
Trusses

1 Determinacy in Truss Structures

1.1 Introduction to determinacy

A truss structure is a structure consisting of members, connected by joints. Truss members are only
subject to tension/compression.

Suppose we have a 2-dimensional truss structure. n is the number of joints (nodes) in the structure,
m the number of members and r is the number of reaction forces acting on the structure. (So for a
clamped beam r = 3, for a hinge support r = 2 and for a hinge on a roller support r = 1.) Whether the
structure is kinematically determinate and statically determinate can be derived from figure 1.

Figure 1: Overview of kinematical/statical determinacy

1.2 Kinematical determinacy

But what does it mean? A structure that is kinematically indeterminate can move (or parts of it can
move), while kinematically determinate structures can not move at all. Statical determinacy is a bit more
difficult to explain.

1.3 Statical determinacy

A statically determinate structure has just the right amount of members to make the structure also
kinematically determinate. Remove 1 member, and the structure becomes kinematically indeterminate.
Add 1 member, and the structure becomes statically indeterminate. The result of this is the following.

Let’s suppose we have a statically determinate structure with a given applied load and truss geometry.
The stress in any beam depends only on the cross-sectional area of that beam: σi = f(Ai). Now suppose
we have a statically indeterminate structure. The stress depends on the cross-sectional areas of all the
beams: σi = f(A1 + . . . + Am). Also, to find the stresses, additional boundary conditions are required.
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2 Stress Analysis in Truss Structures

2.1 Statically determinate trusses

Suppose at a later time we will receive data about a truss structure and want to calculate the forces in
each member. To calculate this, we could write a computer program. But how can we let a program
calculate the forces in every member?

For statically determinate structures, we can take the sum of forces in every node, both in x-direction
and y-direction. We then get 2n equations. But what are our unknowns? The m internal forces in
the members are unknown, and the r reaction forces are unknown as well. But since m + r = 2n (the
structure is statically determinate), we have the same amount of unknowns as equations. It can therefore
be solved by a computer program.

When all the forces are known, it is easy to calculate the stresses present in the structure. To calculate
the stress in beam i, just use

σi =
Fi

Ai
, (2.1)

where Fi is the normal force in that beam and Ai is the cross-sectional area.

2.2 Statically indeterminate trusses

If the structure is statically indeterminate, then m + r > 2n, meaning that there are more unknowns
then equations. Therefore additional boundary conditions are needed to calculate the stresses. These
boundary conditions usually involve displacements.

Displacements are generally difficult to calculate. They don’t only depend on the truss configuration.
They also depend on the cross-sectional areas of the members. But there is a method with which this
can be done, called the dummy load method. Let’s take a look at that method now.

3 Dummy Load Method Derivation

3.1 Displacements and energy

A force on a structure always causes displacements. Energy is stored in such displacements. If P is the
applied force on a structure and δ is the displacement, then the work done in the structure (and thus the
energy stored in the structure) is

U =
∫

P dδ. (3.1)

In an elastic (conservative) structure the energy can be recovered completely. In a plastic (non-
conservative) structure part of the energy is lost, causing permanent deformations.

It is usually assumed that δ is a linear combination of P , meaning that

P = kδ, (3.2)

where k is the stiffness. For truss members with uniform cross-section k = EA
L . This implies that

dU

dδ
= P,

dU

dP
= δ. (3.3)

This relation is called Castigliano’s theorem. So for one truss member, the internal energy is given by

U =
∫ l

0

P dδ =
∫ l

0

P

k
dP =

P 2

2k
=

P 2L

2AE
. (3.4)
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To derive the dummy load method for other load cases than just tension/compression, we can use table
3.1.

Type Displacement Energy
Tension/Compression Bar dδ = F dx

AE dU = 1
2F dδ = F 2 dx

2AE

Torsion Bar dφ = T dx
GJ dU = 1

2T dφ = T 2 dx
2GJ

Bending Beam dθ = M dx
EI dU = 1

2M dθ = M2 dx
2EI

Shear Beam γ = V Q
ItG ≈ V

AG dU = 1
2V γdx = V 2Q dx

2ItG ≈ V 2dx
2AG

Table 1: Basic Structural Deformations

3.2 Multiple members and loads

Now look at a complete structure with n members with internal forces F1, . . . Fn, caused by m applied
loads P1, . . . , Pm. The total energy stored in the system is

U =
n∑

i=1

F 2
i Li

2AiEi
. (3.5)

Suppose Pj is a virtual (nonexisting) force acting on some point j in the structure. The displacement of
j in the direction of Pj now is

δj =
∂U

∂Pj
=

n∑
i=1

∂
(

F 2
i Li

2AiEi

)
∂Pj

=
n∑

i=1

∂(F 2
i )

∂Pj
Li

2AiEi
=

n∑
i=1

2Fi
∂Fi

∂Pj
Li

2AiEi
=

n∑
i=1

FifiLi

AiEi
, (3.6)

where fi is defined as fi = ∂Fi

∂Pj
. Let’s take a closer look at this fi. What is it? In fact, there is a linear

relation between Fi and Pj . So we can say that Fi = Pjfi. To find fi, simply set Pj = 1 and calculate
Fi.

3.3 Dummy load method

The dummy load method is a method to calculate displacements. It uses the relation that was just
found (equation 3.6).

