
Root Locus Techniques I 8 

^Chapter Learning Outcomes^ 
After completing this chapter the student will be able to: 

• Define a root locus (Sections 8.1-8.2) 

• State the properties of a root locus (Section 8.3) 

• Sketch a root locus (Section 8.4) 

• Find the coordinates of points on the root locus and their associated gains 
(Sections 8.5-8.6) 

• Use the root locus to design a parameter value to meet a transient response 
specification for systems of order 2 and higher (Sections 8.7-8.8) 

• Sketch the root locus for positive-feedback systems (Section 8.9) 

• Find the root sensitivity for points along the root locus (Section 8.10) 

(Case Study Learning Outcomes^ 
You will be able to demonstrate your knowledge of the chapter objectives with case 
studies as follows: 

• Given the antenna azimuth position control system shown on the front endpapers, 
you will be able to find the preamplifier gain to meet a transient response 
specification. 

• Given the pitch or heading control system for the Unmanned Free-Swimming 
Submersible vehicle shown on the back endpapers, you will be able to plot the 
root locus and design the gain to meet a transient response specification. You will 
then be able to evaluate other performance characteristics. 
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388 Chapter 8 Root Locus Techniques 

^ 8 . 1 Introduction 
Root locus, a graphical presentation of the closed-loop poles as a system parameter is 
varied, is a powerful method of analysis and design for stability and transient response 
(Evans, 1948; 1950). Feedback control systems are difficult to comprehend from a 
qualitative point of view, and hence they rely heavily upon mathematics. The root locus 
covered in this chapter is a graphical technique that gives us the qualitative description 
of a control system's performance that we are looking for and also serves as a powerful 
quantitative tool that yields more information than the methods already discussed. 

Up to this point, gains and other system parameters were designed to yield a 
desired transient response for only first- and second-order systems. Even though the 
root locus can be used to solve the same kind of problem, its real power lies in its 
ability to provide solutions for systems of order higher than 2. For example, under 
the right conditions, a fourth-order system's parameters can be designed to yield a 
given percent overshoot and settling time using the concepts learned in Chapter 4. 

The root locus can be used to describe qualitatively the performance of a 
system as various parameters are changed. For example, the effect of varying gain 
upon percent overshoot, settling time, and peak time can be vividly displayed. The 
qualitative description can then be verified with quantitative analysis. 

Besides transient response, the root locus also gives a graphical representation 
of a system's stability. We can clearly see ranges of stability, ranges of instability, and 
the conditions that cause a system to break into oscillation. 

Before presenting root locus, let us review two concepts that we need for the 
ensuing discussion: (1) the control system problem and (2) complex numbers and 
their representation as vectors. 

The Control System Problem 
We have previously encountered the control system problem in Chapter 6: Whereas the 
poles of the open-loop transfer function are easily found (typically, they are known by 
inspection and do not change with changes in system gain), the poles of the closed-loop 
transfer function are more difficult to find (typically, they cannot be found without factoring 
the closed-loop system's characteristic polynomial, the denominator of the closed-loop 
transfer function), and further, the closed-loop poles change with changes in system gain. 

A typical closed-loop feedback control system is shown in Figure 8.1(a). The 
open-loop transfer function was defined in Chapter 5 as KG(s)H(s). Ordinarily, we 

FIGURE 8.1 a. Closed-loop 
system; b. equivalent transfer 
function 
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can determine the poles of KG(s)H(s), since these poles arise from simple cascaded 
first- or second-order subsystems. Further, variations in K do not affect the location 
of any pole of this function. On the other hand, we cannot determine the poles of 
T(s) = KG(s)/[l + KG{s)H(s)\ unless we factor the denominator. Also, the poles of 
T(s) change with K. 

Let us demonstrate. Letting 

^=fi (-) 
and 

-w-gg (3.2) 
then 

KNG(s)DH(s) 
T(s) = 

DG(s)DH(s) + KNG(s)NH(s) 
(8.3) 

where N and D are factored polynomials and signify numerator and denominator terms, 
respectively. We observe the following: Typically, we know the factors of the numerators 
and denominators of G(s) and H(s). Also, the zeros of T(s) consist of the zeros of G(s) 
and the poles of H(s). The poles of T(s) are not immediately known and in fact can 
change with K. For example, if G(s) = (s + l)/[s(s + 2)] and H(s) = (s + 3)/(5 + 4), 
the poles of KG(s)H(s) are 0, -2 , and -4 . The zeros of KG(s)H(s) are - 1 and - 3. 
Now, T(s) = K{s + l)(s + 4)/[s3 + (6 + K)s2+ (8 + 4K)s + 3K]. Thus, the zeros of 
T(s) consist of the zeros of G(s) and the poles of H(s). The poles of T(s) are not 
immediately known without factoring the denominator, and they are a function of K. 
Since the system's transient response and stability are dependent upon the poles of T(s), 
we have no knowledge of the system's performance unless we factor the denominator 
for specific values of K. The root locus will be used to give us a vivid picture of the poles 
of T(s) as K varies. 

Vector Representation of Complex Numbers 
Any complex number, a + jco, described in Cartesian coordinates can be graphi­
cally represented by a vector, as shown in Figure 8.2(a). The complex number also 
can be described in polar form with magnitude M and angle 6, as MZ9. If the 
complex number is substituted into a complex function, F(s), another complex 
number will result. For example, if F(s) = (s + a), then substituting the com­
plex number s = a +jco yields F(s) = (a + a) +jco, another complex number. This 
number is shown in Figure 8.2(b). Notice that F(s) has a zero at -a. If we translate 
the vector a units to the left, as in Figure 8.2(c), we have an alternate represen­
tation of the complex number that originates at the zero of F(s) and terminates on 
the point 5 = a+jco. 

We conclude that (s + a) is a complex number and can be represented by a 
vector drawn from the zero of the function to the points. For example, (s + 7)1^5+2 is 
a complex number drawn from the zero of the function, -7 , to the point s, which is 
5 +/2, as shown in Figure 8.2(d). 
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Now let us apply the concepts to a complicated function. Assume a function 
m 

F{s) = ^ 
Q numerator's complex factors 

A , v FT denominator's complex factors 
LL\S+Pj) 
/=i 

(8.4) 

where the symbol Yl means "product," m — number of zeros, and n — number of 
poles. Each factor in the numerator and each factor in the denominator is a complex 
number that can be represented as a vector. The function defines the complex 
arithmetic to be performed in order to evaluate F(s) at any point, s. Since each com­
plex factor can be thought of as a vector, the magnitude, M, of F(s) at any point, s, is 

M = 
rr , «. flK5 + z')l 
| [ zero lengths f£ 
II pole lengths J ^ , ^ 

(8.5) 

where a zero length, | (s 4- n) \, is the magnitude of the vector drawn from the zero of F(s) 
at -zi to the point s, and a pole length, | (s + pj)\, is the magnitude of the vector drawn 
from the pole of F(s) at —pj to the point s. The angle, 0, of F(s) at any point, s, is 

(8.6) 

where a zero angle is the angle, measured from the positive extension of the real axis, 
of a vector drawn from the zero of F(s) at - z , to the point s, and a pole angle is the 

0 = J2 zero angles 

= Y,As + Zi)~ 
/=i 

- £ pole angles 

/=i 
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angle, measured from the positive extension of the real axis, of the vector drawn from 
the pole of F(s) at —m to the point s. 

As a demonstration of the above concept, consider the following example. 

Example 8.1 

Evaluation of a Complex Function via Vectors 

PROBLEM: Given 

F(s) = (s + 1) 
s{s + 2) 

(8.7) 

find F(s) at the point s = —3 +/4 . 

SOLUTION: The problem is graphically depicted in Figure 8.3, where each 
vector, (s + a), of the function is shown terminating on the selected point 
s — - 3 +/4 . The vector originating at the zero at —1 is 

(8.8) 

(8.9) 

(8.10) 

20Z116.60 

The vector originating at the pole at the origin is 

5Z126.9° 

The vector originating at the pole at - 2 is 

y/V7Z 104.0° 

Substituting Eqs. (8.8) through (8.10) into Eqs. (8.5) and (8.6) yields 

V20 
MZO = 

5VT7 
Z116.6° - 126.9° - 104.0° = 0.217Z - 114.3C (8.11) 

as the result for evaluating F(s) at the point - 3 + /4 . 

i 

FIGURE 8.3 Vector 
representation of Eq. (8.7) 

j-plane 

Skill-Assessment Exercise 8.1 

PROBLEM: Given 

F(s) = 
( j + 2)(s+ 4) 

s(s + 3)(s + 6) 

find F(s) at the point s = -7 + /9 the following ways: 

a. Directly substituting the point into F(s) 

b. Calculating the result using vectors 

ANSWER: 

-0.0339 -/0.0899 = 0.096Z - 110.7C 

The complete solution is at www.wiley.com/college/nise. 

Trylt8.1 

Use the following MATLAB 
statements to solve the 
problem given in Skill-
Assessment Exercise 8.1. 

s=-7 + 9 j ; 
G = ( s + 2 ) * ( s + 4 ) / . . . 

( s*(s+3)*(s+6) ) ; 
T h e t a = ( 1 8 0 / p i ) * . . . 

angle(G) 
M=abs(G) 

We are now ready to begin our discussion of the root locus. 

http://www.wiley.com/college/nise
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Defining the Root Locus 
A security camera system similar to that shown in Figure 8.4(a) can automatically 
follow a subject. The tracking system monitors pixel changes and positions the 
camera to center the changes. 

The root locus technique can be used to analyze and design the effect of loop 
gain upon the system's transient response and stability. Assume the block diagram 
representation of a tracking system as shown in Figure 8.4(b), where the closed-loop 
poles of the system change location as the gain, K, is varied. Table 8.1, which was 
formed by applying the quadratic formula to the denominator of the transfer 
function in Figure 8.4(c), shows the variation of pole location for different values 
of gain, K. The data of Table 8.1 is graphically displayed in Figure 8.5(a), which 
shows each pole and its gain. 

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop pole, 
which is at -10 for K = 0, moves toward the right, and the closed-loop pole, which is 
at 0 for K — 0, moves toward the left. They meet at - 5 , break away from the real axis, 
and move into the complex plane. One closed-loop pole moves upward while the 
other moves downward. We cannot tell which pole moves up or which moves down. 
In Figure 8.5(b), the individual closed-loop pole locations are removed and their 
paths are represented with solid lines. It is this representation of the paths of the 
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(0 
FIGURE 8.4 a. Security cameras with auto tracking can be used to follow moving objects 
automatically; b. block diagram; c. closed-loop transfer function 
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TABLE 8.1 Pole location as function of gain for the 
system of Figure 8.4 
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FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus 

closed-loop poles as the gain is varied that we call a root locus. For most of our work, 
the discussion will be limited to positive gain, or K > 0. 

The root locus shows the changes in the transient response as the gain, K, varies. 
First of all, the poles are real for gains less than 25. Thus, the system is overdamped. At 
a gain of 25, the poles are real and multiple and hence critically damped. For gains 
above 25, the system is underdamped. Even though these preceding conclusions were 
available through the analytical techniques covered in Chapter 4, the following 
conclusions are graphically demonstrated by the root locus. 

Directing our attention to the underdamped portion of the root locus, we see that 
regardless of the value of gain, the real parts of the complex poles are always the same. 
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Since the settling time is inversely proportional to the real part of the complex poles for 
this second-order system, the conclusion is that regardless of the value of gain, the settling 
time for the system remains the same under all conditions of underdamped responses. 

Also, as we increase the gain, the damping ratio diminishes, and the percent 
overshoot increases. The damped frequency of oscillation, which is equal to the 
imaginary part of the pole, also increases with an increase in gain, resulting in a 
reduction of the peak time. Finally, since the root locus never crosses over into the 
right half-plane, the system is always stable, regardless of the value of gain, and can 
never break into a sinusoidal oscillation. 

These conclusions for such a simple system may appear to be trivial. What we 
are about to see is that the analysis is applicable to systems of order higher than 2. 
For these systems, it is difficult to tie transient response characteristics to the pole 
location. The root locus will allow us to make that association and will become an 
important technique in the analysis and design of higher-order systems. 

Properties of the Root Locus 
In Section 8.2, we arrived at the root locus by factoring the second-order polynomial 
in the denominator of the transfer function. Consider what would happen if that 
polynomial were of fifth or tenth order. Without a computer, factoring the polyno­
mial would be quite a problem for numerous values of gain. 

We are about to examine the properties of the root locus. From these 
properties we will be able to make a rapid sketch of the root locus for higher-order 
systems without having to factor the denominator of the closed-loop transfer 
function. 

The properties of the root locus can be derived from the general control system 
of Figure 8.1(a). The closed-loop transfer function for the system is 

T(s) = 
KG{s) 

l + KG{s)H{s) 
(8.12) 

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denomi­
nator becomes zero, or 

KG{s)H{s) = -1 = lZ{2k + 1)180° k = 0, ±1, ±2, ±3 , . . . (8.13) 

where —1 is represented in polar form as lZ(2k + 1)180°. Alternately, a value of s is 
a closed-loop pole if 

\KG(s)H{s)\ = l (8.14) 

and 

ZKG{s)H(s) = (2k + l)180c (8.15) 

Equation (8.13) implies that if a value of 5 is substituted into the function 
KG(s)H(s), a complex number results. If the angle of the complex number is an odd 
multiple of 180°, that value of s is a system pole for some particular value of K. What 
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value of K1 Since the angle criterion of Eq. (8.15) is satisfied, all that remains is to 
satisfy the magnitude criterion, Eq. (8.14). Thus, 

(8.16) 

We have just found that a pole of the closed-loop system causes the angle of 
KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180°. 
Furthermore, the magnitude of KG(s)H(s) must be unity, implying that the value of Kis 
the reciprocal of the magnitude of G(s)H(s) when the pole value is substituted for s. 

Let us demonstrate this relationship for the second-order system of Figure 8.4. 
The fact that closed-loop poles exist at —9.47 and —0.53 when the gain is 5 has 
already been established in Table 8.1. For this system, 

KG(s)H{s) = K 

sis 10) 
(8.17) 

Substituting the pole at -9.47 for s and 5 for K yields KG(s)H{s) = - 1 . The student 
can repeat the exercise for other points in Table 8.1 and show that each case yields 
KG{s)H(s) = - 1 . 

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the 
complex number concepts reviewed in Section 8.1 to the root locus of the system 
shown in Figure 8.6. For this system the open-loop transfer function is 

KG(s)H(s) = 
K(s + 3)(s + 4) 
(s+ !)(* +2) 

The closed-loop transfer function, T(s), is 

K(s + 3)(s + 4) 
T(s) = 

(1 + K)s2 + (3 + lK)s + (2 + 12#) 

(8.18) 

(8.19) 

If point s is a closed-loop system pole for some value of gain, iC, then s must 
satisfy Eqs. (8.14) and (8.15). 
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FIGURE 8.6 a. Example 
system; b. pole-zero plot 
of G(s) 
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FIGURE 8.7 Vector representation of G(s) from Figure 8.6(a) at -2 + /3 

Consider the point —2 + / 3 . If this point is a closed-loop pole for some value of 
gain, then the angles of the zeros minus the angles of the poles must equal an odd 
multiple of 180°. From Figure 8.7, 

01 + #2 - 03 - 04 = 56.31° + 71.57° - 90° - 108.43° = -70.55c (8.20) 

/3 is not a Therefore, - 2 + /3 is not a point on the root locus, or alternatively, - 2 
closed-loop pole for any gain. 

If these calculations are repeated for the point —2 + ;(\/2/2), the angles do add 
up to 180°. That is, —2 +/( \ /2/2) is a point on the root locus for some value of gain. 
We now proceed to evaluate that value of gain. 

From Eqs. (8.5) and (8.16), 

K = 
1 _ 1 TJ pole lengths 

\G(s)H(s)\ ~M~ nzerolengths 
(8.21) 

Looking at Figure 8.7 with the point - 2 + /3 replaced by - 2 + j(\/2/2), the gain, K, is 
calculated as 

V2 
K = 

UL 3 ^ 4 
(1.22) 

LiL 1-^2 (2.12)(1.22) 
= 0.33 (8.22) 

Thus, the point -2 + j(V2/2) is a point on the root locus for a gain of 0.33. 
We summarize what we have found as follows: Given the poles and zeros of the 

open-loop transfer function, KG(s)H(s), a point in the s-plane is on the root locus for 
a particular value of gain, K, if the angles of the zeros minus the angles of the poles, 
all drawn to the selected point on the s-plane, add up to (2k + 1)180°. Furthermore, 
gain K at that point for which the angles add up to (2k + 1)180° is found by dividing 
the product of the pole lengths by the product of the zero lengths. 
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Skill-Assessment Exercise 8.2 

PROBLEM: Given a unity feedback system that has the forward transfer function 

K{s + 2) 
G(s) = 

(s2 + 4s + 13) 

do the following: 

a. Calculate the angle of G(s) at the point ( - 3 + /0) by finding the algebraic sum of 
angles of the vectors drawn from the zeros and poles of G(s) to the given point. 

b. Determine if the point specified in a is on the root locus. 
c. If the point specified in a is on the root locus, find the gain, K, using the 

lengths of the vectors. 

ANSWERS: 

a. Sum of angles = 180° 
b. Point is on the root locus 
c. K = 10 

The complete solution is at www.wiley.com/college/nise. 

