
Introduction and theory recapitulation

When flying an aircraft, you need to control it. This controlling can be done by humans. But often,
it is much easier, safer, faster, more efficient and more reliable to do so by computer. But, how do we
automatically control a flight? That is what this summary is all about.

1 Basic flight control concepts

1.1 Introduction automatic flight control

The system that is used to control the flight is called the flight control system (FCS). In the early days
of flying, the FCS was mechanical. By means of cables and pulleys, the control surfaces of the aircraft
were given the necessary deflections to control the aircraft. However, new technologies brought with it
the fly-by-wire FCS. In this system electrical signals are sent to the control surfaces. The signals are sent
by the flight (control) computer (FC/FCC). In this way, the aircraft is controlled.

But what is the advantage of automatic flight control? Why would we use an FC instead of a pilot?
There are several reasons for this. First of all, a computer has a much higher reaction velocity than a
pilot. Also, it isn’t subject to concentration losses and fatigue. Finally, a computer can more accurately
know the state the aircraft is in. (Computers can handle huge amounts of data better and also don’t
need to read a small indicator to know, for example, the velocity or the height of the aircraft.) However,
there also is a downside to FCs. They are only designed for a certain flight envelope. When the aircraft is
outside of the flight envelope, the system can’t really operate the aircraft anymore. For these situations,
we still need pilots.

1.2 Set-up of the flight control system

The FCS of an aircraft generally consists of three important parts.

• The stability augmentation system (SAS) augments to the stability of the aircraft. It mostly
does this by using the control surfaces to make the aircraft more stable. A good example of a part
of the SAS is the phugoid damper (or similarly, the yaw damper). A phugoid damper uses the
elevator to reduce the effects of the phugoid: it damps it. The SAS is always on when the aircraft
is flying. Without it, the aircraft is less stable or possibly even unstable.

• The control augmentation system (CAS) is a helpful tool for the pilot to control the aircraft.
For example, the pilot can tell the CAS to ‘keep the current heading’. The CAS then follows this
command. In this way, the pilot doesn’t continuously have to compensate for heading changes
himself.

• Finally, the automatic control system takes things one step further. It automatically controls the
aircraft. It does this by calculating (for example) the roll angles of the aircraft that are required to
stay on a given flight path. It then makes sure that these roll angles are achieved. In this way, the
airplane is controlled automatically.

There are important differences between the above three systems. First of all, the SAS is always on,
while the other two systems are only on when the pilot needs them. Second, there is the matter of
reversibility. In the CAS and automatic control, the pilot feels the actions that are performed by the
computer. In other words, when the computer decides to move a control panel, also the stick/pedals of
the pilot move along. This makes these systems reversible. The SAS, on the other hand, is not reversible:
the pilot doesn’t receive feedback. The reason for this is simple. If the pilot would receive feedback, the
only things he would feel are annoying vibrations. This is of course undesirable.
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2 Flight dynamics recap

2.1 Reference frames

To be able to express the state of the aircraft, we need a reference frame. Several reference frames are
around. We’ll discuss the four most important ones here. (You’ve probably seen them before quite some
times, but for completeness, we do mention them.)

• The Earth-fixed frame of reference FE is a right-handed orthogonal system. The ZE axis
points to the Earth’s center, the XE axis points North and the YE axis points East. The origin of
the system is initially positioned at the aircraft center of gravity (cog). However, the FE reference
frame is fixed to Earth. So, when the aircraft cog moves, the origin of the FE system stays fixed
with respect to the Earth.

• The body-fixed frame of reference FB also is a right-handed orthogonal system. Its origin lies
at the aircraft cog and is fixed to it. (So, if the aircraft moves, the frame of reference moves along.)
The XB axis is parallel to the aircraft longitudinal axis and points forward. The YB axis is parallel
to the lateral axis and points to the right. Finally, the ZB axis points downward.

• The stability frame of reference FS also is a right-handed orthogonal system. Its origin is fixed
to the aircraft cog, just like with FB . Also, the YS axis coincides with the YB axis. However, this
time the XS axis is rotated downward by the angle of attack α. To be more precise, the XS axis is
parallel to the projection of the velocity vector on the plane of symmetry of the aircraft. The ZS

axis still points downward, but it is of course also rotated by an angle α.

• Finally, there is the aircraft frame of reference Fr. Contrary to the other systems, this is a
left-handed orthogonal system. Its origin is a certain fixed point on the aircraft (though not the
cog). The Xr axis points to the rear of the aircraft, the Yr axis points to the left and the Zr axis
points upward.

