
Application of the consitutive models

We now know how stresses and strains relate to each other. It’s time to find out how we can use this to
solve problems. First we examine static problems. We then move on to dynamic problems.

1 Static problems

1.1 Conditions and equations

When solving problems, the stress field should obey certain conditions. First let’s take a look at what con-
ditions there are. From the first chapter of this summary, we can recall the balance of linear momentum.
It stated that ∫

∂Ω

t dA+
∫

Ω

b dV =
∫

Ω

ρa dV. (1.1)

For static problems, the acceleration is zero. If we rewrite the above equation, and split it up in compo-
nents, we can then find that

3∑
j=1

∂σij

∂xj
+ bi = 0. (1.2)

This is the balance of linear momentum for static problems. It is our first condition. There are also
the so-called compatibility conditions. They demand that

∂2εij
∂xk∂xl

+
∂2εkl

∂xi∂xj
=

∂2εik
∂xj∂xl

+
∂2εjl

∂xi∂xk
. (1.3)

Note that there are 81 different compatibility conditions, for every combination of i, j, k and l. There
are often also boundary conditions. Sometimes the displacement in some direction ui is set. At other
times, the boundary traction t̂i is set. In this case, you can use the stress tensor to find a relation for t̂i.

So our task is to find a stress field which satisfies all the conditions. With that, we can then find the
displacement field. For that, we use the constitutive relations

σij =
3∑

k,l=1

Cijklεkl. (1.4)

and the strain-displacement relations

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(1.5)

There is, however, one small problem. An analytical solution only exists for a few simple problems.
Therefore the above equations are often used in numerical methods. Nevertheless, we will examine some
analytical solutions now.

1.2 Plane stress case

The first case we examine is the plane stress case. Stress occurs only in a plane. Therefore σ13 = σ23 =
σ33 = 0. The stress also only depends on the position on the plane. Thus σij = σij(x1, x2). (Note that
in general ε33 6= 0.) We also assume that the material is isotropic (it has the same properties in every
direction) and homogeneous (the material has the same properties at every point in the structure).
Also, there are no body forces. (Thus b1 = b2 = 0.)
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To find the stress distribution, it is handy to use a so-called Airy stress function ψ. We define ψ such
that

σ11 =
∂2ψ

∂x2
2

, σ2 =
∂2ψ

∂x2
1

and σ12 = − ∂2ψ

∂x1∂x2
, (1.6)

if such a function exists. This has several advantages. We can see that the balance of linear momentum
is now automatically satisfied. But what about the 81 compatibility equations? Well, it turns out that
there are only 6 independent compatibility equations. And of these 6, only 1 actually matters. (The
others are not important or automatically satisfied.) This equation demands that

∂2ε11
∂x2

2

+
∂2ε22
∂x2

1

= 2
∂ε12

∂x1∂x2
. (1.7)

We can now use the relations between stress and strain (the constitutive relations). This turns the above
equation into a single compatibility equation for the stress function, being

∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
2

= 0. (1.8)

All we have to do is find a stress function ψ which satisfies this compatibility equation, and any given
boundary conditions. Once we have done that, we have solved our problem.

1.3 Plane strain case

We now examine the plain strain case. Now we the strain occurs only in a plane. So ε13 = ε23 =
ε33 = 0. (But not σ33 = 0.) Also, εij = εij(x1, x2). We again assume that the material is isotropic and
homogeneous, and that there are no body forces.

We define the stress function the same as in the plane stress case. So,

σ11 =
∂2ψ

∂x2
2

, σ2 =
∂2ψ

∂x2
1

and σ12 = − ∂2ψ

∂x1∂x2
, (1.9)

After examining compatibility equations, we find that the only remaining equation again is

∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
1

= 0. (1.10)

So the plane stress and the plane strain case work quite the same.

1.4 Finding a stress function

So how do we find an appropriate stress function ψ? To do this, we simply assume a form for ψ. Usually,
an exponential form would do well. Therefore we assume that

ψ =
∑
m

∑
n

cmnx
n
1x

m
2 . (1.11)

Terms with m+n ≤ 1 will drop out of all the compatibility equations. We therefore don’t consider them.
Also, terms with m+ n ≥ 5 usually aren’t necessary to get a good solution. This prevents us a bit from
getting an incredibly huge polynomial.

After having a form for ψ, we insert it into the compatibility equation. This gives us some relations for
the unknown coefficients cmn. We also try to match φ with the boundary conditions. This gives us even
more relations for the unknown coefficients. In the end, all the coefficients should be solved for.

It’s not always possible to let ψ match exactly with the boundary conditions. In this case, Saint
Venant’s principle should often be used. This principle states that, relatively far away from the
boundary, the introduced loads have spread out. This can be used to let ψ approximately match the
boundary conditions.
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2 Dynamic Problems

2.1 The wave equation

Let’s examine the half-space. This is a space such that there is material for every x1 > 0. The boundary
of the half-space is thus simply the e2, e3 plane. We load this half-space on its boundary by a uniform
time-varying compressive load p̂(t) in e1-direction. Now let’s ask ourselves, what happens?