WileyPLUS 

Control Solutions 

Trylt 8.2 
Use MATLAB and the fol­
lowing statements to solve 
Skill-Assessment Exercise 
8.2. 

s = - 3 + 0 j ; 
G=(s+2) / (s*2+4*s+13) ; 
T h e t a = ( 1 8 0 / p i ) * . . . 
angle(G) 

M=abs(G); 
K=l/M 

£ 8.4 Sketching the Root Locus 
It appears from our previous discussion that the root locus can be obtained by 
sweeping through every point in the s-plane to locate those points for which the 
angles, as previously described, add up to an odd multiple of 180°. Although this task 
is tedious without the aid of a computer, the concept can be used to develop rules 
that can be used to sketch the root locus without the effort required to plot the locus. 
Once a sketch is obtained, it is possible to accurately plot just those points that are of 
interest to us for a particular problem. 

The following five rules allow us to sketch the root locus using minimal 
calculations. The rules yield a sketch that gives intuitive insight into the behavior 
of a control system. In the next section, we refine the sketch by finding actual points 
or angles on the root locus. These refinements, however, require some calculations or 
the use of computer programs, such as MATLAB. 

1. Number of branches. Each closed-loop pole moves as the gain is varied. If we 
define a branch as the path that one pole traverses, then there will be one branch 
for each closed-loop pole. Our first rule, then, defines the number of branches of 
the root locus: 

The number of branches of the root locus equals the number of closed-loop poles. 

As an example, look at Figure 8.5(6), where the two branches are shown. One 
originates at the origin, the other at -10. 

2. Symmetry. If complex closed-loop poles do not exist in conjugate pairs, the resulting 
polynomial, formed by multiplying the factors containing the closed-loop poles, 

http://www.wiley.com/college/nise
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*+o 

FIGURE 8.8 Poles and zeros of a general 
open-loop system with test points, Ph on the 
real axis 

would have complex coefficients. Physically realizable systems cannot have complex 
coefficients in their transfer functions. Thus, we conclude: 

The root locus is symmetrical about the real axis. 

An example of symmetry about the real axis is shown in Figure 8.5(b). 

3. Real-axis segments. Let us make use of the angle property, Eq. (8.15), of the 
points on the root locus to determine where the real-axis segments of the root 

locus exist. Figure 8.8 shows the poles and zeros of a general open-loop 
system. If an attempt is made to calculate the angular contribution of 
the poles and zeros at each point, Pi, P2, P3, and P4, along the real axis, 
we observe the following: (1) At each point the angular contribution of 
a pair of open-loop complex poles or zeros is zero, and (2) the 
contribution of the open-loop poles and open-loop zeros to the left 
of the respective point is zero. The conclusion is that the only contri­
bution to the angle at any of the points comes from the open-loop, real-
axis poles and zeros that exist to the right of the respective point. If we 
calculate the angle at each point using only the open-loop, real-axis 
poles and zeros to the right of each point, we note the following: (1) The 
angles on the real axis alternate between 0° and 180°, and (2) the angle 

is 180° for regions of the real axis that exist to the left of an odd number of poles 
and/or zeros. The following rule summarizes the findings: 

On the real axis, for K > Othe root locus exists to the left of an odd number of real-
axis, finite open-loop poles and/or finite open-loop zeros. 

Examine Figure 8.6(b). According to the rule just developed, the real-axis 
segments of the root locus are between - 1 and —2 and between - 3 and - 4 
as shown in Figure 8.9. 

4. Starting and ending points. Where does the root locus begin (zero gain) and end 
(infinite gain)? The answer to this question will enable us to expand the sketch of 
the root locus beyond the real-axis segments. Consider the closed-loop transfer 
function, T(s), described by Eq. (8.3). T(s) can now be evaluated for both large 
and small gains, K. As K approaches zero (small gain), 

T(s) 
KNG(s)DH(s) 

DG(s)D„(s) + < 
(8.23) 

From Eq. (8.23) we see that the closed-loop system poles at small gains approach 
the combined poles of G(s) and H(s). We conclude that the root locus begins at 
the poles of G(s)H(s), the open-loop transfer function. 

m 
i 

5-plane 

-»- a 
-4 -3 -2 -1 

FIGURE 8.9 Real-axis segments of the root locus for the system of Figure 8.6 
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At high gains, where K is approaching infinity, 

KNG{s)DH{s) 
T(s) 

€ + KNG(s)NH(s) 
(8.24) 

From Eq. (8.24) we see that the closed-loop system poles at large gains approach 
the combined zeros of G(s) and H(s). Now we conclude that the root locus ends at 
the zeros of G(s)H(s), the open-loop transfer function. 

Summarizing what we have found: 

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the 
finite and infinite zeros of G(s)H(s). 

Remember that these poles and zeros are the open-loop poles and zeros. 
In order to demonstrate this rule, look at the system in Figure 8.6(a), whose 

real-axis segments have been sketched in Figure 8.9. Using the rule just derived, 
we find that the root locus begins at the poles at - 1 and - 2 and ends at the zeros at 
—3 and —4 (see Figure 8.10). Thus, the poles start out at —1 and —2 and move 
through the real-axis space between the two poles. They meet somewhere 
between the two poles and break out into the complex plane, moving as complex 
conjugates. The poles return to the real axis somewhere between the zeros at —3 
and —4, where their path is completed as they move away from each other, and 
end up, respectively, at the two zeros of the open-loop system at - 3 and —4. 

5. Behavior at infinity. Consider applying Rule 4 to the following open-loop transfer 
function: 

KG(s)H(s) = K 
5(5 + 1)(5 + 2) 

(8.25) 

There are three finite poles, at s = 0, — 1, and - 2, and no finite zeros. 

A function can also have infinite poles and zeros. If the function approaches 
infinity as s approaches infinity, then the function has a pole at infinity. If the 
function approaches zero as s approaches infinity, then the function has a zero at 
infinity. For example, the function G(s) = s has a pole at infinity, since G(s) 
approaches infinity as s approaches infinity. On the other hand, G(s) = 1/5 has a 
zero at infinity, since G(s) approaches zero as s approaches infinity. 

Every function of s has an equal number of poles and zeros if we include the 
infinite poles and zeros as well as the finite poles and zeros. In this example, 

FIGURE 8.10 Complete root 
locus for the system of Figure 
8.6 
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Eq. (8.25) contains three finite poles and three infinite zeros. To illustrate, let s 
approach infinity. The open-loop transfer function becomes 

KG(s)H(s)^^ = k 

s • s • s 
(8.26) 

Each s in the denominator causes the open-loop function, KG(s)H(s), to become 
zero as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity. 

Thus, for Eq. (8.25), the root locus begins at the finite poles of KG(s)H(s) and 
ends at the infinite zeros. The question remains: Where are the infinite zeros? We 
must know where these zeros are in order to show the locus moving from the three 
finite poles to the three infinite zeros. Rule 5 helps us locate these zeros at infinity. 
Rule 5 also helps us locate poles at infinity for functions containing more finite zeros 
than finite poles.1 

We now state Rule 5, which will tell us what the root locus looks like as it 
approaches the zeros at infinity or as it moves from the poles at infinity. The 
derivation can be found in Appendix M.l at www.wiley.com/college/nise. 

The root locus approaches straight lines as asymptotes as the locus approaches 
infinity. Further, the equation of the asymptotes is given by the real-axis intercept, aa 

and angle, 9„ as follows: 

<J„ = 
J2 finite poles - £] finite zeros 

#finite poles - #finite zeros 
(8.27) 

(8.28) 

where k = 0, ± 1 , ±2, ±3 and the angle is given in radians with respect to the positive 
extension of the real axis. 

Notice that the running index, k, in Eq. (8.28) yields a multiplicity of lines that 
account for the many branches of a root locus that approach infinity. Let us 
demonstrate the concepts with an example. 

Example 8.2 

Sketching a Root Locus with Asymptotes 

PROBLEM: Sketch the root locus for the system shown in Figure 8.11. 

R<s) + ^ 

"V. 
?\ 
9 " 

K(s + 3) 

5(5+1)(S+ 2)(5+4) 

C(s) 

FIGURE 8.11 System for Example 8.2. 

1 Physical systems, however, have more finite poles than finite zeros, since the implied differentiation 
yields infinite output for discontinuous input functions, such as step inputs. 
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SOLUTION: Let us begin by calculating the asymptotes. Using Eq. (8.27), the real-
axis intercept is evaluated as 

On = 
( _ 1 - 2 - 4 ) - ( - 3 ) _ 4 

4 - 1 3 

The angles of the lines that intersect at -4 /3 , given by Eq. (8.28), are 

Qu= (2k + l)n 
#finite poles - #finite zeros 

= TT/3 forA; = 0 

= 7t for k = 1 

= 5TT/3 for A: = 2 

(8.29) 

(8.30a) 

(8.30b) 

(8.30c) 

(8.30d) 

If the value for k continued to increase, the angles would begin to repeat. The 
number of lines obtained equals the difference between the number of finite poles 
and the number of finite zeros. 

Rule 4 states that the locus begins at the open-loop poles and ends at the 
open-loop zeros. For the example there are more open-loop poles than open-loop 
zeros. Thus, there must be zeros at infinity. The asymptotes tell us how we get to 
these zeros at infinity. 

Figure 8.12 shows the complete root locus as well as the asymptotes that were 
just calculated. Notice that we have made use of all the rules learned so far. The 
real-axis segments lie to the left of an odd number of poles and/or zeros. The locus 
starts at the open-loop poles and ends at the open-loop zeros. For the example 
there is only one open-loop finite zero and three infinite zeros. Rule 5, then, tells us 
that the three zeros at infinity are at the ends of the asymptotes. 

5-plane 

FIGURE 8.12 Root locus and 
asymptotes for the system of 
Figure 8.11 
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PROBLEM: Sketch the root locus and its asymptotes for a unity feedback system 
that has the forward transfer function 

v ' (5 + 2)(5 + 4)(5 + 6) 

ANSWER: The complete solution is at www.wiIey.com/college/nise. 

( 8.5 Refining the Sketch 
The rules covered in the previous section permit us to sketch a root locus rapidly. If we 
want more detail, we must be able to accurately find important points on the root locus 
along with their associated gain. Points on the real axis where the root locus enters or 
leaves the complex plane—real-axis breakaway and break-in points—and the/w-axis 
crossings are candidates. We can also derive a better picture of the root locus by finding 
the angles of departure and arrival from complex poles and zeros, respectively. 

In this section, we discuss the calculations required to obtain specific points on 
the root locus. Some of these calculations can be made using the basic root locus 
relationship that the sum of the zero angles minus the sum of the pole angles equals 
an odd multiple of 180°, and the gain at a point on the root locus is found as the ratio 
of (1) the product of pole lengths drawn to that point to (2) the product of zero 
lengths drawn to that point. We have yet to address how to implement this task. In 
the past, an inexpensive tool called a Spirule added the angles together rapidly 
and then quickly multiplied and divided the lengths to obtain the gain. Today we can 
rely on hand-held or programmable calculators as well as personal computers. 

Students pursuing MATLAB will learn how to apply it to the root locus at the 
end of Section 8.6. Other alternatives are discussed in Appendix H.2 at www.wiley. 
com/college/nise. The discussion can be adapted to programmable hand-held calcu­
lators. All readers are encouraged to select a computational aid at this point. Root 
locus calculations can be labor intensive if hand calculations are used. 

We now discuss how to refine our root locus sketch by calculating real-axis 
breakaway and break-in points,/w-axis crossings, angles of departure from complex 
poles, and angles of arrival to complex zeros. We conclude by showing how to find 
accurately any point on the root locus and calculate the gain. 

Real-Axis Breakaway and Break-In Points 
Numerous root loci appear to break away from the real axis as the system poles 
move from the real axis to the complex plane. At other times the loci appear to 
return to the real axis as a pair of complex poles becomes real. We illustrate this in 
Figure 8.13. This locus is sketched using the first four rules: (1) number of branches, 
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure 
shows a root locus leaving the real axis between —1 and - 2 and returning to the real 
axis between +3 and +5. The point where the locus leaves the real axis, -o\, is called 
the breakaway point, and the point where the locus returns to the real axis, 02, is 
called the break-in point. 

http://www.wiIey.com/college/nise
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.?-pIane 

FIGURE 8.13 Root locus example showing real-axis breakaway (-o\) and break-in 
points {02) 

At the breakaway or break-in point, the branches of the root locus form an 
angle of 180° jn with the real axis, where n is the number of closed-loop poles arriving 
at or departing from the single breakaway or break-in point on the real axis (Kuo, 
1991). Thus, for the two poles shown in Figure 8.13, the branches at the breakaway 
point form 90° angles with the real axis. 

We now show how to find the breakaway and break-in points. As the two 
closed-loop poles, which are at —1 and —2 when K = 0, move toward each other, the 
gain increases from a value of zero. We conclude that the gain must be maximum 
along the real axis at the point where the breakaway occurs, somewhere between —1 
and -2 . Naturally, the gain increases above this value as the poles move into the 
complex plane. We conclude that the breakaway point occurs at a point of maximum 
gain on the real axis between the open-loop poles. 

Now let us turn our attention to the break-in point somewhere between -1-3 
and +5 on the real axis. When the closed-loop complex pair returns to the real axis, 
the gain will continue to increase to infinity as the closed-loop poles move toward 
the open-loop zeros. It must be true, then, that the gain at the break-in point is the 
minimum gain found along the real axis between the two zeros. 

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway 
point is found at the maximum gain between —1 and —2, and the break-in point is 
found at the minimum gain between +3 and +5. 

There are three methods for finding the points at which the root locus breaks 
away from and breaks into the real axis. The first method is to maximize and 
minimize the gain, K, using differential calculus. For all points on the root locus, 
Eq. (8.13) yields 

K = - _J 
G(s)H(s) 

(8.3i; 
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FIGURE 8.14 Variation of 
gain along the real axis for the 
root locus of Figure 8.13 -3 -2 -o\ -1 3 (72 

For points along the real-axis segment of the root locus where breakaway and break-
in points could exist, s — a. Hence, along the real axis Eq. (8.31) becomes 

K = -

This equation then represents a curve of K versus a similar to that shown in Figure 8.14. 
Hence, if we differentiate Eq. (8.32) with respect to a and set the derivative equal to 
zero, we can find the points of maximum and minimum gain and hence the breakaway 
and break-in points. Let us demonstrate. 

Example 8.3 

Breakaway and Break-in Points via Differentiation 

PROBLEM: Find the breakaway and break-in points for the root locus of Figure 8.13, 
using differential calculus. 

SOLUTION: Using the open-loop poles and zeros, we represent the open-loop 
system whose root locus is shown in Figure 8.13 as follows: 

K{s-3){s- 5) K{s2 -8s + 15) 
KG(s)H{s) = (8.33) 

(s + l){s + 2) (s2 + 3s + 2) 

But for all points along the root locus, KG(s)H(s) = —1, and along the real axis, 
s = a. Hence, 

K{a2 - 8a + 15) 

Solving for K, we find 

(0-2+3(7 + 2) 

K = -(o2 + 3a + 2) 

- 1 (8.34) 

(8.35) 
(0-2-8(7 + 15) 

Differentiating K with respect to a and setting the derivative equal to zero yields 
^ _ ( l l o - 2 - 2 6 o - 6 1 ) 
da 

= 0 (8.36) 
(a2 - 8o + 15)2 

Solving for a, we find a = -1.45 and 3.82, which are the breakaway and break-in points. 
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The second method is a variation on the differential calculus method. Called 
the transition method, it eliminates the step of differentiation (Franklin, 1991). This 
method, derived in Appendix M.2 at www.wiley.com/college/nise, is now stated: 

Breakaway and break-in points satisfy the relationship 

m , n -i 

^ a + Zi ^cr + Pi 

where zi andp{ are the negative of the zero and pole values, respectively, ofG(s)H(s). 

Solving Eq. (8.37) for a, the real-axis values that minimize or maximize K, yields 
the breakaway and break-in points without differentiating. Let us look at an 
example. 

PROBLEM: Repeat Example 8.3 without differentiating. 

SOLUTION: Using Eq. (8.37), 

^ 3 + ^ 5 = ^ 1 + ^ 2 <838> 

Simplifying, 

llo-2 - 26a - 61 = 0 (8.39) 

Hence, a = -1.45 and 3.82, which agrees with Example 8.3. 

For the third method, the root locus program discussed in Appendix H.2 at www 
.wiley.com/college/nise can be used to find the breakaway and break-in points. Simply 
use the program to search for the point of maximum gain between —1 and —2 and to 
search for the point of minimum gain between +3 and +5. Table 8.2 shows the results 
of the search. The locus leaves the axis at —1.45, the point of maximum gain between 
—1 and -2 , and reenters the real axis at +3.8, the point of minimum gain between +3 
and +5. These results are the same as those obtained using the first two methods. 
MATLAB also has the capability of finding breakaway and break-in points. 

