
Steady-State Errors $ 7 

^Chapter Learning Outcomes^ 
After completing this chapter the student will be able to: 

• Find the steady-state error for a unity feedback system (Sections 7.1-7.2) 

• Specify a system's steady-state error performance (Section 7.3) 

• Design the gain of a closed-loop system to meet a steady-state error specification 
(Section 7.4) 

• Find the steady-state error for disturbance inputs (Section 7.5) 

• Find the steady-state error for nonunity feedback systems (Section 7.6) 

• Find the steady-state error sensitivity to parameter changes (Section 7.7) 

• Find the steady-state error for systems represented in state space (Section 7.8) 

^Case Study Learning Outcomes^ 
You will be able to demonstrate your knowledge of the chapter objectives with case 
studies as follows: 

• Given the antenna azimuth position control system shown on the front endpapers, 
you will be able to find the preamplifier gain to meet steady-state error performance 
specifications. 

• Given a video laser disc recorder, you will be able to find the gain required to permit 
the system to record on a warped disc. 
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Chapter 7 Steady-State Errors 

Introduction 
In Chapter 1, we saw that control systems analysis and design focus on three 
specifications: (1) transient response, (2) stability, and (3) steady-state errors, taking 
into account the robustness of the design along with economic and social considera­
tions. Elements of transient analysis were derived in Chapter 4 for first- and second-
order systems. These concepts are revisited in Chapter 8, where they are extended to 
higher-order systems. Stability was covered in Chapter 6, where we saw that forced 
responses were overpowered by natural responses that increase without bound if the 
system is unstable. Now we are ready to examine steady-state errors. We define the 
errors and derive methods of controlling them. As we progress, we find that control 
system design entails trade-offs between desired transient response, steady-state 
error, and the requirement that the system be stable. 

Definition and Test Inputs 
Steady-state error is the difference between the input and the output for a prescribed 
test input as t —> oo. Test inputs used for steady-state error analysis and design are 
summarized in Table 7.1. 

In order to explain how these test signals are used, let us assume a position 
control system, where the output position follows the input commanded position. 
Step inputs represent constant position and thus are useful in determining the ability 
of the control system to position itself with respect to a stationary target, such as a 
satellite in geostationary orbit (see Figure 7.1). An antenna position control is an 
example of a system that can be tested for accuracy using step inputs. 

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems 

Waveform Name 
Physical 

interpretation 
Time 

function 
Lapiace 

transform 

Kt) Step Constant position 

•*• i 

Ramp Constant velocity 

rm 
Parabola Constant acceleration V ? 
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Satellite in geostationary orbit 

Satellite orbiting at ^ ^ 
constant velocity r~^e^ 

Accelerating ^ S ^ y * 
missile ^ ^ ¾ ^ 

Sf 

Tracking system 

FIGURE 7.1 Test inputs for 
steady-state error analysis and 
design vary with target type 

Ramp inputs represent constant-velocity inputs to a position control system by 
their linearly increasing amplitude. These waveforms can be used to test a system's 
ability to follow a linearly increasing input or, equivalently, to track a constant-
velocity target. For example, a position control system that tracks a satellite that 
moves across the sky at a constant angular velocity, as shown in Figure 7.1, would be 
tested with a ramp input to evaluate the steady-state error between the satellite's 
angular position and that of the control system. 

Finally, parabolas, whose second derivatives are constant, represent constant-
acceleration inputs to position control systems and can be used to represent 
accelerating targets, such as the missile in Figure 7.1, to determine the steady-state 
error performance. 

Application to Stable Systems 
Since we are concerned with the difference between the input and the output of a 
feedback control system after the steady state has been reached, our discussion is 
limited to stable systems, where the natural response approaches zero as t —> oo. 
Unstable systems represent loss of control in the steady state and are not acceptable 
for use at all. The expressions we derive to calculate the steady-state error can be 
applied erroneously to an unstable system. Thus, the engineer must check the system 
for stability while performing steady-state error analysis and design. However, in 
order to focus on the topic, we assume that all the systems in examples and problems 
in this chapter are stable. For practice, you may want to test some of the systems for 
stability. 