Now let’s examine linear momentum in the e1-direction. We assume that there are no body forces
(b = 0). We then see that

∂σ11

∂x1
= ρ

∂2u1

∂t2
. (2.1)

Due to symmetry, there is only displacement in e1-direction. So ε22 = ε33 = ε12 = ε13 = ε23 = 0 and
ε11 = ∂u1/∂x1. We also have σ11 = (λ+ 2µ)∂u1/∂x1. This turns the above equation into

c2p
∂2u1

∂x2
1

=
∂2u1

∂2t
, where cp =

√
λ+ 2µ
ρ

. (2.2)

cp is called the longitudinal (pressure) wave speed. We can now see that the above equation is
the wave equation, known from partial differential equations. Of course, a PDE should have initial
conditions and boundary conditions. The initial conditions are often assumed to be

u1(x, 0) = 0 and
∂u1

∂t
(x1, 0) = 0. (2.3)

There is only one boundary condition. It is set at x1 = 0 and is given by

σ11(0, t) = (λ+ 2µ)
∂u1

∂x1
(0, t) = −p̂(t). (2.4)

2.2 The solution of the wave equation

It’s time to solve the wave equation. The general solution of the wave equation is given by

u1(x1, t) = f

(
t− x1

cp

)
+ g

(
t+

x1

cp

)
. (2.5)

f and g are functions that need to be chosen such that the initial and boundary conditions are satisfied.
f denotes a wave that travels in the positive e1-direction. Similarly, g denotes a wave that travels in the
negative e1-direction.

If we also include the initial conditions and boundary conditions, we can derive relations for f and g. In
fact, these two functions are given by

f(η) =

{
1

ρcp

∫ η

0
p̂(τ) dτ for η ≥ 0

0 for η ≤ 0
and g(ξ) = 0 for ξ ≥ 0. (2.6)

Combining this with the general solution, we can find that

u1(x1, t) =

{
1

ρcp

∫ t−x1/cp

0
p̂(τ) dτ for t ≥ x1/xp,

0 for t ≤ x1/cp.
(2.7)

So the displacement field is now known. The stress distribution can also be solved for. We then find that

σ11(x1, t) =

{
−p̂(t− x1/cp) for t ≥ x1/xp,

0 for t ≤ x1/cp.
(2.8)

We can see something quite interesting from this equation. When a force is introduced into the half-space,
it travels through the half-space with velocity cp. That’s interesting to know.
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2.3 Multiple layers with different properties

What happens if we have two layers A and B, having different material properties? The two layers each
have different wave velocities, being

cAp =

√
λA + 2µA

ρA
and cBp =

√
λB + 2µB

ρB
. (2.9)

Let’s suppayer A starts at x1 = 0. It ends at x1 = d, which is also where the other layer starts. For times
t < d/cAp , layer B will not notice any of the waves coming from the applied load. However, for t ≥ d/cAp ,
there will be an incident pulse fi acting on layer B. At the boundary between these layers, part of this
pulse will be reflected. This is the reflected pulse fr. Another part will be transmitted into layer B.
This is the transmitted pulse ft. So, for t ≥ d/cAp , we have

u1(x1, t) = fi

(
t− x1

cAp

)
+ fr

(
1 +

x1

cAp

)
for x1 < d and u1(x1, t) = ft

(
t− x1

cBp

)
for x1 > d. (2.10)

The question remains, what are these functions fr and ft? To find them, we have to use conditions. We
know that the displacement at the boundary must remain the same for both layers. Due to Newton’s
third law, also the stress must remain continuous. So the conditions at the boundary are

u1(d−, t) = u1(d+, t) and σ11(d−, t) = σ11(d+, t). (2.11)

By using this, we can find that

fr =
ρBc

B
p − ρAc

A
p

ρBcBp + ρAcAp
fi and ft =

2ρAc
A
p

ρBcBp + ρAcAp
fi. (2.12)

It is often convenient to define the ratio of longitudinal acoustic impedances γp as

γp =
ρBc

B
p

ρAcAp
. (2.13)

In this case, the above equations turn into

fr =
1− γp

1 + γp
fi and ft =

2
1 + γp

fi. (2.14)

We can find similar relations for the stress propagation. These relations are

σ
(r)
11 =

γp − 1
γp + 1

σ
(i)
11 and σ

(t)
11 =

2γp

γp + 1
σ

(i)
11 . (2.15)

2.4 Shear stress propagation

We have seen how normal stress propagates in a half-space. But what about shear stress? Let’s assume
a shear load ŝ(t) is applied on the half-space boundary, in the e2-direction. What happens?

This time we have ε12 = 1
2

∂u2
∂x1

, while ε11 = ε22 = ε33 = ε13 = ε23 = 0. We also have σ12 = 2µε12 = µ∂u2
∂x1

.
This time, we can derive from balance of linear momentum that

c2s
∂2u2

∂x2
1

=
∂2u2

∂t2
, where cs =

√
µ

ρ
. (2.16)
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The quantity cs is called the transverse (shear) wave speed. We again have a wave equation. The
initial conditions now are

u2(x, 0) = 0 and
∂u2

∂t
(x1, 0) = 0. (2.17)

The boundary condition is again set at x1 = 0. It is now given by

σ12(0, t) = µ
∂u2

∂x1
(0, t) = ŝ(t). (2.18)

We can solve the wave equation for u2. We then find that

u2(x1, t) =

{
1

ρcs

∫ t−x1/cs

0
ŝ(τ) dτ for t ≥ x1/xs,

0 for t ≤ x1/cs.
(2.19)

Similarly, we can find a relation for the shear stress distribution. We now find that

σ12(x1, t) =

{
ŝ(t− x1/cs) for t ≥ x1/xs,

0 for t ≤ x1/cs.
(2.20)
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