The/'&rAxis Crossings 
We now further refine the root locus by finding the imaginary-axis crossings. The 
importance of the jco-axis crossings should be readily apparent. Looking at Fig­
ure 8.12, we see that the system's poles are in the left half-plane up to a particular 
value of gain. Above this value of gain, two of the closed-loop system's poles move 
into the right half-plane, signifying that the system is unstable. Theyw-axis crossing is 
a point on the root locus that separates the stable operation of the system from the 
unstable operation. The value of co at the axis crossing yields the frequency of 
oscillation, while the gain at the jco-axis crossing yields, for this example, the 
maximum positive gain for system stability. We should note here that other examples 

http://www.wiley.com/college/nise
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TABLE 8.2 Data for breakaway and break-in points for the root locus of Figure 8.13 

Comment Real-axis value 

-1.41 

-1.42 

-1.43 

-1.44 

-1.45 

-1.46 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

Gain 

0.008557 

0.008585 

0.008605 

0.008617 

0.008623 

0.008622 

44.686 

37.125 

33.000 

30.667 

29.440 

29.000 

29.202 

Max. gain: breakaway 

Min. gain: break-in 

illustrate instability at small values of gain and stability at large values of gain. These 
systems have a root locus starting in the right-half-plane (unstable at small values of 
gain) and ending in the left-half-plane (stable for high values of gain). 

To find the;'o)-axis crossing, we can use the Routh-Hurwitz criterion, covered in 
Chapter 6, as follows: Forcing a row of zeros in the Routh table will yield the gain; 
going back one row to the even polynomial equation and solving for the roots yields 
the frequency at the imaginary-axis crossing. 

Example 8.5 

Frequency and Gain at Imaginary-Axis Crossing 

PROBLEM: For the system of Figure 8.11, find the frequency and gain, K, for which 
the root locus crosses the imaginary axis. For what range of K is the system stable? 

SOLUTION: The closed-loop transfer function for the system of Figure 8.11 is 

T(s) = s4 + 753 + 1452 + (8 + K)s + 3K 
(8.40) 

Using the denominator and simplifying some of the entries by multiplying any row 
by a constant, we obtain the Routh array shown in Table 8.3. 

A complete row of zeros yields the possibility for imaginary axis roots. For 
positive values of gain, those for which the root locus is plotted, only the s1 row can 
yield a row of zeros. Thus, 

-K2 - 65K + 720 = 0 (8.41) 

From this equation K is evaluated as 

K = 9.65 (8.42) 
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TABLE 8.3 Routh table for Eq. (8.40) 

s4 1 14 3K 

53 7 8 + K 

s2 90 -K 21K 

sl -K2 - 65K + 720 
90 -K 

s° 21K 

Forming the even polynomial by using the s2 row with K — 9.65, we obtain 

(90 - K)s2 + 21K = 80.35s2 + 202.7 = 0 (8.43) 

and s is found to be equal to ±;'1.59. Thus the root locus crosses the /&>-axis at 
±/1.59 at a gain of 9.65. We conclude that the system is stable for 0 < K < 9.65. 

Another method for finding the /co-axis crossing (or any point on the root 
locus, for that matter) uses the fact that at the /<w-axis crossing, the sum of angles 
from the finite open-loop poles and zeros must add to (2k + 1)180°. Thus, we can 
search /©-axis until we find the point that meets this angle condition. A computer 
program, such as the root locus program discussed in Appendix H.2 at www.wiley 
.com/college/nise or MATLAB, can be used for this purpose. Subsequent exam­
ples in this chapter use this method to determine the jco-axis crossing. 

Angles of Departure and Arrival 
In this subsection, we further refine our sketch of the root locus by finding angles 
of departure and arrival from complex poles and zeros. Consider Figure 8.15, 
which shows the open-loop poles and zeros, some of which are complex. The root 
locus starts at the open-loop poles and ends at the open-loop zeros. In order to 
sketch the root locus more accurately, we want to calculate the root locus 
departure angle from the complex poles and the arrival angle to the complex 
zeros. 

If we assume a point on the root locus e close to a complex pole, the sum of 
angles drawn from all finite poles and zeros to this point is an odd multiple of 180°. 
Except for the pole that is e close to the point, we assume all angles drawn from all 
other poles and zeros are drawn directly to the pole that is near the point. Thus, the 
only unknown angle in the sum is the angle drawn from the pole that is e close. We 
can solve for this unknown angle, which is also the angle of departure from this 
complex pole. Hence, from Figure 8.15(a), 

-01 + 02 + 03 - 04 - 95 + 06 = {2k + 1) 180° (8.44a) 

or 

0i = 02 + 03 - 04 - 05 + 06 - (2k + 1)180° (8.44b) 

If we assume a point on the root locus e close to a complex zero, the sum of 
angles drawn from all finite poles and zeros to this point is an odd multiple of 180°. 
Except for the zero that is e close to the point, we can assume all angles drawn from 
all other poles and zeros are drawn directly to the zero that is near the point. Thus, 
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0) 

s-plane 

-%*%+% -ft,-e5+e6 = (2k+ i)i8o 

s-plane 

- 0 , + 02 + ¾ - f t , - % + 06 = (2-¾ +1)180 

FIGURE 8.15 Open-loop poles and zeros and calculation of a. angle of departure; b. angle of 
arrival 

the only unknown angle in the sum is the angle drawn from the zero that is e close. 
We can solve for this unknown angle, which is also the angle of arrival to this 
complex zero. Hence, from Figure 8.15(6), 

or 

-01 + 02 + #3 - 0A - 05 + 06 = (2k + l)180c 

e2 = e1-o3 + e4 + e5-e6 + (2k + i)i80° 

(8.45a) 

(8.45b) 

Let us look at an example. 
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Example 8.6 

Angle of Departure from a Complex Pole 

PROBLEM: Given the unity feedback system of Figure 8.16, find the angle of 
departure from the complex poles and sketch the root locus. 

m + K(s + 2) 
(s + 3)(sz + 2s + 2) 

C(s) 

FIGURE 8.16 Unity feedback 
system with complex poles 

SOLUTION: Using the poles and zeros of G(s) = (s + 2)/[(s 4- 3)(s2 + 25 + 2)] as 
plotted in Figure 8.17, we calculate the sum of angles drawn to a point € close to the 
complex pole, — 1 +/1, in the second quadrant. Thus, 

- 1 -0i - 6»2 + 93 - 6>4 = -#i - 90° + tan-1 ( - ) - tan-1 [-)= 180 . -1 (8.46) 

fromwhich#= —251.6° — 108.4°. A sketch of the root locus is shown in Figure 8.17. 
Notice how the departure angle from the complex poles helps us to refine the 
shape. 

J CO 

2 

\ \ 1 

\ \ Angle of 
\\ departure 

V^1 

r3 

- i 
-%¾ 

-

-

;4 

;3 

/2 

fl 

0 

-J2 

-/3 

-)4 

s-plane 

FIGURE 8.17 Root locus for 
system of Figure 8.16 showing 
angle of departure 
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Plotting and Calibrating the Root Locus 
Once we sketch the root locus using the rules from Section 8.4, we may want to 
accurately locate points on the root locus as well as find their associated gain. For 
example, we might want to know the exact coordinates of the root locus as it crosses 
the radial line representing 20% overshoot. Further, we also may want the value of 
gain at that point. 

Consider the root locus shown in Figure 8.12. Let us assume we want to find the 
exact point at which the locus crosses the 0.45 damping ratio line and the gain at that 
point. Figure 8.18 shows the system's open-loop poles and zeros along with the £ — 
0.45 line. If a few test points along the t, = 0.45 line are selected, we can evaluate 
their angular sum and locate that point where the angles add up to an odd multiple of 
180°. It is at this point that the root locus exists. Equation (8.20) can then be used to 
evaluate the gain, K, at that point. 

Selecting the point at radius 2 (r = 2) on the £ = 0.45 line, we add the angles of 
the zeros and subtract the angles of the poles, obtaining 

- 0 1 - 0 3 - 0 4 - 0 5 = -251.5° (8.47) 

Since the sum is not equal to an odd multiple of 180°, the point at radius = 2 is not on 
the root locus. Proceeding similarly for the points at radius = 1.5, 1, 0.747, and 0.5, 
we obtain the table shown in Figure 8.18. This table lists the points, giving their 
radius, r, and the sum of angles indicated by the symbol Z. From the table we see that 
the point at radius 0.747 is on the root locus, since the angles add up to —180°. Using 
Eq. (8.21), the gain, K, at this point is 

K = 
\A\\C\\D\\E\ 

\B\ 
= 1.71 (8.48) 

In summary, we search a given line for the point yielding a summation of angles 
(zero angles-pole angles) equal to an odd multiple of 180°. We conclude that the point 
is on the root locus. The gain at that point is then found by multiplying the pole 
lengths drawn to that point and dividing by the product of the zero lengths drawn to 
that point. A computer program, such as that discussed in Appendix H.2 at www. 
wiley.com/college/nise or MATLAB, can be used. 

£ = 0.45 

.f-plane 

Radius 

0.5 
0.747 
1.0 
1.5 
2.0 

Angle 

z. (degrees) 

-158.4 
-180.0 
-199.9 
-230.4 
-251.5 

v ^ ^ l , 

FIGURE 8.18 Finding and calibrating exact points on the root locus of Figure 8.12 
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Skill-Assessment Exercise 8.4 

PROBLEM: Given a unity feedback system that has the forward transfer function 

K(s + 2) 
G^ = {s2-4s + 13) 

do the following: 

a. Sketch the root locus. 
b. Find the imaginary-axis crossing. 
c. Find the gain, K, at the jco-axis crossing. 
d. Find the break-in point. 
e. Find the angle of departure from the complex poles. 

ANSWERS: 

a. See solution at www.wiley.com/college/nise. 
b. s = ±;V2l 
c. 2C = 4 

d. Break-in point = —7 
e. Angle of departure = —233.1° 

The complete solution is at www.wiley.com/college/nise. 

| 8.6 An Example 
We now review the rules for sketching and finding points on the root locus, as well as 
present an example. The root locus is the path of the closed-loop poles of a system as 
a parameter of the system is varied. Each point on the root locus satisfies the angle 
condition, ZG(s)H(s) = (2& + 1)180°. Using this relationship, rules for sketching 
and finding points on the root locus were developed and are now summarized: 

Basic Rules for Sketching the Root Locus 
Number of branches The number of branches of the root locus equals the number of 

closed-loop poles. 
Symmetry The root locus is symmetrical about the real axis. 
Real-axis segments On the real axis, for K > 0 the root locus exists to the left of an 

odd number of real-axis, finite open-loop poles and/or finite open-loop zeros. 
Starting and ending points The root locus begins at the finite and infinite poles of 

G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s). 
Behavior at infinity The root locus approaches straight lines as asymptotes as the 

locus approaches infinity. Further, the equations of the asymptotes are given by 
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the real-axis intercept and angle in radians as follows: 

J2 finite poles — J2 finite zeros 
#finite poles - #finite zeros 

(8.49) 

(2k + l)ir 

#finite poles — #finite zeros 
(8.50) 

where fc = 0,±l, ±2 , ± 3 , . . . . 

Additional Rules for Refining the Sketch 
Real-axis breakaway and break-in points The root locus breaks away from the real 

axis at a point where the gain is maximum and breaks into the real axis at a point 
where the gain is minimum. 

Calculation of jco-axis crossings The root locus crosses the ;'&>-axis at the point 
where Z G(s)H(s) = (2k + 1)180°. Routh-Hurwitz or a search of the ;'w-axis for 
(2k + 1)180° can be used to find the /Vw-axis crossing. 

Angles of departure and arrival The root locus departs from complex, open-loop 
poles and arrives at complex, open-loop zeros at angles that can be calculated as 
follows. Assume a point e close to the complex pole or zero. Add all angles drawn 
from all open-loop poles and zeros to this point. The sum equals (2k + 1)180°. The 
only unknown angle is that drawn from the € close pole or zero, since the vectors 
drawn from all other poles and zeros can be considered drawn to the complex pole 
or zero that is e close to the point. Solving for the unknown angle yields the angle 
of departure or arrival. 

Plotting and calibrating the root locus All points on the root locus satisfy the 
relationship ZG(s)H(s) = (2k + 1)180°. The gain, K, at any point on the root 
locus is given by 

K = 
1 _ 1 [ ] f m i t e P o l e lengths 

\G(s)H(s)\ ~M~ n f i n i t e zero lengths 
(8.51) 

Let us now look at a summary example. 

Example 8.7 

Sketching a Root Locus and Finding Critical Points 

PROBLEM: Sketch the root locus for the system shown in Figure 8.19(a) and find 
the following: 

a. The exact point and gain where the locus crosses the 0.45 damping ratio line 
b. The exact point and gain where the locus crosses the /a>-axis 

c. The breakaway point on the real axis 
d. The range of K within which the system is stable 
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m ?(9) r 
*(X) 

I 

K(s2 - 4s + 20) 

(,v + 2)(s + 4) 

C(s) 

(a) 

C = 0.45 

FIGURE 8.19 a. System for Example 8.7; b. root locus sketch. 

SOLUTION: The problem solution is shown, in part, in Figure 8.19(6). First sketch 
the root locus. Using Rule 3, the real-axis segment is found to be between - 2 and 
-4 . Rule 4 tells us that the root locus starts at the open-loop poles and ends at the 
open-loop zeros. These two rules alone give us the general shape of the root locus. 

a. To find the exact point where the locus crosses the £ = 0.45 line, we can use 
the root locus program discussed in Appendix H.2 at www.wiley.com/college/ 
nise to search along the line 

0 = 180° - cos"1 0.45 = 116.7° (8.52) 

for the point where the angles add up to an odd multiple of 180°. Searching in 
polar coordinates, we find that the root locus crosses the £ = 0.45 line at 
3.4 Z 116.7° with a gain, K, of 0.417. 

b. To find the exact point where the locus crosses the /&>-axis, use the root locus 
program to search along the line 

0 = 90° (8.53) 

http://www.wiley.com/college/
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MATLAB 

for the point where the angles add up to an odd multiple of 180°. Searching in 
polar coordinates, we find that the root locus crosses the/<y-axis at ±/3.9 with 
a gain of K = 1.5. 

c. To find the breakaway point, use the root locus program to search the real 
axis between —2 and - 4 for the point that yields maximum gain. Naturally, all 
points will have the sum of their angles equal to an odd multiple of 180°. A 
maximum gain of 0.0248 is found at the point -2.88. Therefore, the break­
away point is between the open-loop poles on the real axis at -2.88. 

d. From the answer to b, the system is stable for K between 0 and 1.5. 

Students who are using MATLAB should now run ch8pl in Appendix B. 
You will learn how to use MATLAB to plot and title a root locus, 
overlay constant £ and con curves, zoom into and zoom out from a 
root locus, and interact with the root locus to find critical 
points as well as gains at those points. This exercise solves 
Example 8.7 using MATLAB. 

WileyPLUS 

Control Solutions 

Ttylt 8.3 
Use MATLAB, the Control 
System Toolbox, and the fol­
lowing statements to plot the 
root locus for Skill-
Assessment Exercise 8.5. 
Solve the remaining parts of 
the problem by clicking on 
the appropriate points on the 
plotted root locus. 

numg=poly([2 4]); 
deng=[l 6 25]; 
G=tf(numg, deng) 
r locus (G) 
z = 0 . 5 
s g r i d ( z , 0) 

Skill-Assessment Exercise 8.5 

PROBLEM: Given a unity feedback system that has the forward transfer function 

K(s-2)(s-4) 
G(s) = 

(s2 + 6s + 25) 

do the following: 

a. Sketch the root locus. 

b. Find the imaginary-axis crossing. 
c. Find the gain, K, at the /o>-axis crossing. 
d. Find the break-in point. 
e. Find the point where the locus crosses the 0.5 damping ratio line. 
f. Find the gain at the point where the locus crosses the 0.5 damping ratio line. 
g. Find the range of gain, K, for which the system is stable. 

ANSWERS: 

a. See solution at www.wiley.com/college/nise. 
b. s = ±/4.06 
c. K = l 
d. Break-in point = +2.89 
e. 5 = -2.42+/4.18 
f. K = 0.108 
g.K<\ 

The complete solution is at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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I 8.7 Transient Response Design via Gain 
Adjustment 

Now that we know how to sketch a root locus, we show how to use it for the design of 
transient response. In the last section we found that the root locus crossed the 0.45 
damping ratio line with a gain of 0.417. Does this mean that the system will respond 
with 20.5% overshoot, the equivalent to a damping ratio of 0.45? It must be 
emphasized that the formulas describing percent overshoot, settling time, and 
peak time were derived only for a system with two closed-loop complex poles 
and no closed-loop zeros. The effect of additional poles and zeros and the conditions 
for justifying an approximation of a two-pole system were discussed in Sections 4.7 
and 4.8 and apply here to closed-loop systems and their root loci. The conditions 
justifying a second-order approximation are restated here: 

1. Higher-order poles are much farther into the left half of the s-plane than the 
dominant second-order pair of poles. The response that results from a higher-
order pole does not appreciably change the transient response expected from the 
dominant second-order poles. 

2. Closed-loop zeros near the closed-loop second-order pole pair are nearly can­
celed by the close proximity of higher-order closed-loop poles. 

3. Closed-loop zeros not canceled by the close proximity of higher-order closed-loop 
poles are far removed from the closed-loop second-order pole pair. 

The first condition as it applies to the root locus is shown graphically in Figure 
8.20(A) and (b). Figure 8.20(6) would yield a much better second-order approxima­
tion than Figure 8.20(a), since closed-loop pole p3 is farther from the dominant, 
closed-loop second-order pair, p^ and p2. 

