
Plates

1 Basic Stress Analysis in Plates

1.1 Uniaxial stress state

Suppose we have a plate with thickness t, width w (in the x-direction) and length L (in the y-direction).
Also suppose that the plate is rigidly connected at the bottom and loaded by a force P at the top, such
that the stresses are uniformly divided over the plate. Now we have a plate with a uniaxial stress
state. The stresses are now given by

σy =
P

wt
, σx = 0. (1.1)

From these stresses we can derive the strains. If ν is Poisson’s ratio of the material, then

εy =
σy

E
=

P

Ewt
, εx = −νεy = − νP

Ewt
. (1.2)

1.2 Biaxial stress state

What if we constrain the plate of the last paragraph on the left and the right side? We then actually set
εx to be zero. This causes the stresses in the plate to change. Let’s call the strain in x-direction εx and
the strain in y-direction εy. We can now solve this problem, using the basic equations

εy =
σy

E
− ν

σx

E
=

P

Ewt
− ν

Rx

ELt
, εx =

σx

E
− ν

σy

E
=

Rx

ELt
− ν

P

Ewt
, (1.3)

where Rx is the reaction force in horizontal direction. Since εx = 0, we can derive that

Rx = ν
PL

w
. (1.4)

Using this, the stresses can be found. They are

σy =
P

wt
, σx =

Rx

Lt
= ν

P

wt
= νσy. (1.5)

1.3 Multiple materials

When a plate consists of individual parts of different materials, the situation is more complicated. Still
the equations of the previous paragraphs can be applied, but several other compatibility equations are
necessary. There are no basic equations for that, but there are a few tricks that often need to be used.

• The stresses in the individual plate parts, in both x and y-direction can be expressed as a force
using F = σA, where A is the cross-sectional area. Using ”sum of the forces is zero” for individual
plate parts can give several compatibility equations.

• Often a plate is constrained in horizontal direction. In that case you can use the rule: ”The sum of
the horizontal displacements is zero.”

• Finally, a plate is often constrained at the bottom and stressed uniformly at the top. In that case
you can use the rule: ”The vertical displacement of every part is equal.”

1



2 Stress Analysis in Plates Using Mohr’s Circle

2.1 Present stresses

In the previous chapter, we have only considered uniform load cases on rectangular uniform plates. Such
simple geometries are often not present. For plates, stress analysis is therefore usually too complex. In
that case stresses can not be calculated directly. Nevertheless, the stresses are present.

In a 2-dimensional plate, three kinds of stresses are present, being σx (normal stress in x-direction), σy

(normal stress in y-direction) and τxy (shear stress in the xy-plane). In 3-dimensional plates, six kinds of
stresses are present, being σx, σy, σz, τxy, τxz and τyz. However, we only consider 2-dimensional plates
from now on.

2.2 Mohr’s circle

The stresses in a plate can not be calculated, but they can be measured. Suppose we measure σx, σy and
τxy at a certain point. We get certain values. Suppose we now change (rotate) our coordinate system
and measure σx, σy and τxy at the same point again. We now get different values. If we keep doing this
for different (rotated) coordinate systems, and plot all the data we find in a σ− τ coordinate system, we
get a circle, as can be seen in figure 1. This circle is called Mohr’s circle.

Figure 1: Mohr’s Circle

2.3 Circle properties

Now let’s take another look at figure 1. Suppose we have done a measurement and gotten the values σx,
σy and τxy. We mark them in a graph and then draw a line between them. Where the line crosses the
σ-axis is the average stress σav, which can also be calculated using

σav =
σx + σy

2
. (2.1)

Also the radius of the circle can be calculated, using

R =

√(
σx − σy

2

)2

+ τ2
xy. (2.2)
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2.4 Maximum stress

If we take measurements for different coordinate axes, the stresses will be different. What we are interested
in, are the maximum stresses. The maximum shear stress is

τmax = R. (2.3)

To find the minimum and maximum normal stresses, we can use

σ1 = σav −R, σ2 = σav + R. (2.4)

Note that σ1 and σ2 can be both positive (in case of tension in both directions), both negative (in case
of compression in both directions), or it is possible that σ2 > 0 and σ1 < 0. For figure 1 this means that
the circle can move to the left and to the right for different load cases. However, the circle can not move
upward or downward - the circle center is always at the σ-axis.

2.5 Stress directions

It is often handy to know in which direction maximum stresses occur. This can also be derived from
Mohr’s circle. Let’s start rotating our coordinate system and do measurements. At some moment, when
we have rotated the coordinate system by an angle θp, we measure maximum normal stress. In figure 1
this angle θp is visualized. From this figure we can see that

tan 2θp =
τxy

σx−σy

2

=
2τxy

σx − σy
. (2.5)

Let’s define θs to be the angle at which maximum shear stress occurs. We can now see that

θs = θp ± 45◦. (2.6)
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