Evaluating Steady-State Errors 
Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and 
two possible outputs are shown. Output 1 has zero steady-state error, and output 2 
has a finite steady-state error, 62(00). A similar example is shown in Figure 7.2(6), 
where a ramp input is compared with output 1, which has zero steady-state error, and 
output 2, which has a finite steady-state error, 62(00), as measured vertically between 
the input and output 2 after the transients have died down. For the ramp input 
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T 
e2M 

Output 2 

Time 

FIGURE 7.2 Steady-state error: 
a. step input; b. ramp input 

e2(~) 

Time 

another possibility exists. If the output's slope is different from that of the input, then 
output 3, shown in Figure 1.2(b), results. Here the steady-state error is infinite as 
measured vertically between the input and output 3 after the transients have died 
down, and t approaches infinity. 

Let us now look at the error from the perspective of the most general block 
diagram. Since the error is the difference between the input and the output of a system, 
we assume a closed-loop transfer function, T(s), and form the error, E(s), by taking the 
difference between the input and the output, as shown in Figure 13(a). Here we are 
interested in the steady-state, or final, value of e(t). For unity feedback systems, E(s) 
appears as shown in Figure 1.3(b). In this chapter, we study and derive expressions for 
the steady-state error for unity feedback systems first and then expand to nonunity 
feedback systems. Before we begin our study of steady-state errors for unity feedback 
systems, let us look at the sources of the errors with which we deal. 

FIGURE 7.3 Closed-loop control 
system error: a. general 
representation; b. representation 
for unity feedback systems 

m T(s) 

, 
m - 2: 

*vl 
E(s) R(s) +, E(s) 

C{s) 
C(s) 

(a) (b) 
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R(s) +<: ?\ 3¾ K 
C(s) R{s) + E(s) C(s) 

(a) 

FIGURE 7.4 System with 
a. finite steady-state error for a 
step input; b. zero steady-state 
error for step input 

Sources of Steady-State Error 
Many steady-state errors in control systems arise from nonlinear sources, such as 
backlash in gears or a motor that will not move unless the input voltage exceeds a 
threshold. Nonlinear behavior as a source of steady-state errors, although a viable 
topic for study is beyond the scope of a text on linear control systems. The steady-
state errors we study here are errors that arise from the configuration of the system 
itself and the type of applied input. 

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s) is 
the output, and E(s) = R(s) — C(s) is the error. Consider a step input. In the steady 
state, if c(i) equals r(t), e(t) will be zero. But with a pure gain, K, the error, e(t), 
cannot be zero if c(t) is to be finite and nonzero. Thus, by virtue of the configuration 
of the system (a pure gain of K in the forward path), an error must exist. If we call 
ŝteady-state the steady-state value of the output and <?steady-state the steady-state value of 

t h e e r r o r , t h e n Csteady-state = ^steady-state, 0 r 

-steady-state — ^ ^steady-stale (7.1) 

Thus, the larger the value of K, the smaller the value of esteady-state would have to be to 
yield a similar value of csteady-state- The conclusion we can draw is that with a pure gain 
in the forward path, there will always be a steady-state error for a step input. This 
error diminishes as the value of K increases. 

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(6), 
there will be zero error in the steady state for a step input. The reasoning is as 
follows: As c(t) increases, e(t) will decrease, since e(t) = r(t) — c(t). This decrease will 
continue until there is zero error, but there will still be a value for c(t) since an 
integrator can have a constant output without any input. For example, a motor can 
be represented simply as an integrator. A voltage applied to the motor will cause 
rotation. When the applied voltage is removed, the motor will stop and remain at its 
present output position. Since it does not return to its initial position, we have an 
angular displacement output without an input to the motor. Therefore, a system 
similar to Figure 7.4(b), which uses a motor in the forward path, can have zero 
steady-state error for a step input. 

We have examined two cases qualitatively to show how a system can be expected 
to exhibit various steady-state error characteristics, depending upon the system 
configuration. We now formalize the concepts and derive the relationships between 
the steady-state errors and the system configuration generating these errors. 

t 7.2 Steady-State Error for Unity 
Feedback Systems 

Steady-state error can be calculated from a system's closed-loop transfer function, 
T(s), or the open-loop transfer function, G(s), for unity feedback systems. We begin 
by deriving the system's steady-state error in terms of the closed-loop transfer 
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function, T(s), in order to introduce the subject and the definitions. Next we obtain 
insight into the factors affecting steady-state error by using the open-loop transfer 
function, G(s), in unity feedback systems for our calculations. Later in the chapter 
we generalize this discussion to nonunity feedback systems. 