The second condition is shown graphically in Figure 8.20(c) and (d). 
Figure 8.20(d) would yield a much better second-order approximation than 
Figure 8.20(c), since closed-loop pole p3 is closer to canceling the closed-loop zero. 

(0 

.y-plane 

s-plane Pi 

n 

FIGURE 8.20 Making second-order approximations 

0 

a —x—• x—O • x »|«»—»- a 
P3 

x Open-loop pole 

x Closed-loop pole 

O Closed-loop zero 

id) 
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Summarizing the design procedure for higher-order systems, we arrive at the 
following: 

1. Sketch the root locus for the given system. 

2. Assume the system is a second-order system without any zeros and then find the 
gain to meet the transient response specification. 

3. Justify your second-order assumption by finding the location of all higher-order 
poles and evaluating the fact that they are much farther from the/'w-axis than the 
dominant second-order pair. As a rule of thumb, this textbook assumes a factor of 
five times farther. Also, verify that closed-loop zeros are approximately canceled 
by higher-order poles. If closed-loop zeros are not canceled by higher-order 
closed-loop poles, be sure that the zero is far removed from the dominant second-
order pole pair to yield approximately the same response obtained without the 
finite zero. 

4. If the assumptions cannot be justified, your solution will have to be simulated in 
order to be sure it meets the transient response specification. It is a good idea to 
simulate all solutions, anyway. 

We now look at a design example to show how to make a second-order 
approximation and then verify whether or not the approximation is valid. 

Mi$ > m , 
g * 

K(s + 1.5) 

*(.$+!)(.?+10) 

C(s) 

FIGURE 8.21 System for Example 8.8 

Example 8.8 

Third-Order System Gain Design 

PROBLEM: Consider the system shown in Figure 8.21. Design the 
value of gain, K, to yield 1.52% overshoot. Also estimate the 
settling time, peak time, and steady-state error. 

SOLUTION: The root locus is shown in Figure 8.22. Notice that this 
is a third-order system with one zero. Breakaway points on the real 

m 
£ = 0.8 

s-plane 

1.19 +./0.90, K =12.79 
-0.87 +/).66, K= 7.36 

-10 -9 

X = Closed-loop pole 

X = Open-loop pole 

FIGURE 8.22 Root locus for Example 8.8 
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axis can occur between 0 and —1 and between —1.5 and -10 , where the gain 
reaches a peak. Using the root locus program and searching in these regions for 
the peaks in gain, breakaway points are found at —0.62 with a gain of 2.511 and at 
—4.4 with a gain of 28.89. A break-in point on the real axis can occur between 
—1.5 and —10, where the gain reaches a local minimum. Using the root locus 
program and searching in these regions for the local minimum gain, a break-in 
point is found at -2.8 with a gain of 27.91. 

Next assume that the system can be approximated by a second-order, under-
damped system without any zeros. A 1.52% overshoot corresponds to a damping 
ratio of 0.8. Sketch this damping ratio line on the root locus, as shown in Figure 8.22. 

Use the root locus program to search along the 0.8 damping ratio line for the 
point where the angles from the open-loop poles and zeros add up to an odd multiple of 
180°. This is the point where the root locus crosses the 0.8 damping ratio or 1.52 percent 
overshoot line. Three points satisfy this criterion: —0.87 ± /0.66, — 1.19 ± /0.90, and 
-4.6 ±j 3.45 with respective gains of 7.36,12.79, and 39.64. For each point the settling 
time and peak time are evaluated using 

Ts = ^ - (8.54) 

where p % is the real part of the closed-loop pole, and also using 

r» = J = (8.55) 
CO >nVl-? 

where con \ / l — f2 is the imaginary part of the closed-loop pole. 
To test our assumption of a second-order system, we must calculate the 

location of the third pole. Using the root locus program, search along the negative 
extension of the real axis between the zero at -1.5 and the pole at -10 for points 
that match the value of gain found at the second-order dominant poles. For each of 
the three crossings of the 0.8 damping ratio line, the third closed-loop pole is at 
—9.25, -8.6, and —1.8, respectively. The results are summarized in Table 8.4. 

Finally, let us examine the steady-state error produced in each case. Note that 
we have little control over the steady-state error at this point. When the gain is set 
to meet the transient response, we have also designed the steady-state error. For 
the example, the steady-state error specification is given by Kv and is calculated as 

* -53*°M=§§ (a56) 

The results for each case are shown in Table 8.4. 
How valid are the second-order assumptions? From Table 8.4, Cases 1 and 2 

yield third closed-loop poles that are relatively far from the closed-loop zero. For 
these two cases there is no pole-zero cancellation, and a second-order system 

TABLE 8.4 Characteristics of the system of Example 8.8 

Closed-loop Closed-loop Third Settling Peak 
Case poles zero Gain closed-loop pole time time Kv 

1 -0.87 ±/0.66 -1.5+/0 7.36 -9.25 4.60 4.76 1.1 

2 -1.19 ±/0.90 -1.5+/0 12.79 -8.61 3.36 3.49 1.9 

3 -4.60+/3.45 -1.5+/0 39.64 -1.80 0.87 0.91 5.9 
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Case 2 response Case 3 response 

— Third-order, K = 12.79 

Second-order, K = 12.79 

— Third-order, A-= 39.64 

_ Second-order, K= 39.64 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (seconds) 

(«) 
FIGURE 8.23 Second- and third-order responses for Example 8.8: a. Case 2; b. Case 3 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (seconds) 

MATLAB 

approximation is not valid. In Case 3, the third closed-loop pole and the closed-loop 
zero are relatively close to each other, and a second-order system approximation 
can be considered valid. In order to show this, let us make a partial-fraction 
expansion of the closed-loop step response of Case 3 and see that the amplitude of 
the exponential decay is much less than the amplitude of the underdamped 
sinusoid. The closed-loop step response, 03(5), formed from the closed-loop poles 
and zeros of Case 3 is 

C3(s) = 
39.64(5 + 1.5) 

s(s + 1.8)(5 + 4.6+/3.45)(5 + 4.6 - /3.45) 

39.64(5 + 1.5) 
5(5+ 1.8)(52+ 9.25+ 33.06) 

1 0.3 1.3(5 + 4.6) + 1.6(3.45) 

5 5(5 + 18) (5 + 4.6)2+3.452 

(8.57) 

Thus, the amplitude of the exponential decay from the third pole is 0.3, and the 
amplitude of the underdamped response from the dominant poles is 

\ / l . 3 2 + 1.62 = 2.06. Hence, the dominant pole response is 6.9 times as large as 
the nondominant exponential response, and we assume that a second-order 
approximation is valid. 

Using a simulation program, we obtain Figure 8.23, which shows comparisons 
of step responses for the problem we have just solved. Cases 2 and 3 are plotted for 
both the third-order response and a second-order response, assuming just the 
dominant pair of poles calculated in the design problem. Again, the second-order 
approximation was justified for Case 3, where there is a small difference in percent 
overshoot. The second-order approximation is not valid for Case 2. Other than the 
excess overshoot, Case 3 responses are similar. 

Students who are using MATLAB should now run ch8p2 in Appendix B. 
You will learn how to use MATLAB to enter a value of percent 
overshoot from the keyboard. MATLAB will then draw the root locus 
and overlay the percent overshoot line requested. You will then 
interact with MATLAB and select the point of intersection of the 
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root locus with the requested percent overshoot line. MATLAB 
will respondwith the value of gain, all closed-looppoles at that 
gain, and a closed-loop step response plot corresponding to the 
selected point. This exercise solves Example 8 . 8 using MATLAB. 

Students who are using MATLAB may want to explore the SISO Design 
Tool described in Appendix E at www.wiley.com/college/nise. The 
SISO Design Tool is a convenient and intuitive way to obtain, view, 
and interact with a system's root locus . Section D. 7 describes the 
advantages of using the tool, while Section D.8 describes how to 
use it. For practice, you may want to apply the SISO Design Tool to 
some of the problems at the end of this chapter. 

Skill-Assessment Exercise 8.6 

PROBLEM: Given a unity feedback system that has the forward-path transfer 
function 

G(s) = 
{s + 2)(s + 4)(s + 6) 

do the following: 

a. Sketch the root locus. 
b. Using a second-order approximation, design the value of K to yield 10% 

overshoot for a unit-step input. 
c. Estimate the settling time, peak time, rise time, and steady-state error for the 

value of K designed in (b). 
(I. Determine the validity of your second-order approximation. 

ANSWERS: 

a. See solution located at www.wiley.com/college/nise. 
b. K = 45.55 
c. Ts = 1.97 s, Tp = 1.13.9, Tr = 0.53s, and estep(oo) = 0.51 
d. Second-order approximation is not valid. 

The complete solution is located at www.wiley.com/college/nise. 

Gui Tool 

£ 8.8 Generalized Root Locus 
Up to this point we have always drawn the root locus as a function of the forward-
path gain, K. The control system designer must often know how the closed-loop 
poles change as a function of another parameter. For example, in Figure 8.24, the 
parameter of interest is the open-loop pole at -p^. How can we obtain a root locus 
for variations of the value of p^. 

http://www.wiley.com/college/nise
http://www.wiley.com/college/nise
http://www.wiley.com/college/nise
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If the function KG(s)H(s) is formed as 

KG{s)H{s) = 
10 

[s + 2){s+Pl) 
(8.58) 

«W *K 
V. 

^ 
^ 
, 

10 
(s + 2)(s + /?,) 

C(5) 

FIGURE 8.24 System requiring a root locus 
calibrated with p1 as a parameter 

the problem is that pj is not a multiplying factor of the function, as the 
gain, K, was in all of the previous problems. The solution to this 
dilemma is to create an equivalent system where px appears as the 
forward-path gain. Since the closed-loop transfer function's denomi­
nator is 1 + KG(s)H(s), we effectively want to create an equivalent 
system whose denominator is 1 + p1G(s)H(s). 

For the system of Figure 8.24, the closed-loop transfer function is 

m-,. 5ffL,-.,.,. .^,, (8.59) 1 + KG(s)H(s) s2 + (p1 + 2)s + 2Pl + 10 

Isolating p l 5 we have 

T(s) = 
10 

(8.60) 
$2+25 + 1 0 + ^ ( 5 + 2) 

Converting the denominator to the form [1 +plG(s)H(s)] by dividing numerator 
and denominator by the term not included with p1, s2 + 2s + 10, we obtain 

10 

rw = s2 + 2s + 10 

1 Pi(* + 2) 
52 + 25 + 10 

Conceptually, Eq. (8.61) implies that we have a system for which 

Pi (s + 2) 
KG(s)H(s) = 

52 + 2s + 10 

(8.61] 

(8.62) 

The root locus can now be sketched as a function of ph assuming the open-loop 
system of Eq. (8.62). The final result is shown in Figure 8.25. 

5-plane 

-10 

FIGURE 8.25 Root locus for 
the system of Figure 8.24, with 
px as a parameter 
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Skill-Assessment Exercise 8.7 

PROBLEM: Sketch the root locus for variations in the value of pti for a unity 
feedback system that has the following forward transfer function: 

G(s) = 
100 

WileyPLUS 

C33SJ 
Control Solutions 

s{s+Pi) 

ANSWER: The complete solution is at www.wiley.com/college/nise. 

In this section, we learned to plot the root locus as a function of any system 
parameter. In the next section we will learn how to plot root loci for positive-
feedback systems. 

( 

8.9 Root Locus for Positive-Feedback 
Systems 

The properties of the root locus were derived from the system of Figure 
8.1. This is a negative-feedback system because of the negative summing 
of the feedback signal to the input signal. The properties of the root locus 
change dramatically if the feedback signal is added to the input rather 
than subtracted. A positive-feedback system can be thought of as a 
negative-feedback system with a negative value of H(s). Using this 
concept, we find that the transfer function for the positive-feedback 
system shown in Figure 8.26 is 

T(s) = 
KG{s) 

1 - KG(s)H{s) 

R(s) 
KG(s) 

C(s) 

His) 

FIGURE8.26 Positive-feedback system 

(8.63) 

We now retrace the development of the root locus for the denominator of 
Eq. (8.63). Obviously, a pole, s, exists when 

KG(s)H(s) = 1 = 1Z^360° k = 0, ±1, ±2, ±3 , . . . (8.64) 

Therefore, the root locus for positive-feedback systems consists of all points on the 
s-plane where the angle of KG(s)H(s) = k360°. How does this relationship change 
the rules for sketching the root locus presented in Section 8.4? 

1. Number of branches. The same arguments as for negative feedback apply to this 
rule. There is no change. 

2. Symmetry. The same arguments as for negative feedback apply to this rule. There 
is no change. 

3. Real-axis segments. The development in Section 8.4 for the real-axis segments 
led to the fact that the angles of G(s)H(s) along the real axis added up to either an 
odd multiple of 180° or a multiple of 360°. Thus, for positive-feedback systems the 

http://www.wiley.com/college/nise
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root locus exists on the real axis along sections where the locus for negative-
feedback systems does not exist. The rule follows: 

Real-axis segments: On the real axis, the root locus for positive-feedback systems 
exists to the left of an even number of real-axis, finite open-loop poles and/or finite 
open-loop zeros. 

The change in the rule is the word even; for negative-feedback systems the locus 
existed to the left of an odd number of real-axis, finite open-loop poles and/or 
zeros. 

4. Starting and ending points. You will find no change in the development in Section 
8.4 if Eq. (8.63) is used instead of Eq. (8.12). Therefore, we have the following 
rule. 

Starting and ending points: The root locus for positive-feedback systems begins at 
the finite and infinite poles of G(s)H(s) and ends at the finite and infinite zeros of 
G(s)H(s). 

5. Behavior at infinity. The changes in the development of the asymptotes begin at 
Eq. (M.4) in Appendix M at www.wiley.com/college/nise since positive-feedback 
systems follow the relationship in Eq. (8.64). That change yields a different slope 
for the asymptotes. The value of the real-axis intercept for the asymptotes 
remains unchanged. The student is encouraged to go through the development 
in detail and show that the behavior at infinity for positive-feedback systems is 
given by the following rule: 

The root locus approaches straight lines as asymptotes as the locus approaches 
infinity. Further, the equations of the asymptotes for positive-feedback systems are 
given by the real-axis intercept, aa, and angle, 9a, as follows: 

^2 finite poles — J2 finite zeros 
# finite poles - # finite zeros 

# finite poles — # finite zeros 

where k — 0, ± 1 , ± 2 , ± 3 , . . . , and the angle is given in radians with respect to 
the positive extension of the real axis. 

The change we see is that the numerator of Eq. (8.66) is k2rr instead of 
{2k + 1)TT. 

What about other calculations? The imaginary-axis crossing can be found using 
the root locus program. In a search of the/w-axis, you are looking for the point where 
the angles add up to a multiple of 360° instead of an odd multiple of 180°. The 
breakaway points are found by looking for the maximum value of K. The break-in 
points are found by looking for the minimum value of K. 

When we were discussing negative-feedback systems, we always made the root 
locus plot for positive values of gain. Since positive-feedback systems can also be 
thought of as negative-feedback systems with negative gain, the rules developed in 
this section apply equally to negative-feedback systems with negative gain. Let us 
look at an example. 

(8.65) 

http://www.wiley.com/college/nise
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Example 8.9 

Root Locus for a Positive-Feedback System 

PROBLEM: Sketch the root locus as a function of negative gain, K, for the system 
shown in Figure 8.11. 

SOLUTION: The equivalent positive-feedback system found by pushing — 1, asso­
ciated with K, to the right past the pickoff point is shown in Figure 8.27(a). 

R(s) + K(s + 3) 

s(s+ l)(s + 2){s + 4) 
-1 

C(s) 

(a) 

jo.) 

s-plane 

j i i •*- a 
1 2 3 

(b) 

Therefore, as the gain of the equivalent system goes through positive values of K, 
the root locus will be equivalent to that generated by the gain, K, of the original 
system in Figure 8.11 as it goes through negative values. 

The root locus exists on the real axis to the left of an even number of real, 
finite open-loop poles and/or zeros. Therefore, the locus exists on the entire 
positive extension of the real axis, between —1 and —2 and between —3 and 
—4. Using Eq. (8.27), the aa intercept is found to be 

( - 1 - 2 - 4 ) - ( - 3 ) = 4 
4 - 1 3 a„ = (8.67) 

The angles of the lines that intersect at —4/3 are given by 

0u_ kin 
# finite poles — # finite zeros 

= 0 for£ = 0 

= 2ar/3 forfc=l 

= 4TT/3 for& = 2 

The final root locus sketch is shown in Figure 827(b) 

(8.68a) 

(8.68b) 

(8.68c) 

(8.68d) 

FIGURE 8.27 a. Equivalent 
positive-feedback system for 
Example 8.9; b. root locus 
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Skill-Assessment Exercise 8.8 

PROBLEM: Sketch the root locus for the positive-feedback system whose forward 
transfer function is 

G(s) = 
K{s + 4) 

{s + l)(s + 2){s + 3) 

The system has unity feedback. 

ANSWER: The complete solution is at www.wiley.com/college/nise. 

