
Stability augmentation systems

Stability augmentation systems make the aircraft more stable. There are SASs for both the dynamic sta-
bility (whether the eigenmotions don’t diverge) and the static stability (whether the equilibrium position
itself is stable). First, we’ll look at the dynamic stability: how can we effect the eigenmotion properties?
Second, we’ll examine the static stability: how do we make sure an aircraft stays in a steady flight?

1 Dampers – Acquiring dynamic stability

An airplane has several eigenmotions. When the properties of these eigenmotions don’t comply with the
requirements, we need an SAS. The SAS is mostly used to damp the eigenmotions. Therefore, we will
now examine how various eigenmotions are damped.

1.1 The yaw damper: modelling important systems

When an aircraft has a low speed at a high altitude, the Dutch roll properties of the aircraft deteriorate.
To prevent this, a yaw damper is used. An overview of this system can be seen in figure 1. The yaw
damper gets its input (feedback) from the yaw rate gyro. It then sends a signal to the rudder servo.
The rudder is then moved in such a way that the Dutch roll is damped much more quickly than usual.
As a designer, we can only influence the yaw damper. However, we do need to know how the other
systems work as well. For this reason, we model those systems. We usually do assume that the model of
the aircraft is known. (Or we use the one that is derived in the Flight Dynamics course.) So, we only
examine the other systems.

Figure 1: An overview of the yaw damper system.

First, let’s look at the gyro. Gyros are generally very accurate in low frequency measurements, but not
so good in high frequency regions. So, we can model our gyro as a low pass filter, being

Hgyro(s) =
1

s+ ωbr
. (1.1)

The gyro break frequency ωbr (above which the performance starts to decrease) is quite high. In fact,
it usually is higher than any of the important frequencies of the aircraft. Therefore, the gyro can often
also be simply modelled as H(s) = 1. In other words, it can be assumed that the gyro is sufficiently
accurate.

Now let’s examine the rudder servo actuator. Actuators are always a bit slow too respond: they lag
behind the input. So, we model the rudder as a lag transfer function, like

Hservo(s) =
Kservo

1 + Tservos
. (1.2)

1



The time constant Tservo depends on the type of actuator. For slow electric actuators, Tservo ≈ 0.25.
However, for fast hydraulic actuators, Tservo ≈ 0.05 to 0.1. This time constant (or equivalently, the servo
break frequency ωbrservo

) can be very important. If it turns out to be different than expected, the results
can also be very different. So, it is often worth while to investigate what happens if Tservo varies a bit.

1.2 The yaw damper: determining the transfer function

Now we’ll turn our focus to the yaw damper. We know that the yaw damper has to reduce the yaw rate.
But it shouldn’t always try to keep the yaw rate at zero. In this case, the pilot will have a hard time to
change the heading of the aircraft. Thus, a reference yaw rate r is also supplied to the system. This
yaw rate can be calculated from the desired heading rate ψ̇ by using

r = ψ̇ cos θ cosφ. (1.3)

In this equation, θ is the pitch angle and φ is the roll angle. Both of them thus need to be known.
Alternatively, we can also assume that the aircraft is in a horizontal steady turn. In this case, we have

L sinφ =
mg

cosφ
sinφ = mUψ̇ ⇒ ψ =

g

Us
φ. (1.4)

In this equation, U is the forward velocity of the aircraft. Also, note that we have assumed that φ is small
(by using tanφ ≈ φ) and that we have transformed the equation to the frequency domain (by replacing
ψ̇ by sψ).

But even if we don’t know r, we can still get the system working. In this case, we can use a washout
circuit, which is much less expensive. We then simply incorporate a washout term in the controller,
being

Hwashout(s) =
τs

τs+ 1
. (1.5)

This will cause the yaw damper to fight less when a yaw rate is continuously present. In other words,
the system ‘adjusts’ itself to a new desired yaw rate. The time constant τ is quite important. For too
high values, the pilot will still have to fight the yaw damper. But for too low values, the yaw damper
itself doesn’t work, because the washout circuit simply adjusts too quickly. A good compromise is often
at τ = 4s.

Finally, we look at the yaw damper transfer function. In this transfer function, we have proportional,
integral and derivative action. If the rise time should be reduced, we use proportional action. If the
steady state error needs to be reduced, we add an integral action. And if the transient response needs to
be reduced (e.g. to reduce overshoot) we apply a derivative action. In this way, the right values of Kp,
KI and KD can be chosen.

Sometimes, the optimal values of the gains Kp, KI and KD differ per flight phase. In this case gain
scheduling can be applied. The gains then depend on certain relevant parameters, like the velocity V
and the altitude h. In this way, every flight phase will have the right gains.