Steady-State Error in Terms of T(s) 
Consider Figure 7.3(a). To find E(s), the error between the input, R(s), and the 
output, C(s), we write 

E(s) = R(s) - C(s) (7.2) 

But 

C(s) = R(s)T(s) (7.3) 

Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields 

E(s) = R(s)[l-T(s)} (7.4) 

Although Eq. (7.4) allows us to solve for e(t) at any time, t, we are interested in the 
final value of the error, e(oo). Applying the final value theorem,1 which allows us to 
use the final value of e(t) without taking the inverse Laplace transform of E(s), and 
then letting t approach infinity, we obtain 

e(co) = lim e{t) = MmsE{s) (7.5)2 

Substituting Eq. (7.4) into Eq. (7.5) yields 

e{po) = lim sR(s)[l - T{s)} (7.6) 
S—too 

Let us look at an example. 

1 The final value theorem is derived from the Laplace transform of the derivative. Thus, 

n(t)) = rhtV'dt = sF(s) - / ( 0 - ) 
Jo-

As 5 -»0 . 

or 

f /(r)A =/(00) - / ( 0 - ) = timsF{s) - / ( 0 - ) 

/(°°) = B»«P(*) 
s—0 

For finite steady-state errors, the final value theorem is valid only if F(s) has poles only in the left half-
plane and, at most, one pole at the origin. However, correct results that yield steady-state errors that are 
infinite can be obtained if F(s) has more than one pole at the origin (see D'Azzo andHoupis, 1988). UF(s) 
has poles in the right half-plane or poles on the imaginary axis other than at the origin, the final value 
theorem is invalid. 
2 Valid only if (1) E(s) has poles only in the left half-plane and at the origin, and (2) the closed-loop transfer 
function, T(s), is stable. Notice that by using Eq. (7.5), numerical results can be obtained for unstable 
systems. These results, however, are meaningless. 
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Example 7.1 

Steady-State Error in Terms of T(s) 

PROBLEM: Find the steady-state error for the system of Figure 7.3(a) if T(s) = 
5/(s2 + 7s + 10) and the input is a unit step. 

SOLUTION: From the problem statement, R(s) = 1/s and T(s) = 5/(52 + 75 +10). 
Substituting into Eq. (7.4) yields 

m= s2 + 75 + 5 
s(s2 + 75 + 10) 

(7.7) 

Since T(s) is stable and, subsequently, E(s) does not have right-half-plane poles or 
jco poles other than at the origin, we can apply the final value theorem. Substituting 
Eq. (7.7) into Eq. (7.5) gives e(oo) = 1/2. 

Steady-State Error in Terms of G(s) 
Many times we have the system configured as a unity feedback system with a 
forward transfer function, G(s). Although we can find the closed-loop transfer 
function, T(s), and then proceed as in the previous subsection, we find more insight 
for analysis and design by expressing the steady-state error in terms of G(s) rather 
than T(s). 

Consider the feedback control system shown in Figure 7.3(b). Since the 
feedback, H(s), equals 1, the system has unity feedback. The implication is that 
E(s) is actually the error between the input, R(s), and the output, C(s). Thus, if we 
solve for E(s), we will have an expression for the error. We will then apply the final 
value theorem, Item 11 in Table 2.2, to evaluate the steady-state error. 

Writing E(s) from Figure 7.3(b), we obtain 

E(s) = R(s) - C(s) 

C(s) = E(s)G(s) 

Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields 

E(s) = 
R(s) 

1 + G(s) 

(7.8) 

(7.9) 

(7.10) 

We now apply the final value theorem, Eq. (7.5). At this point in a numerical 
calculation, we must check to see whether the closed-loop system is stable, using, for 
example, the Routh-Hurwitz criterion. For now, though, assume that the closed-loop 
system is stable and substitute Eq. (7.10) into Eq. (7.5), obtaining 

e(oo) = lim 
sR(s) 

S-M 1 + G(s) 
(7.11) 

Equation (7.11) allows us to calculate the steady-state error, ¢(00), given the 
input, R(s), and the system, G(s). We now substitute several inputs for R(s) and then 
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draw conclusions about the relationships that exist between the open-loop system, 
G(s), and the nature of the steady-state error, e(oo). 

The three test signals we use to establish specifications for a control system's 
steady-state error characteristics are shown in Table 7.1. Let us take each input and 
evaluate its effect on the steady-state error by using Eq. (7.11). 