It can be used for statically determinate structures to calculate the displacements. This is the subject of
the next part. It can also be used for statically indeterminate structures. In a statically indeterminate
structure, displacements are necessary to calculate the forces in the structure.

4 Displacements in Statically Determinate Trusses

4.1 Step 1 - Calculate all the internal forces

Suppose we have a statically determinate structure and want to find the displacement of some point j.
To use the dummy load method, we have to calculate the internal forces F1, . . . , Fn first.

4.2 Step 2 - Calculate the force derivatives

Now we know Fi for every i. Of course we also know the shape of the structure, so we know Li, Ai and
Ei for every i. The only unknowns are f1, . . . , fn. Use the following steps to find them.
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• Remove all external forces P1, . . . Pm from the structure.

• Place a load Pj = 1 at point j, in the direction of which you want to know the displacement. Note
that if you want to find the actual displacement vector of a point, you need to perform this method
twice. Once for each direction.

• Calculate the force in all the members, due to this load Pj . The value of fi is now the internal force
of member i that results from this calculation.

4.3 Step 3 - Calculate the displacement

Now Fi and fi are known for every i. To calculate the displacement in the specified direction, you must
use

δj =
n∑

i=1

FifiLi

AiEi
. (4.1)

With this method the displacement of every node in the structure can be calculated.

5 Statically Indeterminate Trusses

5.1 Superposition

In the last chapter we saw that a structure with m members, n nodes and r reaction forces is statically
indeterminate if m + r > 2n. The degree of statical indeterminacy is defined as d = m + r − 2n.
This is also the amount of members you can remove until the structure becomes statically determinate.

The dummy load method for indeterminate structures uses the principle of superposition. This states
that for multiple loads, the displacements caused by the individual loads can be added up. So if there
is a structure with multiple loads acting on it, you can calculate the displacement caused by every load
individually, and eventually add them all up.

5.2 Step 1 - Remove members until statical determinacy is reached

But how can we use this on a statically indeterminate structure? To keep things simple, we assume that
the degree of statical indeterminacy is 1. Let’s suppose that member j is between nodes A and B. Also
suppose that if we remove member j, the structure becomes statically determinate.

5.3 Step 2 - Calculate displacement due to external forces

We now have a statically determinate structure. Therefore, we can calculate the force in every member
F ext

1 , . . . F ext
m (except member j, of course) due to the externally applied loads. Since member j is

removed, it can’t carry any loads. So we assume that F ext
j = 0. Keep in mind that these are not the

loads that are actually present in the structure, since we removed a member!

To use the dummy load method, we want to calculate the change of the distance AB. So we assume
that there is a unit load (of size 1N) acting on both A and B, pointing inward (where member j was).
The forces in every member f1, . . . , fm (due to this unit load) can now be calculated. The shortening of
distance AB in the determinate structure, due to the external forces, is

δext
AB =

m∑
i=1

F ext
i fiLi

AiEi
. (5.1)

In the above summation, we have F ext
j = 0. So the entire j-term will vanish.
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5.4 Step 3 - Calculate displacement due to the removed member

We have assumed member j wasn’t present. But of course it is present. The member is actually causing
a force Fj on the structure at points A and B. And to calculate the displacement due to member j, we
need to take into account this force.

So we assume there is a force Fj acting on both A and B, pointing inward (where member j was). The
forces in all members due to this internal load, F int

1 , . . . , F int
m , can now be calculated. In fact, we can

take a short cut using
F int

i = Fjfi, (5.2)

for every member i 6= j. Note that F int
j isn’t really defined. But if we define F int

j = Fj and fj = 1, then
equation 5.2 also holds for i = j.

Using equation 5.2 and fj = 1, we can derive that the change of distance AB, due to the force caused by
member j, is

δint
AB =

m∑
i=1

F int
i fiLi

AiEi
= Fj

m∑
i=1

f2
i Li

AiEi
. (5.3)

5.5 Step 4 - Equate displacements to zero

We now know the change of distance AB due to external forces (being δext
AB) and the change of distance

AB due to internal forces (being δint
AB). To find Fj , we can use the simple relation

δext
AB + δint

AB = 0. (5.4)

The only unknown in this relation is Fj , so it can be solved. By the way, we will not show why this
relation is true. (The explanation is too long for a summary.)

Now we finally know Fj . We still don’t know the other forces in the structure. To find the actual forces,
we just have to sum up the part caused by external loads and the part caused by internal forces. So the
actual forces in every member can be calculated using

F act
i = F ext

i + F int
i = F ext

i + Fjfi. (5.5)

6 Actuation

6.1 Actuated members

Truss members can be actuated by external effects. One of the most common effects is a change in
temperature. A material subject to a change in temperature is assumed to elongate/shorten according
to

εT = α ∆T, (6.1)

where α is the coefficient of thermal expansion (CTE). Other ways of actuation can be treated
similarly, so we will only examine actuation by temperature. The total strain now is

ε = εT + εM = α ∆T +
P

AE
, (6.2)

where εM is the strain due to mechanical forces.
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6.2 Actuation effects

But what effect does this have on the dummy load method? In equation 5.1 we saw the part F ext
i /AiEi.

This is equal to the mechanical strain εM . We should replace this by the new strain. So instead of using
equation 5.1 we use

δext
AB =

m∑
i=1

fiεiLi =
m∑

i=1

fiLi

(
α ∆T +

F ext
i

AiEi

)
. (6.3)
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