1.3 The pitch damper

When an aircraft flies at a low speed and a high altitude, the short period eigenmotion has a low damping.
To compensate for this, a pitch damper is used. The pitch damper is in many ways similar to the yaw
damper. Also the set-up is similar. Only this time, the elevators and a pitch rate gyro are used, instead
of the rudder and a yaw rate gyro. These two parts are modelled by

Hgyro(s) ≈ 1 and Hservo(s) ≈
Kservo

1 + Tservos
≈ 1

0.25s+ 1
. (1.6)
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Just like with the yaw damper, the reference pitch rate q needs to be calculated. This time, this can
be done by using

L = nW = nmg = mg +mUq ⇒ q =
g

U
(n− 1). (1.7)

Alternatively, a washout circuit can again be used. This washout circuit again has the function given in
equation (1.5). Also, a value of τ ≈ 4 is again a good compromise. Just like a yaw damper, also the pitch
damper has proportional, integral and derivative actions.

1.4 The phugoid damper

To adjust the properties of the phugoid, we can use a phugoid damper. It is very similar to the previous
two dampers we have seen. However, this damper uses the measured velocity U as input. Its output is
sent to the elevator. The speed sensor and the elevator servo are modelled as

HV−sensor(s) ≈ 1 and Hservo(s) ≈
Kservo

1 + Tservos
≈ 1

0.05s+ 1
. (1.8)

Note that for the servo now a break frequency of ωbr = 20 Hz is assumed.

A reference velocity U is also needed by the system. This reference velocity is simply set by the
pilot/autopilot. Alternatively, a washout circuit can be used. This washout circuit is the same as those
of the yaw and pitch damper. And, just like the previous two dampers, again proportional, integral and
derivative actions can be used.

When using a phugoid damper, one should also keep in mind the short period motion properties. Im-
proving the phugoid often means that the short period properties become worse.

2 Feedback – Acquiring static stability

Before an aircraft can be dynamically stable, it should first be statically stable. In other words, we should
have Cmα < 0 and Cnβ

> 0. Normal aircraft already have this. But very manoeuvrable aircraft, like
fighter aircraft, do not. (Remember: less stability generally means more manoeuvrability.) Then how do
we make these aircraft statically stable?

2.1 Angle of attack feedback

To make an aircraft statically stable, feedback is applied. The most important part is the kind of feedback
that is used. First, we’ll examine angle of attack feedback for longitudinal control. In other words,
the angle of attack α is used as a feedback parameter. First, we have to model the angle of attack sensor
and the (canard) servo actuator. This is often done using

Hα−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.025s+ 1
. (2.1)

So, now a break frequency ωbr = 40 is used for the servo.

For angle of attack feedback, usually only a proportional gain Kα is used. By using the models of the
sensor and actuator (and of course also the aircraft), a root locus plot can be made. With this root locus
plot, a nice value of the gain Kα can be chosen. This gain is then used to determine the necessary canard
deflection δcanard. This is done using

∆δcanard = Kα ·∆α. (2.2)

However, a check does need to be performed on whether the canard deflections can be achieved. If gust
loads can cause a change in angle of attack of ∆α = 1◦ and the maximum canard deflection is 25◦, then
Kα should certainly not be bigger than 25, or even be close to it for that matter.
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2.2 Load factor feedback

There is a downside with angle of attack feedback. It is often hard to measure α accurately. So instead,
load factor feedback can be applied. Now the value of n is used as feedback. As models for the sensor
and actuator, we again use

Hn−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.025s+ 1
. (2.3)

We also need a model for the aircraft. Normally, we assume that such a model is known. However, the
transfer function between the load factor n and the canard deflection δc is usually not part of the aircraft
model. So, we simply derive it. For that, we first can use

∆n =
ẇ

g
=
U tan γ̇

g
≈ Uγ̇

g
=
Uγs

g
. (2.4)

We now divide the equation by δc. If we also use γ = θ − α, then we find that

n(s)
δc(s)

≈ Us

g

(
θ(s)
δc(s)

− α(s)
δc(s)

)
. (2.5)

The transfer functions from δc to both θ and α usually are part of the aircraft model. So we assume that
they are known. The transfer function between n and δc is thus now also known. All that is left for us
to do is choose an appropriate gain Kn. And of course, again it needs to be checked whether this gain
Kn doesn’t result into too big canard deflections.

The load factor sensor also has a downside. It is often hard to distinguish important accelerations (like
the ones caused by turbulence) from unimportant accelerations (like vibrations due to, for example, a
firing gun). Good filters need to be used to make sure a useful signal is obtained.

2.3 Sideslip feedback

Previously we have considered longitudinal stability. For lateral stability, sideslip feedback can be used.
(However, sideslip feedback is not yet applied in practice.) With sideslip feedback, the sideslip angle β is
used as feedback parameter for the rudder. The β-sensor and the rudder are usually modelled as

Hβ−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.05s+ 1
. (2.6)

The transfer function between the sideslip angle β and the rudder deflection δr usually follows from the
airplane model. Now that the model is in place, a nice gain Kβ can be chosen for the system. This should
then give it the right properties.

There is a small problem with sideslip feedback. It can generate a lateral phugoid mode of vibration. To
compensate for this, another feedback loop is often used, where the roll rate is used as feedback for the
ailerons. This then reduces the effects of the lateral phugoid motion.
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