( 8.10 Pole Sensitivity 
The root locus is a plot of the closed-loop poles as a system parameter is varied. 
Typically, that system parameter is gain. Any change in the parameter changes the 
closed-loop poles and, subsequently, the performance of the system. Many times the 
parameter changes against our wishes, due to heat or other environmental condi­
tions. We would like to find out the extent to which changes in parameter values 
affect the performance of our system. 

The root locus exhibits a nonlinear relationship between gain and pole 
location. Along some sections of the root locus, (1) very small changes in gain 
yield very large changes in pole location and hence performance; along other 
sections of the root locus, (2) very large changes in gain yield very small changes 
in pole location. In the first case we say that the system has a high sensitivity to 
changes in gain. In the second case, the system has a low sensitivity to changes in 
gain. We prefer systems with low sensitivity to changes in gain. 

In Section 7.7, we defined sensitivity as the ratio of the fractional change in a 
function to the fractional change in a parameter as the change in the parameter 
approaches zero. Applying the same definition to the closed-loop poles of a system 
that vary with a parameter, we define root sensitivity as the ratio of the fractional 
change in a closed-loop pole to the fractional change in a system parameter, such as 
gain. Using Eq. (7.75), we calculate the sensitivity of a closed-loop pole, s, to gain, K: 

Sx-K — — 
K 8s 
s8K 

(8.69) 

where s is the current pole location, and K is the current gain. Using Eq. (8.69) and 
converting the partials to finite increments, the actual change in the closed-loop 
poles can be approximated as 

As = s{Ss:K 
AK 
K 

(8.70) 

where As is the change in pole location, and AK/K is the fractional change in the 
gain, K. Let us demonstrate with an example. We begin with the characteristic 
equation from which 8s/8K can be found. Then, using Eq. (8.69) with the current 
closed-loop pole, s, and its associated gain, K, we can find the sensitivity. 

http://www.wiley.com/college/nise
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Example 8.10 

Root Sensitivity of a Closed-Loop System to Gain Variations 

PROBLEM: Find the root sensitivity of the system in Figure 8.4 at s = —9.47 and 
- 5 + /5. Also calculate the change in the pole location for a 10% change in K. 

SOLUTION: The system's characteristic equation, found from the closed-loop 
transfer function denominator, is s2 + 10s + K = 0. Differentiating with respect 
to K, we have 

2 ^ + 1 0 - ^ + 1 = 0 . (8.71) 
8K 

from which 
8s 

8K 

- 1 
8K 2s + 10 

Substituting Eq. (8.72) into Eq. (8.69), the sensitivity is found to be 

SS-.K — 
K - 1 

72s+ 10 

(8.72) 

(8.73) 

For s = -9.47, Table 8.1 shows K = 5. Substituting these values into Eq. (8.73) 
yields SS:K — -0.059. The change in the pole location for a 10% change in K can be 
found using Eq. (8.70), with s = -9.47, AK/K = 0.1, and SS:K = -0.059. Hence, 
As = 0.056, or the pole will move to the right by 0.056 units for a 10% change in K. 

For £ = - 5 + /5 , Table 8.1 shows K — 50. Substituting these values into Eq. 
(8.73) yields 5,JC = 1/(1 +/1) = (1/V2)Z - 45°. The change in the pole location for 
a 10% change in K can be found using Eq. (8.70), with s = - 5 + /5 , AK/K = 0.1, 
and SS:K = ( l / \ /2)Z — 45°. Hence, As = - / 5 , or the pole will move vertically by 0.5 
unit for a 10% change in K. 

In summary, then, at K = 5,SS:K = -0.059. At K = 50, SS:K = {l/y/2)Z - 45°. 
Comparing magnitudes, we conclude that the root locus is less sensitive to changes in 
gain at the lower value of K. Notice that root sensitivity is a complex quantity 
possessing both the magnitude and direction information from which the change in 
poles can be calculated. 

Skill-Assessment Exercise 8.9 

PROBLEM: A negative unity feedback system has the forward transfer function 

G(s) = ^ l 
w s(s + 2) 

If K is set to 20, find the changes in closed-loop pole location for a 5% change in K. 

ANSWER: For the closed-loop pole at -21.05, As = -0.9975; for the closed-loop 
pole at -0.95, As = -0.0025. 

WileyPLUS 

CJJSJ 
Control Solutions 

The complete solution is at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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Case Studies 

Antenna Control: Transient Design via Gain 

The main thrust of this chapter is to demonstrate design of higher-order systems 
(higher than two) through gain adjustment. Specifically, we are interested in 
determining the value of gain required to meet transient response requirements, 
such as percent overshoot, settling time, and peak time. The following case study 
emphasizes this design procedure, using the root locus. 

PROBLEM: Given the antenna azimuth position control system shown on the front 
endpapers, Configuration 1, find the preamplifier gain required for 25% overshoot. 

SOLUTION: The block diagramfor the system was derived in the Case Studies sectionin 
Chapter 5 and is shown in Figure 5.34(c), where G{s) = 6.63K/[s(s + 1.71)(5 + 100)]. 

First a sketch of the root locus is made to orient the designer. The real-axis 
segments are between the origin and -1.71 and from —100 to infinity. The locus 
begins at the open-loop poles, which are all on the real axis at the origin, -1.71, and 
-100. The locus then moves toward the zeros at infinity by following asymptotes 
that, from Eqs. (8.27) and (8.28), intersect the real axis at -33.9 at angles of 60°, 
180°, and —60°. A portion of the root locus is shown in Figure 8.28. 

£=0.404 

Additional 
open-loop pole 

at-100 

FIGURE 8.28 Portion of the 
root locus for the antenna 
control system 

i-plane 

-4 -2 

From Eq. (4.39), 25% overshoot corresponds to a damping ratio of 0.404. Now 
draw a radial line from the origin at an angle of cos-1 £ = 113.8. The intersection of 
this line with the root locus locates the system's dominant, second-order closed-
loop poles. Using the root locus program discussed in Appendix H.2 at www.wiley 
.com/college/nise to search the radial line for 180° yields the closed-loop dominant 
poles as 2.063 Z113.80 = -0.833 ±,/1.888. The gain value yields 6.63^ = 425.7, 
from which K = 64.21. 

http://www.wiley
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Checking our second-order assumption, the third pole must be to the left of 
the open-loop pole at —100 and is thus greater than five times the real part of 
the dominant pole pair, which is -0.833. The second-order approximation is 
thus valid. 

The computer simulation of the closed-loop system's step response in 
Figure 8.29 shows that the design requirement of 25% overshoot is met. 

4 5 6 7 8 9 
Time (seconds) 

FIGURE 8.29 Step response of the gain-adjusted antenna control system 

10 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives. Referring to the antenna azimuth position control system shown on the 
front endpapers, Configuration 2, do the following: 

a. Find the preamplifier gain, K, required for an 8-second settling time. 
b. R e p e a t , u s i n g MATLAB. 

MATLA8 

UFSS Vehicle: Transient Design via Gain 

In this case study, we apply the root locus to the UFSS vehicle pitch control loop. 
The pitch control loop is shown with both rate and position feedback on the back 
endpapers. In the example that follows, we plot the root locus without the rate 
feedback and then with the rate feedback. We will see the stabilizing effect that rate 
feedback has upon the system. 

PROBLEM: Consider the block diagram of the pitch control loop for the UFSS 
vehicle shown on the back endpapers (Johnson, 1980). 

a. If K2 = 0 (no rate feedback), plot the root locus for the system as a function of 
pitch gain, K\, and estimate the settling time and peak time of the closed-loop 
response with 20% overshoot. 

b. Let K2 = K\ (add rate feedback) and repeat a. 

Design 

• >• 
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SOLUTION: 

a. Letting K2 = 0, the open-loop transfer function is 

0.25^1(5 + 0.435) 
G(s)H(s) = 

[S + 1.23)(5 + 2)(52 + 0.2265 + 0.0169) 
(8.74) 

from which the root locus is plotted in Figure 8.30. Searching along the 20% 
overshoot line evaluated from Eq. (4.39), we find the dominant second-order 
poles to be -0.202 ±/0.394 with a gain of K = 0.25/^ = 0.706, or Ki = 2.824. 

20% 

-3 -2 

X = Closed-loop pole 
X = Open-loop pole 

-0.202 + ./0.394 

-X X^-—O 

FIGURE 8.30 Root locus of pitch control loop without rate feedback, UFSS vehicle 

From the real part of the dominant pole, the settling time is estimated to be 
Ts = 4/0.202 = 19.8 seconds. From the imaginary part of the dominant pole, the 
peak time is estimated to be Tp = TF/0.394 = 7.97 seconds. Since our estimates 
are based upon a second-order assumption, we now test our assumption by 
finding the third closed-loop pole location between -0.435 and -1.23 and the 
fourth closed-loop pole location between —2 and infinity. Searching each of 
these regions for a gain of K = 0.706, we find the third and fourth poles at 
—0.784 and —2.27, respectively. The third pole, at -0.784, may not be close 
enough to the zero at -0.435, and thus the system should be simulated. The 
fourth pole, at -2.27, is 11 times as far from the imaginary axis as the dominant 
poles and thus meets the requirement of at least five times the real part of the 
dominant poles. 

A computer simulation of the step response for the system, which is shown 
in Figure 8.31, shows a 29% overshoot above a final value of 0.88, approximately 
20-second settling time, and a peak time of approximately 7.5 seconds. 
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1.2 
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FIGURE 8.31 Computer 
simulation of step response of 
pitch control loop without rate 
feedback, UFSS vehicle 

b. Adding rate feedback by letting K2 = K\ in the pitch control system shown on 
the back endpapers, we proceed to find the new open-loop transfer function. 
Pushing —K\ to the right past the summing junction, dividing the pitch rate 
sensor by ~Kt, and combining the two resulting feedback paths obtaining 
(5 + 1) give us the following open-loop transfer function: 

G(s)H(s) = 
0.25Kj{s + 0.435)(5 + 1) 

[s + 1.23)(^ + 2)(52 + 0.2265 + 0.0169) 
(8.75) 

Notice that the addition of rate feedback adds a zero to the open-loop transfer 
function. The resulting root locus is shown in Figure 8.32. Notice that this root 
locus, unlike the root locus in a, is stable for all values of gain, since the locus 
does not enter the right half of the 5-plane for any value of positive gain, 

-1.024 +j 1.998 
AT=5.17; AT] =20. 

X = Closed-loop pole 
X = Open-loop pole 

.v-plane 

FIGURE 8 3 2 Roo t locus of 
pitch control loop with rate 
feedback, UFSS vehicle 
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FIGURE 8.33 Computer 
simulation of step response 
of pitch control loop with rate 
feedback, UFSS vehicle 
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0.8 

0.6 

0.4 

0.2 

Final value 

• J — * • 

4 6 
Time (seconds) 

10 

MATLAB 

K = 0,25¾. Also notice that the intersection with the 20% overshoot line is 
much farther from the imaginary axis than is the case without rate feedback, 
resulting in a faster response time for the system. 

The root locus intersects the 20% overshoot line at -1.024 ±/1.998 with a 
gain of K = 0.25K\ = 5.17, or K\ = 20.68. Using the real and imaginary parts of 
the dominant pole location, the settling time is predicted to be Ts = 4/1.024 = 
3.9 seconds, and the peak time is estimated to be Tp — #/1.998 = 1.57 seconds. 
The new estimates show considerable improvement in the transient response as 
compared to the system without the rate feedback. 

Now we test our second-order approximation by finding the location of the 
third and fourth poles between -0.435 and —1. Searching this region for a gain 
of K = 5.17, we locate the third and fourth poles at approximately -0.5 and 
-0.91. Since the zero at - 1 is a zero of H(s), the student can verify that this zero 
is not a zero of the closed-loop transfer function. Thus, although there may be 
pole-zero cancellation between the closed-loop pole at —0.5 and the closed-
loop zero at -0.435, there is no closed-loop zero to cancel the closed-loop pole 
at -0.91.2 Our second-order approximation is not valid. 

A computer simulation of the system with rate feedback is shown in 
Figure 8.33. Although the response shows that our second-order approximation 
is invalid, it still represents a considerable improvement in performance over 
the system without rate feedback; the percent overshoot is small, and the 
settling time is about 6 seconds instead of about 20 seconds. 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on the 
back endpapers, and introduced in the case study challenge in Chapter 5, do the 
following: 

a. Let K2 — K\ and find the value of K\ that yields 10% overshoot. 
b. Repeat, using MATLAB. 

2 The zero at - 1 shown on the root locus plot of Figure 8.32 is an open-loop zero since it comes from the 
numerator of H(s). 



Summary 

We have concluded the chapter with two case studies showing the use and 
application of the root locus. We have seen how to plot a root locus and estimate 
the transient response by making a second-order approximation. We saw that the 
second-order approximation held when rate feedback was not used for the UFSS. 
When rate feedback was used, an open-loop zero from H(s) was introduced. Since it 
was not a closed-loop zero, there was no pole-zero cancellation, and a second-order 
approximation could not be justified. In this case, however, the transient response 
with rate feedback did represent an improvement in transient response over the 
system without rate feedback. In subsequent chapters we will see why rate feedback 
yields an improvement. We will also see other methods of improving the transient 
response. 

^ Summary^ 
In this chapter, we examined the root locus, a powerful tool for the analysis and design 
of control systems. The root locus empowers us with qualitative and quantitative 
information about the stability and transient response of feedback control systems. 
The root locus allows us to find the poles of the closed-loop system by starting from the 
open-loop system's poles and zeros. It is basically a graphical root-solving technique. 

We looked at ways to sketch the root locus rapidly, even for higher-order 
systems. The sketch gave us qualitative information about changes in the transient 
response as parameters were varied. From the locus we were able to determine 
whether a system was unstable for any range of gain. 

Next we developed the criterion for determining whether a point in the s-plane 
was on the root locus: The angles from the open-loop zeros, minus the angles from the 
open-loop poles drawn to the point in the .s-plane, add up to an odd multiple of 180°. 

The computer program discussed in Appendix G.2 at www.wiley.com/college/ 
nise helps us to search rapidly for points on the root locus. This program allows us to 
find points and gains to meet certain transient response specifications as long as we 
are able to justify a second-order assumption for higher-order systems. Other 
computer programs, such as MATLAB, plot the root locus and allow the user to 
interact with the display to determine transient response specifications and system 
parameters. 

Our method of design in this chapter is gain adjustment. We are limited to 
transient responses governed by the poles on the root locus. Transient responses 
represented by pole locations outside of the root locus cannot be obtained by a 
simple gain adjustment. Further, once the transient response has been established, 
the gain is set, and so is the steady-state error performance. In other words, by a 
simple gain adjustment, we have to trade off between a specified transient response 
and a specified steady-state error. Transient response and steady-state error cannot 
be designed independently with a simple gain adjustment. 

We also learned how to plot the root locus against system parameters other 
than gain. In order to make this root locus plot, we must first convert the closed-loop 
transfer function into an equivalent transfer function that has the desired system 
parameter in the same position as the gain. The chapter discussion concluded with 
positive-feedback systems and how to plot the root loci for these systems. 

The next chapter extends the concept of the root locus to the design of 
compensation networks. These networks have as an advantage the separate design 
of transient performance and steady-state error performance. 

http://www.wiley.com/college/
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f^ Review Questions ] J 
1. What is a root locus? 
2. Describe two ways of obtaining the root locus. 
3. If KG(s)H(s) = 5Z1800, for what value of gain is s a point on the root locus? 
4. Do the zeros of a system change with a change in gain? 
5. Where are the zeros of the closed-loop transfer function? 
6. What are two ways to find where the root locus crosses the imaginary axis? 
7. How can you tell from the root locus if a system is unstable? 
8. How can you tell from the root locus if the settling time does not change over a 

region of gain? 
9. How can you tell from the root locus that the natural frequency does not change 

over a region of gain? 
10. How would you determine whether or not a root locus plot crossed the real axis? 
11. Describe the conditions that must exist for all closed-loop poles and zeros in 

order to make a second-order approximation. 
12. What rules for plotting the root locus are the same whether the system is a 

positive- or a negative-feedback system? 
13. Briefly describe how the zeros of the open-loop system affect the root locus and 

the transient response. 

Problems 
1. For each of the root loci shown in Figure P8.1, tell 

whether or not the sketch can be a root locus. If the 
sketch cannot be a root locus, explain why. Give all 
reasons. [Section: 8.4] 

s-plane 
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s-plane 
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X s-plane 
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s-plane 

FIGURE P8.1 
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2. Sketch the general shape of the root wileypws 
locus for each of the open-loop pole- tfMll^ 
zero plots shown in Figure P8.2. control solutions 
[Section: 8.4] 
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FIGURE P8.2 

3. Sketch the root locus for the unity feedback system 
shown in Figure P8.3 for the following transfer 
functions: [Section: 8.4] 

K(s + 2){s + 6) 
a. G(s) = 

b. G(s) = 

c. G(s) = s2 

d. G(s) = 

s2 + 8s + 25 

K{s2 + 4) 

(*2 + l) 

K{s2 + 1) 

K 

{s + lY(s + 4) 

m G(s) 
cm 

4. Let 

FIGURE P8.3 

G(s)=-> 
(5 + 6) 

in Figure P8.3. [Section: 8.5] 

a. Plot the root locus. 

b. Write an expression for the closed-loop transfer 
function at the point where the three closed-loop 
poles meet. 