Step Input. Using Eq. (7.11) with R(s) = 1/s, we find 

m e(oo) = estep(oo) = fog 1 - Q^ 
1 + lim G(s) 

(7.12) 

The term 

lim G(s) 
$-,0 

is the dc gain of the forward transfer function, since s, the frequency variable, is 
approaching zero. In order to have zero steady-state error, 

lim G{s) = oo 

Hence, to satisfy Eq. (7.13), G(s) must take on the following form: 

' sn{s+Pi){s + p2)---

(7.13) 

(7.14) 

and for the limit to be infinite, the denominator must be equal to zero as s goes to 
zero. Thus, n > 1; that is, at least one pole must be at the origin. Since division by s in 
the frequency domain is integration in the time domain (see Table 2.2, Item 10), we 
are also saying that at least one pure integration must be present in the forward path. 
The steady-state response for this case of zero steady-state error is similar to that 
shown in Figure 7.2(a), output 1. 

If there are no integrations, then n = 0. Using Eq. (7.14), we have 

r ~. , ZiZ2" (7.15) 

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), output 2, is an 
example of this case of finite steady-state error. 

In summary, for a step input to a unity feedback system, the steady-state error 
will be zero if there is at least one pure integration in the forward path. If there are no 
integrations, then there will be a nonzero finite error. This result is comparable to our 
qualitative discussion in Section 7.1, where we found that a pure gain yields a 
constant steady-state error for a step input, but an integrator yields zero error for the 
same type of input. We now repeat the development for a ramp input. 

Ramp Input. Using Eq. (7.11) with, R(s) = 1/s2, we obtain 

e(co) = eramp(oo) = lim <vfl _« \ lim-
1 

*-o 1 + G(s) s-o s + sG(s) lim sG(s) 
(7.16) 
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To have zero steady-state error for a ramp input, we must have 

limsG(.s') = oo 
s-»0 

(7.17) 

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except that n > 2. In 
other words, there must be at least two integrations in the forward path. An example of 
zero steady-state error for a ramp input is shown in Figure 7.2(b), output 1. 

If only one integration exists in the forward path, then, assuming Eq. (7.14), 

lim sG(s) = 
* - o pxp2 • • • 

(7.18) 

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration 
leads to a constant error, as shown in Figure 7.2(b), output 2. 

If there are no integrations in the forward path, then 

limsG(j) = 0 
s-»0 

(7.19) 

and the steady-state error would be infinite and lead to diverging ramps, as shown in 
Figure 7.2(b), output 3. Finally, we repeat the development for a parabolic input. 

Parabolic Input. Using Eq. (7.11) with R(s) = 1/s3, we obtain 

s(l/s3) 
e(oo) = eParaboia(oo) = lim . _ , \ - lim 

5-o 1 + G(s) ?-*o s2 + s2G(s) lim s2G(s) 
(7.20) 

In order to have zero steady-state error for a parabolic input, we must have 

\ims2G(s) = oc (7.21) 

To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that 
n > 3. In other words, there must be at least three integrations in the forward path. 

If there are only two integrations in the forward path, then 

l i m ? G ( s ) = ^ ^ 
s-,0 pxp2 • • • 

(7.22) 

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to 
a constant error. 

If there is only one or less integration in the forward path, then 

hms2G(s) = 0 
5-0 

(7.23) 

and the steady-state error is infinite. Two examples demonstrate these concepts. 

Example 7.2 

Steady-State Errors for Systems with No Integrations 

PROBLEM: Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5 ^ ( 0 to the 
system shown in Figure 7.5. The function u(t) is the unit step. 
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R(s) ?)Eis)» 120(5 + 2) 

(5 + 3)(5+4) 
cm SOLUTION: First we verify that the closed-loop system is indeed 

stable. For this example we leave out the details. Next, for the input 
5u(t), whose Laplace transform is 5/s, the steady-state error will be 
five times as large as that given by Eq. (7.12), or 

FIGURE 7.5 
Example 7. 

Feedback control system for 
e(oo) = esteP(oo) 

1 + lim G(s) 1 + 20 
5_ 

21 
(7.24) 

which implies a response similar to output 2 of Figure 7.2(a). 
For the input 5tu(t), whose Laplace transform is 5/s2, the steady-state error 

will be five times as large as that given by Eq. (7.16), or 

e(oo) = eramP(oo) = -. 
lim sG(s' 

o v ' 
= - = 00 (7.25) 

which implies a response similar to output 3 of Figure 1.2(b). 
For the input 5?"u(i), whose Laplace transform is 10/s3, the steady-state error 

will be 10 times as large as that given by Eq. (7.20), or 

10 
e ( o o ) = Cparabola(oo) = ^ £ Q ? 

