
Application of the conservation laws

It is finally time to actually put theory into practice. We have three conservation laws. Let’s apply them!

1 Two parallel plates

1.1 The problem statement

Let’s suppose we have two horizontal plates. One is positioned at y = 0 and the other at y = D. The top
plate moves with a velocity ue to the right. This causes a flow to be present between the plates. There
is also a pressure distribution p between the plates, which also causes a flow.

We now make a few assumptions about the flow. We assume that the flow has a constant density
ρ = ρ∞, that it is steady ∂/∂t, that the flow is parallel to the plates (v = w = 0), that it doesn’t vary
in the z-direction (∂/∂z), and that there are no body forces fb.

1.2 Deriving the solution

Now let’s solve the problem. Since ρ is constant, we can simplify the continuity equation to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (1.1)

Since v = w = 0, two terms cancel. We remain with ∂u/∂x = 0. That’s our first sub-result.

Now let’s examine the momentum equation. If we write down the equation for all three components, we
can see that a lot of terms cancel. We remain with

µ
∂2u

∂y2
=

∂p

∂x
,

∂p

∂y
= 0 and

∂p

∂z
= 0. (1.2)

The two rightmost equations imply that p = p(x). If we look at the leftmost equation, we see that it is
separated. Both sides must thus equal a constant c. This implies that

u(y) =
c

2µ
y2 + ay + b. (1.3)

By using boundary conditions u(0) = 0 and u(D) = ue (the so-called no-slip conditions), we find that

u(y) =
1
2µ

(
dp

dx

) (
y2 −Dy

)
+ ue

y

D
. (1.4)

We have found the velocity distribution. We see that it consists of two parts. The left part originates
from pressure differences, while the right part is caused by the moving plates. If there is no pressure
difference (dp/dx = 0), then we have a so-called planar Couette flow. If, on the other hand, the plates
are not moving (ue = 0, but dp/dx 6= 0), then we have a planar Poiseuille flow.

2 Analysis the planar Poiseuille flow

2.1 Analyzing the velocity

Let’s examine the planar Poiseuille flow now. So we assume the plates are not moving. We can now
derive a lot of things from the solution. First, we can see that the maximum velocity umax occurs at
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y = D/2, exactly between the plates. Its magnitude is

umax = −D2

8µ

(
dp

dx

)
. (2.1)

The minus sign makes sense. The velocity flows in the direction of a negative pressure gradient.

Now let’s examine the volume flow Q̇ (also known as the volumetric flow rate) flowing through the
channel. It is given by

Q̇ =
∫ D

0

u(y) dy = − 1
12µ

(
dp

dx

)
D3. (2.2)

From this, we can derive the mean velocity ū. It is given by

ū =
Q

D
= − D2

12µ

(
dp

dx

)
=

2
3
umax. (2.3)

2.2 Analyzing the forces

The wall shear stress τw is given by

τw = µ

(
du

dy

)
. (2.4)

If we evaluate this at the walls (y = 0 and y = D), we find that this flow gives us

τw =
1
2
D

(
dp

dx

)
. (2.5)

So the wall stress is independent of the viscosity µ. From this wall stress, we can derive the friction
coefficient cf . It is defined as

cf =
τw

1
2ρū2

. (2.6)

If we apply this definition to our flow, we can find that

cf = 12
µ

ρūD
=

12
ReD

. (2.7)

The variable ReD is the Reynolds number, with length D as the reference length.

3 Analysis of the planar Couette flow

3.1 Velocity and stress

Now let’s examine the Couette flow. So we assume that ∂p/∂x = 0. However, the top plate does move
with a velocity ue. The velocity distribution is thus given by

u(y) = ue
y

D
. (3.1)

The shear stress in the flow can be found using

τxy = µ

(
du

dy

)
= µ

ue

D
. (3.2)

This shear stress is the whole reason why the flow is moving. It is caused by the moving top plate, and
is, through the fluid, transferred to the bottom plate.
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3.2 Finding the temperature distribution

It is time to apply the energy equation. After removing the zero terms, we find that

∂

∂y

(
κ

∂T

∂y

)
+

∂

∂y

(
µu

∂u

∂y

)
= 0. (3.3)

We now have to assume that κ and µ are constant. (We say that κ = κ∞ and µ = µ∞.) So we can pull
them out of the derivative. We also introduce the enthalpy h = cpT , with cp the specific heat. This
turns the energy equation into

1
Pr

∂2h

∂y2
+

∂

∂y

(
u

∂u

∂y

)
= 0, where Pr =

µ∞cp

κ∞
. (3.4)

The number Pr is known as the Prandtl number. Integrating twice will give

h +
1
2
Pru

2 = ay + b, (3.5)

where a and b are constants. To find them, we use the boundary conditions u(0) = 0, h(0) = hw (the
enthalpy at the bottom plate), u(D) = ue and u(D) = he (the enthalpy at the top plate). This then
gives us an expression for the enthalpy, being

h(y) = hw + (he − hw)
y

D
+

1
2
Pru

2
e

(
y

D
−

( y

D

)2
)

. (3.6)

And with this, the temperature distribution has been found. Something interesting can be seen here. If
he = hw, then the enthalpy isn’t just constant. It is still parabolically distributed. This is caused by heat
creation due to viscous effects.

3.3 Analysis of the heat flow

But we can do even more with the temperature (or enthalpy) distribution. From it, we can derive the
heat flow q̇, using

q̇ = −κ
dT

dy
= − κ

cp

dh

dy
= − µ

D

he − hw

Pr
+

1
2

µ

D
u2

e

(
2

y

D
− 1

)
. (3.7)

Again, we see that, if he = hw, there is still heat flow. It flows away from the center and goes to the
plates, where it is dissipated. In fact, we can even find how much heat is dissipated at the walls. For
that, we examine q̇(0) and q̇(D). We find them to be

q̇(0) = − µ

D

he − hw

Pr
− 1

2
µ

D
u2

e and q̇(D) = − µ

D

he − hw

Pr
+

1
2

µ

D
u2

e. (3.8)

In other words, the heat flow through the walls due to the viscous effects is 1
2

µ
D u2

e. This means that the
total heat creation per second due to viscous effects is equal to µ

D u2
e (since there are two walls). And

that is interesting to know.
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