5. Let 

^ ) = ,2 + 2, + 2 

with K> 0 in Figure P8.3. [Sections: 8.5, 8.9] 

a. Find the range of K for closed-loop stability. 

b. Sketch the system's root locus. 

c. Find the position of the closed-loop poles when 
K = 1 and K = 2. 

6. For the open-loop pole-zero plot shown in Figure 
P8.4, sketch the root locus and find the break-in 
point. [Section: 8.5] 

jo) 

i 

s-plane 

-o-
-3 

• o 
-2 -1 

-fl 

FIGURE P8.4 

7. Sketch the root locus of the unity feedback system 
shown in Figure P8.3, where 

K(s + 3)(s + 5) 
° « - ( , + 1)(,-7) 

and find the break-in and breakaway points. [Sec­
tion: 8.5] 



434 Chapter 8 Root Locus Techniques 

8. The characteristic polynomial of a feedback control 
system, which is the denominator of the closed-loop 
transfer function, is given by . 3 + 2.2+ 
{20K + 7). + 100K. Sketch the root locus for this 
system. [Section: 8.8] 

9. Figure P8.5 shows open-loop poles and zeros. There 
are two possibilities for the sketch of the root locus. 
Sketch each of the two possibilities. Be aware that 
only one can be the real locus for specific open-loop 
pole and zero values. [Section: 8.4] 

13. For each system shown in Figure P8.6, make an 
accurate plot of the root locus and find the follow­
ing: [Section: 8.5] 
a. The breakaway and break-in points 
b. The range of K to keep the system stable 
c. The value of K that yields a stable system with 

critically damped second-order poles 
d. The value of K that yields a stable system with a 

pair of second-order poles that have a damping 
ratio of 0.707 

- O X-

.v-plane 

FIGURE P8.5 

10. Plot the root locus for the unity feedback system 
shown in Figure P8.3, where 

G(s) = 
K(s + 2)(s2 + 4) 

(' +5 ) ( s -3 ) 

For what range of K will the poles be in the right 
half-plane? [Section: 8.5] 

11. For the unity feedback system shown in wiieypws 
Figure P8.3, where d J J J 

Control Solutions 

« , * W - 9 ) 

sketch the root locus and tell for what values of K 
the system is stable and unstable. [Section: 8.5] 

12. Sketch the root locus for the unity feedback system 
shown in Figure P8.3, where 

G W - - ^ 
2) 

. + 3)(. + 4) 

Give the values for all critical points of interest. Is 
the system ever unstable? If so, for what range of Kl 
[Section: 8.5] 

R(s) +/r 

B(s) t(c 

?\ * 
9 

A 
9 

K(s + 2)(s + 1) 

(s-2)(s-\) 

System 1 

K(s + 2)(s+l) 

(s2-2s + 2) 

Qs) 

C{s) 

System 2 

FIGURE P8.6 

14. Sketch the root locus and find the range of K for 
stability for the unity feedback system shown in Figure 
P8.3 for the following conditions: [Section: 8.5] 

K{s2 + 1) 
a. G{s) = 

b. G(s) = 

( . - 1 ) ( 5 + 2 ) ( . 

K{s2-2s + 2) 
s(s + l)(s + 2) 

3) 

15. For the unity feedback system of Figure 
P8.3, where 

G(s) = 
K(s + 3) 

WileyPLUS 

CJJSJ 
Control Solutions 

(.2+2)(.-2)(5 + 5) 

sketch the root locus and find the range of K such 
that there will be only two right-half-plane poles for 
the closed-loop system. [Section: 8.5] 

16. For the unity feedback system of Figure P8.3, where 

G(.) = 
K 

. ( . + 6)(. + 9) 

plot the root locus and calibrate your plot for gain. Find 
all the critical points, such as breakaways, asymptotes, 
/w-axis crossing, and so forth. [Section: 8.5] 
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17. Given the unity feedback system of Figure P8.3, 
make an accurate plot of the root locus for the 
following: 

K(s2 -2s+ 2) 
a. G(s) = 

b. G(s) = 

(s + l)(s + 2) 

K(s-l){s-2) 

(s + l){s + 2) 

Calibrate the gain for at least four points for each case. 
Also find the breakaway points, the jco-axis crossing, 
and the range of gain for stability for each case. Find the 
angles of arrival for Part a. [Section: 8.5] 

18. Given the root locus shown in Figure P8.7, [Section: 
8.5] 

a. Find the value of gain that will make the system 
marginally stable. 

b. Find the value of gain for which the closed-loop 
transfer function will have a pole on the real axis 
a t - 5 . 

19. Given the unity feedback system of Figure P8.3, 
where 

G(s) = 
K(s + 1) 

s(s + 2)(s + 3){s + 4) 

do the following: [Section: 8.5] 

a. Sketch the root locus. 

b. Find the asymptotes. 

c. Find the value of gain that will make the system 
marginally stable. 

d. Find the value of gain for which the closed-loop 
transfer function will have a pole on the real axis 
at -0 .5 . 

20. For the unity feedback system of Figure wileyPLUs 
PS.3, where >'i'iU*--» 

Control Solutions 

{) s(s + 3)(s + 6) 

find the values of or and K that will yield a second-
order closed-loop pair of poles at - 1 ±/100. 
[Section: 8.5] 

21. For the unity feedback system of Figure P8.3, where 

K(s - l){s - 2) 
G{s) = 

s(s+i: 

sketch the root locus and find the following: 
[Section: 8.5] 

a. The breakaway and break-in points 

b. The jco-axis crossing 

c. The range of gain to keep the system stable 

d. The value of K to yield a stable system with 
second-order complex poles, with a damping 
ratio of 0.5 

22. For the unity feedback system shown in Figure P8.3, 
where 

G(s) = 
K(s + 10)(s + 20) 

(s + 30) (s2 -20s + 200) 

do the following: [Section: 8.7] 

a. Sketch the root locus. 

b. Find the range of gain, K, that makes the system 
stable. 

c. Find the value of K that yields a damping ratio of 
0.707 for the system's closed-loop dominant poles. 

d. Find the value of K that yields closed-loop criti­
cally damped dominant poles. 

23. For the system of Figure P8.8(a), wileypws 
sketch the root locus and find the a'.'j J f 
fo l lowing : [Sec t ion : 8.7] Control Solutions 

a. Asymptotes 

b. Breakaway points 

c. The range of K for stability 

d. The value of K to yield a 0.7 damping ratio for the 
dominant second-order pair 

To improve stability, we desire the root locus to 
cross the jco-axis at ;5.5. To accomplish this, the 
open-loop function is cascaded with a zero, as 
shown in Figure P8.8(b). 
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FIGURE P8.8 

e. Find the value of a and sketch the new root locus. 

f. Repeat Part c for the new locus. 
g. Compare the results of Part c and Part f. What 

improvement in transient response do you 
notice? 

24. Sketch the root locus for the positive-feedback 
system shown in Figure P8.9. [Section: 8.9] 

R(s) + K 
i(5+l) 

C{s) 

FIGURE P8.9 

25. Root loci are usually plotted for variations in the 
gain. Sometimes we are interested in the variation 
of the closed-loop poles as other parameters are 
changed. For the system shown in Figure P8.10, 
sketch the root locus as a is varied. [Section: 8.8] 

R(s)+t ?\ » 
9 

i 
s(s + a) 

C(s) 

FIGURE P8.10 

26. Given the unity feedback system shown in Figure 
P8.3. where 

G(s) 
K 

(5 + 1)(5 + 2)(5 + 3) 

do the following problem parts by first making a 
second-order approximation. After you are finished 
with all of the parts, justify your second-order 
approximation. [Section: 8.7] 

a. Sketch the root locus. 
b. Find K for 20% overshoot. 
c. For K found in Part b, what is the settling time, 

and what is the peak time? 
d. Find the locations of higher-order poles for K 

found in Part b. 
e. Find the range of K for stability. 

27. For the unity feedback system shown in Figure P8.3, 
where 

G(s) = 
K(s2 - 2s + 2) 

^ + 2)(5 + 4)(5 + 5)(5 + 6) 

do the following: [Section: 8.7] 
a. Sketch the root locus. 
b. Find the asymptotes. 
c. Find the range of gain, K, that makes the system 

stable. 
d. Find the breakaway points. 
e. Find the value of K that yields a closed-loop step 

response with 25% overshoot. 
f. Find the location of higher-order closed-loop 

poles when the system is operating with 25% 
overshoot. 

g. Discuss the validity of your second-order 
approximation. 

h. Use MATLAB to obtain the MATLAB 

closed-loop step re- C L U ^ P 

sponse to validate or refute your 
second-order approximation. 

28. The unity feedback system shown in Figure P8.3, where 

#(5 + 2)(5 + 3) 
G(s) = 5(5 + 1) 

is to be designed for minimum damping ratio. Find 
the following: [Section: 8.7] 
a. The value of K that will yield minimum damping 

ratio 
b. The estimated percent overshoot for that case 
c. The estimated settling time and peak time for 

that case 
d. The justification of a second-order approxima­

tion (discuss) 
e. The expected steady-state error for a unit ramp 

input for the case of minimum damping ratio 
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29. For the unity feedback system shown in Figure P8.3, 
where 

G(s) = 
£(5 + 2) 

5(5 + 6)(5 + 10) 

find £ to yield closed-loop complex poles with a 
damping ratio of 0.55. Does your solution require a 
justification of a second-order approximation? 
Explain. [Section: 8.7] 34-

30. For the unity feedback system shown in wileyPLUS 
Figure P8.3, where a V J J f 

f[(v _|_ QJ) Control Solutions 

d. Select interactively the point where 
the root locus crosses the 10% over­
shoot line, and respond with the gain 
at that point as well as all of the 
closed-loop poles at that gain. 

e. Generate the step response at the gain 
for 10% overshoot. 

For the unity feedback system shown in wiieypius 
Figure 8.3, where MVi^4¾ 

G(s) = 
£(52 + 45 + 5) 

Control Solutions 

G(s) = 
5(5 + 1)(5 + 10) 

find the value of a so that the system will have a 
settling time of 4 seconds for large values of £ . 
Sketch the resulting root locus. [Section: 8.8] 

31. For the unity feedback system shown in Figure 8.3, 
where 

G(s) = 
£(5 + 6) 

>2 + 105 + 26)(5 + l)z(5 + a) 

design £ and a so that the dominant complex poles 
of the closed-loop function have a damping ratio of 
0.45 and a natural frequency of 9/8 rad/s. 

32. For the unity feedback system shown in Figure 8.3, 
where 

G(s) = 
K 

5(5 + 3)(5+4)(5 + 8) 

>2 + 2 5 + 5)(5+ 3)(5+ 4) 

35. 

do the following: [Section: 8.7] 

a. Find the gain, K, to yield a 1-second peak time if 
one assumes a second-order approximation. 

b. Check the accuracy of the ^TL^g 
second-order approximation ^j^^) 
using MATLAB to simulate the system. 

For the unity feedback system shown in Figure P8.3, 
where 

G{s) = 
£(5 + 2)(5+3) 

(52 + 25 + 2)(5 + 4)(5 + 5)(5 + 6) 

do the following: [Section: 8.7] 

a. Sketch the root locus. 

b. Find the value of £ that will yield a 10% 
overshoot. 36. 

c. Locate all nondominant poles. What can you say 
about the second-order approximation that led 
to your answer in Part b? 

d. Find the range of £ that yields a stable system. 

33. Repeat Problem 32 using MATLAB. MATLAB 

Use one program to do the dyjJP 
following: 

a. Display a root locus and pause. 

b. Draw a close-up of the root locus where 
the axes go from —2 to 0 on the real axis 
and —2 to 2 on the imaginary axis. 

c. Overlay the 10% overshoot line on the 
close-up root locus. 

do the following: [Section: 8.7] 

a. Sketch the root locus. 

b. Find the /w-axis crossing and the gain, £ , at the 
crossing. 

c. Find all breakaway and break-in points. 

d. Find angles of departure from the complex poles. 

c. Find the gain, K, to yield a damping ratio of 0.3 
for the closed-loop dominant poles. 

Repeat Parts a through c and e of Problem 35 for 
[Section: 8.7] 

£(5 + 8) 
G(s) = 

5(5 + 2)(5 + 4)(5 + 6) 

37. For the unity feedback system shown in Figure P8.3, 
where 

G(5) = 
K 

(5 + 3)(52+45 + 5) 

do the following: [Section: 8.7] 

a. Find the location of the closed-loop dominant poles 
if the system is operating with 15% overshoot. 

b. Find the gain for Part a. 
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c. Find all other closed-loop poles. 

d. Evaluate the accuracy of your second-order 
approximation. 

38. For the system shown in Figure P8.ll , do the fol­
lowing: [Section: 8.7] 

?\ 
9 

K 
(5 + 2)(5 + 3) 

s 2 - 4 5 + 8 

(52 + 25 + 5) 

C{s) 

FIGURE P8.11 

a. Sketch the root locus. 

b. Find the /aj-axis crossing and the gain, K, at the 
crossing. 

c. Find the real-axis breakaway to two-decimal-
place accuracy. 

d. Find angles of arrival to the complex zeros. 

e. Find the closed-loop zeros. 

f. Find the gain, K, for a closed-loop step response 
with 30% overshoot. 

g. Discuss the validity of your second-order 
approximation. 

39. Sketch the root locus for the system of Figure P8.12 
and find the following: [Section: 8.7] 

R(s) + < g > - K 
s(s + 3)(5 + 7)(5 + I 

C(s) 

(5 + 30) 

(52 + 205 + 200) 

FIGURE P8.12 

a. The range of gain to yield stability 

b. The value of gain that will yield a damping ratio 
of 0.707 for the system's dominant poles 

c. The value of gain that will yield closed-loop poles 
that are critically damped 

40. Repeat Problem 3 9 using MATLAB. MAi|AB 

The program will do the follow­
ing in one program: 

a. Display a root locus and pause. 

b. Display a close-up of the root locus 
where the axes go from — 2 to 2 on the 
real axis and —2 to 2 on the imaginary 
axis . 

c. Overlay the 0.707 damping ratio line 
on the close-up root locus. 

d. Allow you to select interactively the 
point where the root locus crosses the 
0.707 damping ratio line, and respond by 
displaying the gain at that point as 
well as all of the closed-loop poles 
at that gain. The program will then al­
low you to select interactively the 
imaginary-axis crossing and respond 
with a display of the gain at that point 
as well as all of the closed-loop poles 
at that gain. Finally, the program will 
repeat the evaluation for critically 
damped dominant closed-loop poles. 

e. Generate the step response at the gain 
for 0.707 damping ratio. 

41. Given the unity feedback system shown wileyPLus 
in Figure P8.3, where Q 2 S Z 9 

Control Solutions 

K{s + z) 
G(s) = 

s2(s + 20) 

do the following: [Section: 8.7] 

a. If z = 6, find K so that the damped frequency of 
oscillation of the transient response is 10 rad/s. 

b. For the system of Part a, what static error con­
stant (finite) can be specified? What is its value? 

c. The system is to be redesigned by changing the 
values of z and K. If the new specifications are 
%OS = 4.32% and Ts = 0.4 s, find the new val­
ues of z and K. 

42. Given the unity feedback system shown in Figure 
P8.3, where 

G(s) = 
K 

[s + l)(s + 3)(s + 6Y 

find the following: [Section: 8.7] 

a. The value of gain, K, that will yield a settling time 
of 4 seconds 

b. The value of gain, K, that will yield a critically 
damped system 

P8.ll
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43. Let 

G(s) 
K(s-1) 

(5 + 2)(5 + 3) 

in Figure P8.3. [Section: 8.7]. 
a. Find the range of K for closed-loop stability. 
b. Plot the root locus for K > 0. 
c. Plot the root locus for K < 0. 
d. Assuming a step input, what value of K will result 

in the smallest attainable settling time? 
e. Calculate the system's ess for a unit step 

input assuming the value of K obtained in Part d. 
f. Make an approximate hand sketch of the unit 

step response of the system if K has the value 
obtained in Part d. 

44. Given the unity feedback system shown in Figure 
P8.3, where 

G(s) = 
K 

5(5+1)(5 + 5) 

evaluate the pole sensitivity of the closed-loop 
system if the second-order, underdamped closed-
loop poles are set for [Section: 8.10] 
a. £ = 0.591 

b. ¢ = 0.456 
c. Which of the two previous cases has more desir­

able sensitivity? 

45. Figure P8.13(a) shows a robot equipped to per­
form arc welding. A similar device can be con­
figured as a six-degrees-of-freedom industrial 
robot that can transfer objects according to a 
desired program. Assume the block diagram of 
the swing motion system shown in Figure P8.13(b). 
If K = 64,510, make a second-order approxima­
tion and estimate the following (Hardy, 1967): 

a. Damping ratio 
b. Percent overshoot 
c. Natural frequency 
d. Settling time 
e. Peak time 
What can you say about your original second-order 
approximation? 

46. During ascent, the automatic steering program 
aboard the space shuttle provides the interface 

Input 
position + , 

^-( 
—. 