10 
(7.26) 

Example 7.3 

Steady-State Errors for Systems with One Integration 

R(s) 

*$ 
>*w, 
9 

100(5 + 2)(5 + 6) 

5(5 + 3)(5 + 4) 

C(s) 

FIGURE 7.6 Feedback control system for Example 7.3 

PROBLEM: Find the steady-state errors for inputs of 5u(t), 
5tu(t), and 5f~u{t) to the system shown in Figure 7.6. The 
function u(t) is the unit step. 

SOLUTION: First verify that the closed-loop system is in­
deed stable. For this example we leave out the details. Next 
note that since there is an integration in the forward path, the 
steady-state errors for some of the input waveforms will be 

less than those found in Example 7.2. For the input 5u(t), whose Laplace transform is 
5/s, the steady-state error will be five times as large as that given by Eq. (7.12), or 

e(oo) = <?steP(oo) = —————- = - = 0 F 1 + hm G(s) oo 
(7.27) 

which implies a response similar to output 1 of Figure 7.2(a). Notice that the 
integration in the forward path yields zero error for a step input, rather than the 
finite error found in Example 7.2. 

For the input 5tu{t), whose Laplace transform is 5/s2, the steady-state error 
will be five times as large as that given by Eq. (7.16), or 

e(oo) = Cramp (oo) = 
lim sG(s) 
5-.0 v ' 

5 
100 20 

(7.28) 
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which implies a response similar to output 2 of Figure 72(b). Notice that the 
integration in the forward path yields a finite error for a ramp input, rather than 
the infinite error found in Example 7.2. 

For the input, 5 ^ ( 0 , whose Laplace transform is 10/s3, the steady-state error 
will be 10 times as large as that given by Eq. (7.20), or 

e(oo) = eparabola(oo) 
10 10 

lim 52 G(s) = — = oc 0 
(7.29) 

Notice that the integration in the forward path does not yield any improvement in 
steady-state error over that found in Example 7.2 for a parabolic input. 

Skill-Assessment Exercise 7.1 

PROBLEM: A unity feedback system has the following forward transfer function: 

10(5 + 20)(5 + 30) 
G(s) = 

5(5 + 25)(5 + 35) 

a. Find the steady-state error for the following inputs: 15«(r), 15tu(t), and 15t*u(t). 

b. Repeat for 

10(5 + 20)(5 + 30) 
G(s) = 

52(5+ 25)(5+ 35)(5+ 50) 

ANSWERS: 

a. The closed-loop system is stable. For 15u(t), estep(oc) = 0; for 15tu(t), 
eramp(oo) = 2.1875; for \S{f-)u{t), eparaboia(oo) = oo. 

b. The closed-loop system is unstable. Calculations cannot be made. 

The complete solution is at www.wiley.com/college/nise. 

WileyPLUS 

Control Solutions 

( 

7.3 Static Error Constants and 
System Type 

We continue our focus on unity negative feedback systems and define parameters 
that we can use as steady-state error performance specifications, just as we defined 
damping ratio, natural frequency, settling time, percent overshoot, and so on as 
performance specifications for the transient response. These steady-state error 
performance specifications are called static error constants. Let us see how they 
are defined, how to calculate them, and, in the next section, how to use them for 
design. 

http://www.wiley.com/college/nise
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Static Error Constants 
In the previous section we derived the following relationships for steady-state error. 
For a step input, u(t), 

e(oo)=es t e p (00) = - - + 1 . m 

5 - 0 
G(s) (7.30) 

For a ramp input, tu(t), 

(7.31) 

1 » 
For a parabolic input, -ru(t). 

e(oo) = eparaboia(oo) = TT -parabola^; - l i m ^ G 
s-0 v ' 

(7.32) 

The three terms in the denominator that are taken to the limit determine the 
steady-state error. We call these limits static error constants. Individually, their names 
are 
position constant, Kp, where 

Kp = lim G(s) 

velocity constant, Kv, where 

Kv = lim sG(s) 

acceleration constant, Ka where 

Ka = lim s2G(s) 

(7.33) 

(7.34) 

(7.35) 

As we have seen, these quantities, depending upon the form of G(s), can 
assume values of zero, finite constant, or infinity. Since the static error constant 
appears in the denominator of the steady-state error. Eqs. (7.30) through (7.32), the 
value of the steady-state error decreases as the static error constant increases. 