2.2 The equations of motion

By using the reference frames, we can derive the equations of motion. (There are force equations, moment
equations and kinematic relations.) These equations are, however, nonlinear. So to be able to work with
them more easily, they are linearized about an equilibrium position of the aircraft. (The derivations
for this are not given here, since this summary is not about that subject. For the derivations, see the
summary of the third-year Flight Dynamics course.) After we have linearized the equations of motion,
we can put them in a matrix form. For the symmetric equations of motion, we get
CXu − 2µcDc CXα CZ0

CXq

CZu CZα + (CZα̇ − 2µc)Dc −CX0 2µc + CZq

0 0 −Dc 1

Cmu
Cmα

+ Cmα̇
Dc 0 Cmq

− 2µcK
2
YDc



û

α

θ
qc̄
V

 =


−CXδe

−CXδt

−CZδe
−CZδt

0 0

−Cmδe
−Cmδt


[
δe

δt

]
.

(2.1)
Similarly, for the asymmetric equations of motion, we get
CYβ + (CYβ̇

− 2µb)Db CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ + Cnβ̇
Db 0 Cnp + 4µbKXZDb Cnr − 4µbK

2
ZDb


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ϕ
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 =


−CYδa

−CYδr
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−Clδa
−Clδr

−Cnδa
−Cnδr


[
δa

δr

]
.

(2.2)
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To use these equations for computations, we often have to transform them into state space form. To put
an equation in state space form, we first have to isolate all terms with one of the differential operators
Dc and Db on one side of the equation. After this, we apply the definition of these operators, being

Dc =
c̄

V

d

dt
and Db =

b

V

d

dt
. (2.3)

If we then also move the term c̄
V (for the symmetric equations) or the term b

V (for the asymmetric
equations) to the other side of the equation, we have put the equation in its state space form.

3 Control theory recap: frequency domain and diagrams

3.1 The frequency domain

Let’s suppose we have the state space representation of a system, but we want to examine the system
in the frequency domain. To do this, we have to put the system in the frequency domain first. To
accomplish this, we need to follow several steps. First, we have to rewrite the state space form in the
Laplace domain. (Take the Laplace transform of the equation.) We can assume zero initial conditions
here. (This simplifies matters a bit.) Second, we eliminate the state vector X(s) and rewrite the system
of equations as Y (s) = F (s)U(s). (Here, Y (s) is the output vector and U(s) is the input vector.)
Thirdly, we substitute the Laplace variable s by jω, with j =

√
−1 the complex variable. If everything

has gone well, then we should have found

F (jω) = C (jωI −A)
−1
B +D. (3.1)

We can now examine the frequency domain of the system. Let’s suppose that we give our system a
sinusoidal input U(s). This input has unit magnitude and frequency ω. The result is that the output
Y (s) will start to oscillate as well. However, it doesn’t do that in exactly the same way. Instead, the
amplitude is multiplied by the amplitude gain K. Next to this, there is also a phase angle φ. Both
parameters follow from the transfer function F (jω) and can be found using

K = |F (jω)| and φ = arg (F (jω)) . (3.2)

So, if K > 1, the oscillation is amplified. Otherwise, it is reduced in strength. Similarly, if φ > 0, the
system has phase lead. Otherwise, it has phase lag.

3.2 Different kinds of diagram

We would like to know how the gain K and the phase angle φ vary with the frequency ω. This is displayed
in a Bode diagram. In fact, a Bode diagram consists of two plots. Both plots have on the horizontal
axis the frequency ω, on a logarithmic scale. The first plot shows the gain K in decibel (linearly). To
put the gain K in decibel, you can use the equation

KdB = 20 · log10K ⇔ K = 10

(
KdB
20

)
. (3.3)

The second plot shows the phase angle φ (also linearly).

Next to the Bode diagram, there is also the Nyquist diagram (also known as the polar plot). To
make it, we make a complex plot of F (jω) with respect to ω. In other words, we plot the real part of
F (jω) on the x-axis and its imaginary part on the y-axis for varying ω. The distance from the origin
now indicates the gain, while the (CCW) angle with respect to the x-axis indicates the phase angle.

Finally, there is the Nichols diagram. In this diagram, we plot the decibal gain KdB (vertically) against
the phase angle φ (horizontally).
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3.3 The Nyquist stability criterion

Let’s suppose we have a basic feedback system, with transfer function F (s) = G(s)/ (1 +G(s)H(s)). F (s)
now is the closed loop transfer function (CL). Also, G(s) is the feed forward transfer function
(FF) and G(s)H(s) is the open loop transfer function (OL). We can make a Nyquist diagram of the
open loop transfer function G(s)H(s). The Nyquist stability criterion now tells us something about
the stability of the entire closed-loop transfer function F (s).