/0 ^ 

i 

Load 
actuator 

K 
s2 + Is + 1220 

Network 

0.00076.? 
.? + 0.06 

Tachometer 

0.02,5 

\>silion fecdbac 

signal 

1 
5 

S2 

Ram 
position 

(b) 
FIGURE P8.13 a. Robot equipped to perform arc welding; 
b. block diagram for swing motion system 

between the low-rate processing of guidance (com­
mands) and the high-rate processing of flight con­
trol (steering in response to the commands). The 
function performed is basically that of smoothing. A 
simplified representation of a maneuver smoother 
linearized for coplanar maneuvers is shown in Fig­
ure P8.14. Here 6CB(S) is the commanded body 
angle as calculated by guidance, and 6CB(S) is the 
desired body angle sent to flight control after 
smoothing.3 Using the methods of Section 8.8, do 
the following: 

3 Source: Rockwell International. 
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fltB(-v) 

K, —i 

® -
<?DB<>) 

FIGURE P8.14 Block diagram of smoother 

a. Sketch a root locus where the roots vary as a 
function of K3. 

b. Locate the closed-loop zeros. 

c. Repeat Parts a and b for a root locus sketched as 
a function of K2. 

47. Repeat Problem 3 but sketch your root loci for 
negative values of K. [Section: 8.9] 

48. Large structures in space, such as the space station, 
have to be stabilized against unwanted vibration. 
One method is to use an active vibration absorber to 
control the structure, as shown in Figure P8.15(a) 
(Bruner, 1992). Assuming that all values except the 
mass of the active vibration absorber are known and 
are equal to unity, do the following: 

-HWH 

Plant 

M 

Active 
vibration 
absorber 

-wv-

D, 

Mr 

% 

xc - xa x 

(a) 

Input force 
F(s) + 

Structure 
Output structure 

acceleration 

"2 

Xr( ?)= Xa(s)-X(s 

,2 

I 

C(s) 

Active vibration absorber 

m 
FIGURE P8.15 a. Active vibration absorber (© 1992 AIAA); 
b. control system block diagram 

a. Obtain G{s) and H(s) = Hi{s)Hz(s) in the block 
diagram representation of the system of Figure 
8.15(6), which shows that the active vibration 
absorber acts as a feedback element to control 
the structure. (Hint: Think of Kc and Dc as 
producing inputs to the structure.) 

b. Find the steady-state position of the structure for 
a force disturbance input. 

c. Sketch the root locus for the system as a function 
of active vibration absorber mass, Mc. 

49. Figure P8.16 shows the block diagram of the closed-
loop control of the linearized magnetic levitation 
system described in Chapter 2, Problem 58. (Galvao, 
2003). 

/?(s) if 
+ 

7) 
9 

am A 

S2-T}2 

cm 

FIGURE P8.16 Linearized magnetic levitation system block 
diaoram diagram 

Assuming A = 1300 and rj = 860, draw the root locus 
and find the range of K for closed-loop stability when: 

a. G(s) = K; 

K{s + 200) 
b. G(s) = 

s + 1000 

50. The simplified transfer function model from steer­
ing angle S(s) to tilt angle (p(s) in a bicycle is 
given by 

G(s) = 
<p(s) _ aV s + 

V 

bhsi_l 
h 

In this model, h represents the vertical distance from 
the center of mass to the floor, so it can be readily 
verified that the model is open-loop unstable. 
(Astrom, 2005). Assume that for a specific bicycle, 
a = 0.6 m, b = 1.5 m, h = 0.8 m, and g = 9.8 m/sec. 
In order to stabilize the bicycle, it is assumed that the 
bicycle is placed in the closed-loop configuration 
shown in Figure P8.3 and that the only available 
control variable is ¥, the rear wheel velocity. 

a. Find the range of V for closed-loop stability. 

b. Explain why the methods presented in this chap­
ter cannot be used to obtain the root locus. 

c. Use MATLAB t o o b t a i n t h e MATLAR 

s y s t e m ' s r o o t l o c u s . 
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51. A technique to control the steering of a vehicle that 
follows a line located in the middle of a lane is to 
define a look-ahead point and measure vehicle 
deviations with respect to the point. A linearized 
model for such a vehicle is 

V ' v~ 
r 

* 

L**J 
— 

an 

«21 

0 

1 

«12 

«22 

1 
0 

-bxK 

-b2K 

0 

u 

biK-
tf 

b2K 
d 
0 

0 . 

where V = vehicle's lateral velocity, r = vehicle's yaw 
velocity, i/r = vehicle's yaw position, and Yg = the 
.y-axis coordinate of the vehicle's center of gravity. K 
is a parameter to be varied depending upon trajectory 
changes. In a specific vehicle traveling at a speed of 
U — — lOm/sec, the parameters are flu = -11.6842, 
fli2 = 6.7632, by = -61.5789, a2l = -3.5143, «22 = 
24.0257, and b2 = 66.8571. d = 5 m is the look-ahead 
distance (Unyelioglu, 1997). Assuming the vehicle will 
be controlled in closed loop: 

a. Find the system's characteristic equation as a 
function of K. 

b. Find the system's root locus as K is varied. 

c. Using the root locus found in Part b, show that 
the system will be unstable for all values K. 

52. It is known that mammals have hormonal regulation 
mechanisms that help maintain almost constant 
calcium plasma levels (0.08-0.1 g/L in dairy 
cows). This control is necessary to maintain healthy 
functions, as calcium is responsible for diverse phys­
iological functions, such as bone formation, intra­
cellular communications, and blood clotting. It has 
been postulated that the mechanism of calcium 
control resembles that of a PI (proportional-plus-
integral) controller. PI controllers (discussed in 
detail in Chapter 9) are placed in cascade with 
the plant and used to improve steady-state error. 
Assume that the PI controller has the form Gc(s) = 

Kp + -^- where Kp and Ki are constants. Also 

assume that the mammal's system accumulates 
calcium in an integrator-like fashion, namely 

P(s) = —, where V is the plasma volume. The 
s 

closed-loop model is similar to that of Figure 
P8.3, where G(s) = Gc{s)P{s) (Khammash, 2004). 

a. Sketch the system's root locus as a function of 
Kp, assuming K[ > 0 is constant. 

b. Sketch the system's root locus as a function of Kj, 
assuming Kp > 0 is constant. 

53. Problem 65 in Chapter 7 introduced the model of a 
TCP/IP router whose packet-drop probability is 
controlled by using a random early detection 
(RED) algorithm (Hollot, 2001). Using Figure 
P8.3 as a model, a specific router queue's open-
loop transfer function is 

7031250Le-a2* 
W ~ (5+ 0.667) (5+ 5) (5+ 50) 

The function e~02s represents delay. To apply the root 
locus method, the delay function must be replaced 
with a rational function approximation. A first-order 
Pade approximation can be used for this purpose. 
Let e~sD « 1 — Ds. Using this approximation, plot 
the root locus of the system as a function of L. 

54. For the dynamic voltage restorer (DVR) discussed 
in Problem 47, Chapter 7, do the following: 

a. When ZL = - ^ - , a pure capacitance, the system 

is more inclined toward instability. Find the sys­
tem's characteristic equation for this case. 

b. Using the characteristic equation found in 
Part a, sketch the root locus of the system as a 
function of CL- Let L = 7.6 mH, C = 11 uF, or = 
26.4, p = l,Km = 25, Kv = 15, KT = 0.09565, 
and r = 2 ms {Lam, 2004). 

55. The closed-loop vehicle response in stopping a train 
depends on the train's dynamics and the driver, who 
is an integral part of the feedback loop. In Figure 
P8.3, let the input be R(s) = vr the reference veloc­
ity, and the output C(s) = v, the actual vehicle 
velocity. (Yamazaki, 2008) shows that such dynam­
ics can be modeled by G(s) — Gd{s)Gt(s) where 

_ L 

Gd(s) =h ( 1 + - ) "—j-
S+2 

represents the driver dynamics with h, K, and L 
parameters particular to each individual driver. We 
assume here that /1 = 0.003 and L — l. The train 
dynamics are given by 

G M = kbfKp 

tK) M(l+ke)s{TS + l) 
where M = 8000 kg, the vehicle mass; ke = 0.1 the iner-
tialcoefficient;^ = 142.5, the brake gain; Kp =47.5, 
the pressure gain; r = 1.2 sec, a time constant; and 
/ = 0.24, the normal friction coefficient. 

a. Make a root locus plot of the system as a function 
of the driver parameter K. 

b. Discuss why this model may not be an accurate 
description of a real driver-train situation. 
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56. Voltage droop control is a technique in which loads 
are driven at lower voltages than those provided by 
the source. In general, the voltage is decreased as 
current demand increases in the load. The advan­
tage of voltage droop is that it results in lower 
sensitivity to load current variations. 

Voltage droop can be applied to the power dis­
tribution of several generators and loads linked 
through a dc bus. In (Karlsson, 2003) generators 
and loads are driven by 3-phase ac power, so they 
are interfaced to the bus through ac/dc converters. 
Since each one of the loads works independently, a 
feedback system shown in Figure P8.17 is used in 
each to respond equally to bus voltage variations. 
Given that Cs = Cr = 8,000 //JF, Lcabie = 50 /xH, Rcahie — 
0.06 a, Zr = Rr=5 CI, w/p = 200 rad/s, Gconv(s) = l, 
Vdc.ref=750 V, and Pref-ext=^ do the following: 

a. If Zreq is the parallel combination of Rr and Cn 

and Gconv(s) = 1, find 

Gis) = YM = J^L 

b. Write a MATLAB M-f ile to plot J^IIM 

and copy the full root locus C L U ^ P 

for that system, then zoom-in the lo­
cus by setting the x-axis (real-axis) 
limits to -150 to 0 and the y-axis 
(imaginary-axis) limits to —150 to 
150. Copy that plot, too, and find 
and record the following: 

(1) The gain, K, at which the system 
would have complex-conjugate 

closed-loop dominant poles with a 
damping ratio f = 0 . 707 

(2) The coordinates of the correspond­
ing point selected on the root-locus 

(3) The values of all closed-loop poles 
at that gain 

(4) The output voltage vs(t) for a step 
input voltage vdc_ref (t) =750 u(t) 
volts 

c. Plot that step response and use MATLAB 
Characteristics tool (in the graph 
window) to note on the curve the fol­
lowing parameters: 

(1) The actual percent overshoot and 
the corresponding peak time, Tp 

(2) The rise time, Tr, and the settling 
time, Ts 

(3) The final steady-state value in 
volts 

DESIGN PROBLEMS 
57. A disk drive is a position control system in which a 

read/write head is positioned over a magnetic disk. 
The system responds to a command from a com­
puter to position itself at a particular track on the 
disk. A physical representation of the system and a 
block diagram are shown in Figure P8.18. 

a. Find K to yield a settling time of 0.1 second. 
b. What is the resulting percent overshoot? 
c. What is the range of K that keeps the system stable? 
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FIGURE P8.17 (© 2003 IEEE) 
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Actual position. .\/[(t) 

Desired position, .\/)(/) 

« ± t ^ 
Controller 

K 
(s + 500)(s + 800) 

Motor and load 

20,000 
s(s + 100) 

Xr\{s ) 

m 
FIGURE P8.18 Disk drive: a. physical representation; 
b. block diagram 

58. A simplified block diagram of a human wileypms 
pupil servomechanism is shown in Figure ftVi'J4»< 
P8.19. The term e~018s represents a time control solutions 
delay. This function can be approximated by what is 
known as a Pade approximation. This approximation 
can take on many increasingly complicated forms, 
depending upon the degree of accuracy required. If 
we use the Pade approximation 

- , 1 e = =r 
r 

1 + * + 2! 

,-0.18s 61.73 
J2 + 11.11s+ 61.73 

Since the retinal light flux is a function of the 
opening of the iris, oscillations in the amount of 
retinal light flux imply oscillations of the iris (Guy, 
1976). Find the following: 
a. The value of K that will yield oscillations 
b. The frequency of these oscillations 
c. The settling time for the iris if K is such that the 

eye is operating with 20% overshoot 

External 
lighL 
flllX + A~X jgriM&S 

(.v + 10)3 

Retinal 
light 
r'fux 

FIGURE P8.19 Simplified block diagram of pupil 
servomechanism 

59. An active suspension system for AMTRAK trains 
has been proposed. The system uses a pneumatic 
actuator in parallel with the passive suspension sys­
tem, as shown in Figure P8.20. The force of the 
actuator subtracts from the force applied by the 
ground, as represented by displacement, yg{t). Ac­
celeration is sensed by an accelerometer, and signals 
proportional to acceleration and velocity are fed 
back to the force actuator. The transfer function 
relating acceleration to ground displacement is 

s2(Ds + K) Ym(s) = 

Yg(s) (Ca + M)s2 + (C„ + D)s + K 

Assuming that M = 1 and D = K = C„ = 2, do the 
following (Cho, 1985): 
a. Sketch a root locus for this system as Ca varies 

from zero to infinity. 
b. Find the value of Ca that would yield a damping 

ratio of 0.69 for the closed-loop poles. 

Accelerometer 

v/„(f) 

VMW 

'//////////A 
FIGURE P8.20 Active suspension system (Reprinted with 
permission of ASME) 

60. The pitch stabilization loop for an F4-E military 
aircraft is shown in Figure P8.21. <Scom is the elevator 
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and canard input deflection command to create a 
pitch rate (see Problem 22, Chapter 3). If 

-508(5 + 1.6) 
G2(s) = 

(5 + 14)(5-1.8)(5 + 4.9) 

do the following (Cavallo, 1992): 

a. Sketch the root locus of the inner loop. 

b. Find the range of K2 to keep the inner loop stable 
with just pitch-rate feedback. 

c. Find the value of K2 that places the inner-loop 
poles to yield a damping ratio of 0.5. 

d. For your answer to Part c, find the range of #1 
that keeps the system stable. 

e. Find the value of K\ that yields closed-loop poles 
with a damping ratio of 0.45. 

61. Accurate pointing of spacecraft is wileyPLUs 
required for communication and EViiH^ 
mapping. Attitude control can be control solutions 
implemented by exchanging angular momentum 
between the body of the spacecraft and an onboard 
momentum wheel. The block diagram for the pitch 
axis attitude control is shown in Figure P8.22, where 
0c(s) is a commanded pitch angle and 9(s) is the 
actual pitch angle of the spacecraft. The compensa­
tor, which improves pointing accuracy, provides a 
commanded momentum, Hc{s), to the momentum 
wheel assembly. The spacecraft momentum, Hsys(s), 
is an additional input to the momentum wheel. This 

body momentum is given by 

hSyS(t) = hO(t)+K(t) 

where /2 is the spacecraft moment of inertia about 
the pitch axis and hw(t) is the momentum of the 
wheel. The total torque output from the momentum 
wheel, Tw, as shown in Figure P8.22, is 

Tw{t) = hsys{t) ~ K{t) + M O 

If T = 23 seconds and /2 = 9631 in-lb-s2, do the 
following {Piper, 1992): 

a. Sketch the root locus for the pitch axis control 
system. 

b. Find the value of K to yield a closed-loop step 
response with 25% overshoot. 

c. Evaluate the accuracy of any second-order ap­
proximations that were made. 

62. During combustion in such devices as gas turbines and 
jet engines, acoustic waves are generated. These pres­
sure waves can lead to excessive noise as well as 
mechanical failure. Active control is proposed to 
reduce this thermoacoustic effect. Specifically, a mi­
crophone is used as a sensor to read the sound waves, 
while a loudspeaker is used as an actuator to set up 
opposing pressure waves to reduce the effect. A 
proposed diagram showing the microphone and loud­
speaker positioned in the combustion chamber is 
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command Compensator 

ecU) + 
••®— 
+ ,. 

ATCs+O.Ol) 

H$yS{s) Momentum Disturbance 
wheel 7V/ = 0 Pitch pjtch 

assembly , dynamics output 

/'V^< --K>, 1 Tw(s) - + } 

Hw(s) 

J_ 
V 2 

is) 

FIGURE P8.22 Pitch axis attitude control system utilizing momentum wheel 
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Premixed flame 

lot jet diffusion flame 

Desired microphone 
output = 0 

» * 

Controller Loudspeaker Combustor Microphone Microphone 
output 

K G\(s) GAs) CffiW 

(b) 

FIGURE P8.23 a. Combustor with microphone and loudspeaker ( © 1995 I E E E ) ; b . block diagram ( © 1995 I E E E ) 

shown in Figure P8.23(a). A simplified block dia­
gram of the active control system is shown in 
Figure P8.23(fr). The transfer functions are dependent 
upon microphone and loudspeaker placement and 
parameters as well as flame placement and parame­
ters. The forward-path transfer function is of the form 

G(s) = KG1(s)Gc(s)Gm(s) 

_ K (s + Zf) (s2 + 2K2(Qis + col) 

(s + Pf) {s2 - l ^ s + o)2) (s2 + 2£>«2S + &>|) 

where the values for three configurations (A, B, 
and C) are given in the following table for Part b 
{Annaswamy, 1995). 

B 
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Po(s) 
TR(S) 

where P0( 

nower froi 

a. Draw the root locus for each configuration. 
b. For those configurations where stable regions of 

operation are possible, evaluate the range of 
gain, K, for stability. 

63. Wind turbines, such as the one shown in Figure 
P8.24(a), are becoming popular as a way of generating 
electricity. Feedback control loops are designed to 
control the output power of the turbine, given an 
input power demand. Blade-pitch control may be 
used as part of the control loop for a constant-speed, 
pitch-controlled wind turbine, as shown in Figure 
P8.24(fr). The drivetrain, consisting of the windmill 
rotor, gearbox, and electric generator (see Figure 
P8.24(c)), is part of the control loop. The torque 
created by the wind drives the rotor. The windmill 
rotor is connected to the generator through a gearbox. 

