiei as well. (1.6)

That should save us some ink.

1.5 Change of coordinates

Let’s suppose we have a coordinate system X(x1, . . . , xn). However, we move to a new set of coordinates
x̃1, x̃2, . . . , x̃n. The functions x̃i = x̃i(x1, . . . , xn) are given. In this case, the new base vectors become

ẽk =
∂X
∂x̃k

=
∂X
∂xi

∂xi

∂x̃k
= ei

∂xi

∂x̃k
, and similarly, ek = ẽi

∂x̃i

∂xk
. (1.7)

It is important to note that we have used the Einstein summation convention in the above equation. So
keep in mind that the above equation actually is a sum.

We can also express any vector a in our new coordinates. We simply need to find the new coefficients ãi.
In this case, we have

a = akek = ak

(
ẽi

∂x̃i

∂xk

)
=

(
ak ∂x̃i

∂xk

)
ẽi = ãiẽi, which implies that ãi = ak ∂x̃i

∂xk
. (1.8)

And the transformation is complete.

2 Multi-vectors

2.1 2-vectors

We now know how to describe points (with three coordinates) and lines (with a vector). But how would
we describe a surface? For this, we use 2-vectors. We do this using the wedge operator ∧. Let’s
suppose we have two vectors a and b. Together, they can form the 2-vector (a ∧ b).

The two-vector is subject to several rules. The most important rules are

c1(a ∧ b) + c2(a ∧ b) = (c1 + c2)(a ∧ b), (2.1)
(a ∧ d) + (b ∧ d) = ((a + b) ∧ d), (2.2)

(ca ∧ b) = (a ∧ cb) = c(a ∧ b), (2.3)
(a ∧ b) = −(b ∧ a), (2.4)
(a ∧ a) = 0. (2.5)
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One way to think of the 2-vector (a ∧ b) is as the surface spanned by the two vectors a and b. It then
also makes sense why (a ∧ a) = 0. A single vector can’t span a surface by itself.

Let’s suppose that u = ae1 + be2 and v = ce1 + de2. We can then simplify (u ∧ v) to

((ae1+be2)∧(ce1+de2)) = ac(e1∧e1)+ad(e1∧e2)+bc(e2∧e1)+bd(e2∧e2) = (ad−bc)(e1∧e2). (2.6)

Another way to represent a surface, is by using the normal vector. Let’s examine the surface (e1, e2).
The normal vector of this surface is e1× e2 = e3. (Similarly, e2× e3 = e1 and e3× e1 = e2. So, instead
of taking the wedge operator, we could use the cross product to respresent surfaces. In this case, we
would also find that

u× v = (ae1 + be2)× (ce1 + de2) = (ad− bc)e3. (2.7)

We see that this matches with what we found earlier.

2.2 3-vectors

Just like a 2-vector represents a surface, so does a 3-vector represent a volume. We denote such a 3-vector
by (u ∧ v ∧w). There are rules for 3-vectors as well. The most important ones are

a(u ∧ v ∧w) + b(u′ ∧ v ∧w) = ((au + bu′) ∧ v ∧w), (2.8)
(u ∧ u ∧ v) = (u ∧ v ∧ u) = (v ∧ u ∧ u) = 0, (2.9)

(u ∧ v ∧w) = (w ∧ u ∧ v) = (v ∧w ∧ u) = −(w ∧ v ∧ u). (2.10)

Now let’s suppose u = ae1 + be2 + ce3, v = ke1 + le2 + me3 and v = pe1 + qe2 + ee3. We can then
simplify their wedge product to

(u ∧ v ∧w) = det

∣∣∣∣∣∣∣
a b c

k l m

p q r

∣∣∣∣∣∣∣ (e1 ∧ e2 ∧ e3). (2.11)

3 Tensors

3.1 Tensor definitions

Tensors can be used to transform one vector to another. For example, we can say that the tensor A
transforms vector a to vector b. We write this as b = Aa. We assume the tensor transforms vectors
linearly. So,

A(ca) = cAa and A(a + b) = Aa + Ab. (3.1)

Let’s suppose that we have b = Aa. The inverse of a tensor A (denoted by A−1) is defined such that
a = A−1b, for every a and b. The transpose of a vector A (denoted by AT ) is the vector which satisfies
b · Aa = a · AT b, for every a and b. If a tensor satisfies AT = A, then it is called symmetric. If
AT = −A, then it is anti-symmetric (also known as skew-symmetric). If we have AT = A−1, then
A is an orthogonal tensor. Finally, we define the identity tensor I as the tensor satisfying a = Ia, for
every a.

3.2 Adding coordinate systems

The rules of the previous paragraph don’t require any coordinate system. If we, however, do add a
coordinate system, then we can represent a tensor A as a matrix. You should be careful with this though,
as the matrix differs per coordinate system.
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Let’s suppose we know how a tensor A transforms vectors. How can we find the appropriate matrix? To
find that out, we examine b = Aa. Rewriting this, using the Einstein summation convention, gives

bjej = A
(
aiei

)
= ai (Aei) . (3.2)

Left-multiplying by the dual basis vector ek gives

bk = bjek · ej = ai
(
ek ·Aei

)
. (3.3)

We thus find that Ak
i (being the component of A in the k-th row and the i-th column) is

Ak
i = ek ·Aei. (3.4)

Note that we can now also write bk = Ak
i ai.

3.3 Change of variables

Let’s suppose we know all the coefficients Ak
i . But now we move to a new coordinate system, having

coordinates x̃1, x̃2, . . . , x̃n. Again, the functions x̃i = x̃i(x1, . . . , xn) are given. How can we find the new
components of the transformation matrix Ãk

i ?

To do this, we write Ãk
i as ẽkAẽi. We can then apply the change of base vector equation (1.7) for base

vectors. If we also work things out, we will find that

Ãk
i = ẽkAẽi =

(
el ∂xl

∂x̃k

)
A

(
ej

∂xj

∂x̃i

)
=

∂xl

∂x̃k

(
elAej

) ∂xj

∂x̃i
=

∂xl

∂x̃k

∂xj

∂x̃i
Al

j . (3.5)

The final relation above may look simple. But do remember that you need to sum up 9 individual parts
to find the single component Ãk

i , due to the summation convention. We could, of course, also reverse the
above relation. We then would have

Al
j =

∂x̃k

∂xl

∂x̃i

∂xj
Ãk

i . (3.6)
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