In Section 7.2, we evaluated the steady-state error by using the final value 
theorem. An alternate method makes use of the static error constants. A few 
examples follow. 

Example 7.4 

Steady-State Error via Static Error Constants 

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and 
find the expected error for the standard step, ramp, and parabolic inputs. 
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*(*) + / 0 \ E{s) 500(5 + 2)(5 + 5) 

(s + 8)(s + 10)(.s + 12) 

(a) 

(b) 

C{s) 

R(s)+K 

—i 

y,Ejs)m 
500(5 + 2)(5 + 5)(5 + 6) 

5(5 + 8)(5+10)(5+12) 

C(s) 

R(s)+K 

-
> m^ 500(5 + 2)(5 + 4)(5 + 5)(5 + 6)(5 + 7) 

52(5 + 8)(5 + 10)(5 + 12) 

C(s) 

(c) 

FIGURE 7.7 Feedback control systems for Example 7.4 

SOLUTION: First verify that all closed-loop systems shown are indeed stable. For 
this example we leave out the details. Next, for Figure 7.7(a), 

Kp = lim G(s) = 
5->0 

500 x 2 x 5 
8 x 10 x 12 

= 5.208 (7.36) 

Thus, for a step input, 

For a ramp input, 

For a parabolic input, 

Kv = \imsG(s) = 0 
5-»0 

Ka = \ims2G(s) = 0 
s—*Q 

e oo = 1+& 
= 0.161 

e(oo) = — = oo 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

Now, for Figure 7.7(b), 

e(°°) = £~ = °° 

K„ = lim G(s) — oo 
s—»0 

,. ^ , , 5 0 0 x 2 x 5 x 6 _ „.w &v = hmsGls) = —^—77^—:-— = 31.25 
5-0 w 8 x 10 x 12 

(7.41) 

(7.42) 

(7.43) 
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and 

Thus, for a step input, 

For a ramp input, 

For a parabolic input, 

K 

Finally, for Figure 7.7(c), 

Ka = \ims2G(s)=0 (7.44) 
s—<0 

e(oo) = TTKp° (7l45) 

^ -S- f f iHf- 1 " 8 2 (746) 

e(oo) = —- = oo (7.47) 

and 

Kp = lim G(s) = oo (7.48) 

Kv = \imsG(s) = oo (7.49) 
s-»0 

,. 9~,x 500 x 2 x 4 x 5 x 6 x 7 „„„ „ MV 

*• = W G M = ^ j ^ ^ = 875 (7.50) 

Thus, for a step input, 

For a ramp input, 

For a parabolic input, 

e{oo) = iTT = 0 (7,51) 

«(OD) = ^ - = 0 (7.52) 

e ( 0 0 ) = ^ = 8 ^ = 1 - 1 4 x i r 3 ( ? - 5 3 ) 

MATLAB Students who are using MATLAB should now run ch7pl in Appendix B. 
^ You will learn how to test the system for stability, evaluate 

static error constants, and calculate steady-state error using 
MATLAB. This exercise applies MATLAB to solve Example 7.4 with 
System (b). 

System Type 
Let us continue to focus on a unity negative feedback system. The values of the static 
error constants, again, depend upon the form of G(s), especially the number of pure 
integrations in the forward path. Since steady-state errors are dependent upon the 
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number of integrations in the forward path, we give a name to this R(S) + s~>.E(s) 
system attribute. Given the system in Figure 7.8, we define system 
type to be the value of n in the denominator or, equivalently, the 
number of pure integrations in the forward path. Therefore, a 
system with n = 0 is a Type 0 system. If n = 1 or n = 2, the 
corresponding system is a Type 1 or Type 2 system, respectively. 

Table 7.2 ties together the concepts of steady-state error, 
static error constants, and system type. The table shows the static error constants and 
the steady-state errors as functions of input waveform and system type. 