First, we need to count the number of poles k of the transfer function G(s)H(s) with real part bigger
than zero. (So, the number of poles in the right half plane.) Second, we need to count the number of net
counterclockwise encirclements of the point −1 of the Nyquist diagram of G(s)H(s). If this number is
equal to the number k, then the closed loop system is stable. Otherwise, it is unstable.

4 Control theory recap: system properties

4.1 Controllability, observability, stabilizability and detectability

Let’s examine a system in state space form. In other words, the system can be described by ẋ = Ax+Bu
and y = Cx +Du. We can now make several definitions concerning this system.

The system, or equivalently the pair (A,B), is said to be state controllable if, for any initial state x(0) =
x0, any time t1 > 0 and any final state x1, there exists an input u(t) such that x(t1) = x1. Otherwise
the system is said to be state uncontrollable. To find out whether a system is state controllable, we
can examine the controllability matrix R, defined as

R =
[
B AB A2B . . . An−1B

]
. (4.1)

The system is controllable if, and only if, the matrix R is of full rank. In other words, all its rows are
linearly independent.

The system, or equivalently the pair (A,C), is said to be state observable if, for any initial time t1 > 0,
the initial state x(0) = x0 can be determined from the time history of the input u(t) and the output y(t)
in the interval [0, t1]. Otherwise the system is said to be state unobservable. To find out whether a
system is state observable, we can examine the observability matrix W , defined as

W =



C

CA

CA2

...

CAn−1

 . (4.2)

The system is observable if, and only if, the matrix W is of full rank. In other words, all its columns are
linearly independent.

The system, or equivalently the pair (A,B), is said to be state stabilizable if all unstable modes are
state controllable. This is the case if there exists a feedback matrix F which stabilizes the system
(thus causing A+BF to be stable). To test for stabilizability, we can use the Hautus test. It says that
(A,B) is stabilizable if and only if the matrix[

A− λI B
]

(4.3)

has full rank for all unstable eigenvalues λ. (In other words, for all λ with positive real parts, the above
matrix has linearly independent rows.)
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The system, or equivalently the pair (A,C), is said to be state detectable if all unstable modes are
state observable. This is the case if there exists a matrix L such that A+ LC is stable (and thus has all
its eigenvalues in the left half part of the complex plane). To test for detectability, we can again use the
Hautus test. This time, it says that (A,C) is detectable if and only if the matrix[

A− λI
C

]
(4.4)

has full rank for all unstable eigenvalues λ. (In other words, for all λ with positive real parts, the above
matrix has linearly independent columns.)

4.2 Varying the poles and zeroes of the open loop transfer function

Let’s examine a basic closed loop system with transfer function F (s). We can add a constant gain K
into this system. This turns the transfer function from

F (s) =
G(s)

1 +G(s)H(s)
into F (s) =

KG(s)

1 +KG(s)H(s)
. (4.5)

By varying this gain K, we will vary the properties of the system. This is displayed by a root locus
plot. (As you remember from Control Theory, a root locus plot shows how the poles of the closed loop
transfer function vary with K.)

Sometimes, however, we can also wind up in a situation, where we are allowed to choose one pole pvar of
the open loop transfer function G(s)H(s). This situation is very similar to the case where we can choose
the gain K. To show this, we define

G(s)H(s) =

(
1

s− pvar

)
Q(s). (4.6)

This will turn the closed loop transfer function into

F (s) =
G(s)

1 +G(s)H(s)
=

G(s)
s+Q(s) (s− pvar)

1− pvar
s+Q(s)

=
G1(s)

1 +G1(s)H1(s)
. (4.7)

In this equation, we have defined the modified transfer functions G1(s) and H1(s) as

G1(s) =
G(s)

s+Q(s)
(s− pvar) and H1(s) = − pvar

G(s) (s− pvar)
. (4.8)

We can now see something interesting. Previously, the denominator of the closed loop transfer function
was 1 + KG(s)H(s). By varying K, we varied the poles. However, this time the denominator is 1 −
pvar (s+Q(s))

−1
. It is of the same form! So, varying pvar is just like varying a gain K. And we can

again make a root locus plot.

We can do the same with varying zeroes. If we can choose a zero zvar of the open loop transfer function,
then we write G(s)H(s) = (s− zvar)P (s). The closed loop transfer function now turns into

F (s) =

G(s)
1+sP (s)

1− zvarP (s)
1+sP (s)

=
G2(s)

1 +G2(s)H2(s)
. (4.9)

Again, we see that varying zvar is like varying the gain K. We can therefore again use it to influence the
properties of the closed loop system.
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