The transfer function of the drivetrain is 

= Gdl(s) 

3.92KLSsKHssKGN2s 

{N2KHSS(JRS2 + KLSs)(JGS2[TelS + 1] 
+ KGs) + JRS2KLSS[{JGS2 + KHSS) 

{Tds + l) + KGs]} 

where P0{s) is the Laplace transform of the output 
power from the generator and TR(S) is the Laplace 
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FIGURE P8.24 a. Wind turbines generating electricity near Palm Springs, California b . control loop for a constant-speed 

pitch-controlled wind turbine ( © 1998 I E E E ) ; c. drivetrain ( © 1998 I E E E ) 
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transform of the input torque on the rotor. Substituting 
typical numerical values into the transfer function 
yields 

TR(S) 
= G(i,(s) 

(3.92)(12.6 x 106)(301 x 103){68S)N2s 
~ {N2(301 x 103)(190,120^2 + 12.6 x 106) 

x (3.852[20 x KT35 + 1] + 6685) 
+ 190,12052(12.6xl06) 
x [(3.852 + 301 x 103) 
x (20 xl0~35 + 1) + 6685]} 

(Anderson, 1998). Do the following for the drive-
train dynamics, making use of any computational 
aids at your disposal: 
a. Sketch a root locus that shows the pole locations 

of Gdt(s) for different values of gear ratio, N. 
b. Find the value of N that yields a pair of complex 

poles of Gdt(s) with a damping ratio of 0.5. 

64. A hard disk drive (HDD) arm has an open-loop 
unstable transfer function, 

m Fls) It? 
where X(s) is arm displacement and F(s) is the applied 
force (Yan, 2003). Assume the arm has an inertia of 
lb = 3 x 10 kg-m2 and that a lead controller, Gc(s) 
(used to improve transient response and discussed in 
Chapter 9), is placed in cascade to yield 

ww=^=¾¾¾ 
as in Figure P8.3. 
a. Plot the root locus of the system as a function 

of K. 
b. Find the value of K that will result in dominant 

complex conjugate poles with a £ = 0.7 damping 
factor. 

65. A robotic manipulator together with a cascade PI 
controller (used to improve steady-state response 
and discussed in Chapter 9) has a transfer function 
(Low, 2005) 

G(s) = KA 48,500 
' + 5 I 52 + 2.895 

Assume the robot's joint will be controlled in the 
configuration shown in Figure P8.3. 
a. Find the value of Ki that will result in ess = 2% 

for a parabolic input. 

b. Using the value of iC/ found in Part a, plot the 
root locus of the system as a function of Kp, 

c. Find the value of Kp that will result in a real pole 
at - 1 . Find the location of the other two poles. 

66. An active system for the elimina- Gui Tool 
tion of floor vibrations due to gclljf 
human presence is presented in 
(Nyawako, 2009). The system consists of 
a sensor that measures the floor's verti­
cal acceleration and an actuator that 
changes the floor characteristics. The 
open-loop transmission of the partic­
ular setup used can be described by 
G(s) = KGa(s)F(s)Gm(s), where the actua­
tor's transfer function is 

, . 10.26 
G^s> - s2 + 11.3is +127.9 

The floor's dynamic charactristics can be 
modeled by 

F(s) = 
s2 +0.2287s+817.3 

The sensor's transfer function is 
s Gm(s) = 

5.181s+22.18 

and K is the gain of the controller. The 
system operations can be describedby the 
unity-gain feedback loop of Figure P8 .3 . 

a. Use MATLAB's SISO Design Tool to obtain 
the root locus of the system in terms 
of K. 

b. Find the range of K for closed-loop 
stability. 

c. Find, if possible, a value of K that 
will yield a closed-loop overdamped 
response. 

67. Many implantable medical devices such as pace­
makers, retinal implants, deep brain stimulators, and 
spinal cord stimulators are powered by an in-body 
battery that can be charged through a trans­
cutaneous inductive device. Optimal battery charge 
can be obtained when the out-of-body charging 
circuit is in resonance with the implanted charging 
circuit (Baker, 2007). Under certain conditions, the 
coupling of both resonant circuits can be modeled 
by the feedback system in Figure P8.3 where 

G(s) = ^ -2 

( 5 2 + 2 ^ „ 5 + 0>2) 
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The gain K is related to the magnetic coupling 
between the external and in-body circuits. K may 
vary due to positioning, skin conditions, and other 
variations. For this problem let £ = 0.5 and con = 1. 

a. Find the range of K for closed-loop stability. 

b. Draw the corresponding root locus. 

68. It is important to precisely J^!!£fL 
control the amount of organic Viil^P 
fertilizer applied to a specific GuiTool 
crop area in order to provide MAUiM 
specific nutrient quantities and to 
avoid unnecessary environmental pollu­
tion. A precise delivery liquid manure 
machine has been developed for this pur­
pose (Saeys, 2008). The system consists of 
a pressurized tank, a valve, and a rheo-
logical flow sensor. After simplifica­
tion, the system can be modeled as a 
closed-loop negative-feedback system 
with a forward-path transfer function 

2057.38K(s2 - 120s + 4800) 
^ ~ s(s+13.17)(s2 +120s+ 4800) 

consisting of an electrohydraulic sys­
tem in cascade with the gain of the manure 
flow valve and a variable gain, K. The 
feedback path is comprised of 

10(s2 - 4s+ 5.333) 
H(s) = 

> + 10)(s2 + 4s + 5.333; 

a. Use the SISO Design Tool in MATLAB to 
obtain the root locus of the system. 

b. Use the SISO Design Tool to find the 
range of Kfor closed-loop stability. 

c. Find the value of ffthat will result in 
the smallest settling time for this 
system. 

d. Calculate the expected settling time 
for a step input with the value of K 
obtained in Part c. 

e. Check your result through a step-
response simulation. 

69. Harmonic drives are very popular MATLAB 

for use in robotic manipulators ^ Q Q ) 
due to their low backlash, high 
torque transmission, and compact size 
{Spong, 2006) . The problem of joint flex­
ibility is sometimes a limiting factor in 
achieving good performance. Consider 

that the idealized model representing 
joint flexibility is shown in Figure 
P8.25. The input to the drive is from an 
actuator and is applied at $m. The output 
is connected to a load at 02 . The spring 
represents the joint flexibility and Bm 

and Bi represent the viscous damping of 
the actuator and load, respectively. Now 
we insert the device into the feedback 
loop shown in Figure P8.26. The first 
block in the f orwardpath is a PD control­
ler, which we will study in the next chap­
ter . The PD controller is used to improve 
transient response performance. 

FIGURE P8.25 Idealized model representing joint flexibility 
(Reprinted with permission of John Wiley & Sons, Inc.) 

Kp + Kos 

k * 

k 
Pi(s) 

^0, 

FIGURE P8.26 Joint flexibility model inserted in feedback 
loop. (Reprinted with permission of John Wiley & Sons, Inc.) 

Use MATLAB to find the gain KD to yield 
an approximate 5% overshoot in the step 
response given the following parame­
ters: Ja=10; B2=l; £=100; Jm=2; Bm=0.5; 

--= 0.25;pj(s) = Jjs2 + Bjs + k; and pm(s) = 

Jms2+ Bms + k 

70. Using LabVIEW, the Control Design LabviEW 
and Simulation Module, and the ^ O ^ ) 
MathScript RT Module, open and 
customize the Interactive Root Locus VI 
from the Examples to implement the sys­
tem of Problem 69. Select the parameter 
KD to meet the requirement of Problem 
69 by varying the location of the closed-
loop poles on the root locus. Be sure 
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your front panel shows the following: (1) 
open-loop transfer function, (2) closed-
loop transfer function, (3) root locus, 
(4) list of closed-loop poles, and (5) 
step response. 

71. An automatic regulator is used MATLAB 

to control the field current of C M ^ P 
a three-phase synchronous ma­
chine with identical symmetrical arma­
ture windings {Stapleton, 1964) . The 
purpose of the regulator is to maintain 
the system voltage constant within cer­
tain limits. The transfer function of 
the synchronous machine is 

r f«\- M f ) - M{s - Zl){s - z2) 
sm[ ] APm(s) (s-Pl)(s-p2)(s-p3) 

which relates the variation of rotor an­
gle, A5(s), to the change in the synchro­
nous machine's shaft power, APm(s). The 
closed-loop system is shown in Figure 
P8.3, where G(s) = KGc(s)Gsm(s) and K is a 
gain to be adjusted. The regulator's 
transfer function, Gc(s) , is given by: 

Gc(s)= e
T 

Te 

Assume the following parameter values: 

fi = 4,M= 0.117, Te = 0.5,31,2 = - 0 . 0 7 1 ± J6.25, 

p1 = - 0 . 0 4 7 , a n d p 2 i 3 = -0 .262 ± j 5 . 1 , 

and do the following: 
Write a MATLAB M-f ile to plot the root 

locus for the system and to find the 
following: 

a. The gain K at which the system becomes 
marginally stable 

b. The closed-loop poles, p, and transfer 
function, T(s), corresponding to a 16% 
overshoot 

c. The coordinates of the point selected 
on the root-locus corresponding to 16% 
overshoot 

d. A simulation of the unit-step response 
of the closed-loop system correspond­
ing to your 16% overshoot design. Note 
in your simulation the following val­
ues: (1) actual percent overshoot, (2) 

corresponding peak time, Tpr (2) rise 
time, rr, (3) settling time, Tsr and (4) 
final steady-state value. 

b. Assume a second-order approximation and find 
the gain, K, to yield a closed-loop step response 
that has 38% overshoot. 

c. Estimate settling time and peak time for the 
response designed in Part b. 

d. Discuss the validity of your second-order 
approximation. 

e. Use MATLAB t o p l o t t h e c l o s e d - t,AT1AD 
c MATLAB 

loop step response for the ATT^fc 
value of K found in Part b. Com- ^lil^P 
pare the plot to predicted values found 
in Parts b and c. 

The amount of RTIs delivered to the patient will 
automatically be calculated by embedding the pa­
tient in the control loop as G(s) shown in Figure 
P6.20 (Craig, 2004). 

a. In the simplest case, G(s) = K, with K > 0. Note 
that this effectively creates a positive-feedback 
loop because the negative sign in the numerator of 
P(s) cancels out with the negative-feedback sign 
in the summing junction. Use positive-feedback 
rules to plot the root locus of the system. 

b. Now assume G(s) = —K with K > 0. The system 
is now a negative-feedback system. Use negative-
feed-back rules to draw the root locus. Show that 
in this case the system will be closed-loop stable 
for all K>Q, 

74. Hybrid vehicle. In c h a p t e r 7, MATLAB 
F i g u r e P7.34 shows t h e ( 3 9 
b l o c k d i ag ram of t h e speed c o n t r o l of 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 
72. High-speed rail pantograph. Problem 21 in Chapter 1 

discusses the active control of a pantograph mecha­
nism for high-speed rail systems. In Problem 79, 
Chapter 5, you found the block diagram for the active 
pantograph control system. Use your block diagram to 
do the following (O'Connor, 1997): 
a. Sketch the root locus. 

73. Control of HIV/AIDS. In the linearized model of 
Chapter 6, Problem 68, where virus levels are con­
trolled by means of RTIs, the open-loop plant 
transfer function was shown to be 

- y(*) _ -52Qs - 10.3844 
^ ~ UAs) ~ s3 + 2.6817^2 + 0.115 + 0.0126 
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an HEV rearranged as a unity feedback 
system {Preitl, 2007). 
Let the transfer function of the speed 

controller be 

K Psc 

K-i 

Ki 
Gsc{s) = KPsc + - ^ = 

a. Assume first that the speed controller 
is configured as a proportional con­
troller (KIsc = 0 and Gsc{s) = KPsc). Cal­
culate the forward-path open-loop 
poles . Now use MATLAB to plot the sys­
tem's root locus and find the gain, KPsc 

that yields a critically damped 

closed-loop response. Finally, plot 
the time-domain response, c(t), for 
a unit-step input using MATLAB. Note 
on the curve the rise time, Tr, and 
settling time, Ts. 

b. Now add an integral gain, KIsc, to the 
controller, such that KIsc/KPsc = OA. 
Use MATLAB to plot the root locus and 
find the proportional gain, KPsc, that 
could lead to a closed-loop unit-step 
response with 10% overshoot. Plot c (t) 
using MATLAB and note on the curve the 
peak time, Tp, and settling time, Ts. 
Does the response obtained resemble a 
second-order underdamped response? 

Cyber Exploration Laboratory 
Experiment 8.1 

Objective To verify the effect of open-loop poles and zeros upon the shape of the 
root locus. To verify the root locus as a tool for estimating the effect of open-loop 
gain upon the transient response of closed-loop systems. 

Minimum Required Software Packages MATLAB and the Control System 
Toolbox 

Prelab 

1. Sketch two possibilities for the root locus of a unity negative-feedback system 
with the open-loop pole-zero configuration shown in Figure P8.27. 

O 

FIGUREP8.27 

K{s +1.5) 
2. If the open-loop system of Prelab 1 is G(s) = -, ' CN, ' ' nX, estimate the 

s(s + 0.5)(5 + 10) 

percent overshoot at the following values of gain, K: 20, 50, 85, 200, and 700. 

Lab 

1. Using Matlab's SISO Design Tool, set up a negative unity feedback system with 
G(s)= * ( S + 6 ) 

5(5 + 0.5)(5 + 10) 
to produce a root locus. For convenience, set up the zero 
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at —6 using SISO Design Tool's compensator function by simply dragging a zero 
to - 6 on the resulting root locus. Print the root locus for the zero at —6. Move the 
zero to the following locations and print out a root locus at each location: —2, 
-1.5, -1.37, and -1.2. 

2. Using Matlab's SISO Design Tool, set up a negative unity feedback system with 
K{s +1.5) 
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G(s) = to produce a root locus. Open the LTI Viewer for SISO 
s(s + 0.5){s + 10) 

Design Tool to show step responses. Using the values of K specified in Prelab 2, 
record the percent overshoot and settling time and print the root loci and step 
response for each value of K. 

Postlab 
1. Discuss your findings from Prelab 1 and Lab 1. What conclusions can you draw? 
2. Make a table comparing percent overshoot and settling time from your calcula­

tions in Prelab 2 and your experimental values found in Lab 2. Discuss the 
reasons for any discrepancies. What conclusions can you draw? 

Experiment 8.2 

Objective To use MATLAB to design the gain of a controller via root locus. 

Minimum Required Software Package MATLAB with the Control Sys­
tems Toolbox. 

Prelab The open-loop system dynamics model for the NASA eight-axis 
Advanced Research Manipulator II (ARM II) electromechanical shoulder joint/ 
link, actuated by an armature-controlled dc servomotor is shown in Figure P8.28. 

The ARM II shoulder joint constant parameters are Ka = 12, L = 0.006 H, R = 1.4 O, 
Kb = 0.00867, n = 200, Km = 4.375, J=Jm+JL/n2, D = D,„ + DJn2, JL = 1,DL = 0.5, 
Jm = 0.00844, and Dm = 0.00013(Craig, 2005), (Nyzen, 1999), (Williams, 1994). 

a. Obtain the equivalent open-loop transfer function, G(s) = . 
Vref{s) 

b. The loop is to be closed by cascading a controller, Gc(s) = KDs + Kp, with G(s) in 
the forward path forming an equivalent forward-transfer function, 
Ge(s) = Gc(s)G(s). Parameters of Gc(s) will be used to design a desired transient 
performance. The input to the closed-loop system is a voltage, V/(s), representing 
the desired angular displacement of the robotic joint with a ratio of 1 volt equals 
1 radian. The output of the closed-loop system is the actual angular displacement 
of the joint, 0L(s). An encoder in the feedback path, Ke, converts the actual joint 
displacement to a voltage with a ratio of 1 radian equals 1 volt. Draw the closed-
loop system showing all transfer functions. 

c. Find the closed-loop transfer function. 

«v, 
Amp 

K, 
+j^A 

1 

Armature circui 
& 

motor dynamics 

K 

(Ls + R)(Js + D) 
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Kh 

ack en 

Gears & 
ntegrator 

m 
s 

if 

FIGURE P8.28 Open-loop model for ARM 11 
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Lab Let —- = 4 and use MATLAB to design the value of KD to yield a step 

response with a maximum percent overshoot of 0.2%. 

Postlab 
1. Discuss the success of your design. 

2. Is the steady-state error what you would expect? Give reasons for your answer. 

Experiment 8.3 

Objective To use Lab VIEW to design the gain of a controller via root locus. 

Minimum Required Software Package LabVIEW with the Control Design 
and Simulation Module, and the MathScript RT Module. 

Prelab Complete the Prelab to Experiment 8.2 if you have not already done so. 

Lab Let —— = 4. Use LabVIEW to open and customize the Interactive Root 

Locus VI from the Examples in order to implement a design of KD to yield a step 
response with a maximum percent overshoot of 0.2%. Use a hybrid graphical/ 
MathScript approach. 

Postlab 
1. Discuss the success of your design. 

2. Is the steady-state error what you would expect? Give reasons for your answer. 
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