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors 

K(s+zx)(s + z2) 

s"(s+P])(s-i-p2) 

C(s) 

FIGURE 7.8 Feedback control system for 
defining system type 

TypeO Typel Type 2 

Input 
Steady-state 

error formula 
Static error 

constant Error 
Static error 

constant Error 
Static error 

constant Error 

Step, u(t) 

Ramp, tu(t) 

Parabola, -z?u{t) 

1 
1+KP 

J_ 
Kv 

Kp = Constant -—— 
1 + K„ Kp = co 

Kv = 0 

Ka=0 

co Kv = Constant 

co Ka = 0 

1 

Kp = co 

Kv = co 

Ka = Constant 

0 

J_ 
Ka 

Skill-Assessment Exercise 7.2 

PROBLEM: A unity feedback system has the following forward transfer function: 

1000(, + 8) 
***' (, + 7)(5 + 9) 

a. Evaluate system type, Kp, Kv, and Ka. 

b. Use your answers to a. to find the steady-state errors for the standard step, 
ramp, and parabolic inputs. 

ANSWERS: 

a. The closed-loop system is stable. System type = Type 0. Kp = 127, Kv = 0, 
and Ka = 0. 

b. estep(oo) = 7.8 x 10"~3,eramp(oo) = co, and eparaboia(oo) = co 

The complete solution is at www.wiley.com/college/nise. 

Trylt7.1 

Use MATLAB, the Control 
System Toolbox, and the fol­
lowing statements to find Kp, 
eslep(oo), and the closed-loop 
poles to check for stability for 
the system of Skill-Assessment 
Exercise 7.2. 

numg=1000*[l 8]; 
deng=po ly ( [ -7 -9]); 
G=tf (numg, deng); 
Kp=dcgain(G) 
e s t e p = l / ( l + K p ) 
T = f e e d b a c k ( G , l ) ; 
p o l e s = p o l e ( T ) 

In this section, we defined steady-state errors, static error constants, and system 
type. Now the specifications for a control system's steady-state errors will be 
formulated, followed by some examples. 

^ 7.4 Steady-State Error Specifications 
Static error constants can be used to specify the steady-state error characteristics of 
control systems, such as that shown in Figure 7.9. Just as damping ratio, f, settling 
time, Ts, peak time, Tp, and percent overshoot, % OS, are used as specifications for a 
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FIGURE 7.9 A robot used in the 
manufacturing of semiconductor 
random-access memories 
(RAMs) similar to those in 
personal computers. Steady-state 
error is an important design 
consideration for assembly-line 
robots. 

control system's transient response, so the position constant, Kp, velocity constant, 
Kv, and acceleration constant, Ka, can be used as specifications for a control system's 
steady-state errors. We will soon see that a wealth of information is contained within 
the specification of a static error constant. 

For example, if a control system has the specification Kv = 1000, we can draw 
several conclusions: 

1. The system is stable. 
2. The system is of Type 1, since only Type 1 systems have Kv's that are finite constants. 

Recall that Kv = 0 for Type 0 systems, whereas Kv = oc for Type 2 systems. 
3. A ramp input is the test signal. Since Kv is specified as a finite constant, and the 

steady-state error for a ramp input is inversely proportional to Kv, we know the 
test input is a ramp. 

4. The steady-state error between the input ramp and the output ramp is \/Kv per 
unit of input slope. 

Let us look at two examples that demonstrate analysis and design using static 
error constants. 

Example 7.5 

Interpreting the Steady-State Error Specification 

PROBLEM: What information is contained in the specification Kp = 1000? 

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system 
has a finite Kp. Type 1 and Type 2 systems have Kp = oo. The input test signal is a 
step, since Kp is specified. Finally, the error per unit step is 

e(oo) = iTx: = rTlooo = iom (7-54) 
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Example 7.6 

Gain Design to Meet a Steady-State Error Specification 

PROBLEM: Given the control system in Figure 7.10, find the 
value of K so that there is 10% error in the steady state. 

SOLUTION: Since the system is Type 1, the error stated in the 
problem must apply to a ramp input; only a ramp yields a finite 
error in a Type 1 system. Thus, 

R(s) + / 0 \ £ W 
< 
— 

K(s + 5) 

s(s + 6)(s + 7)(5 + 8) 

C(s) 

Therefore, 

which yields 

e ( o c ) = iT = a i 

Kv = 10i = l\msG{s) = ,K*5 

*-o w 6 x 7 x 

FIGURE 7.10 Feedback control system for 
Example 7.6 

(7.55) 

(7.56) 

# = 672 (7.57) 

Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain. 
Although this gain meets the criteria for steady-state error and stability, it 

may not yield a desirable transient response. In Chapter 9 we will design feedback 
control systems to meet all three specifications. 

Students who are using MATLAB should now run ch7 p2 in Appendix B. 
You will learn how to find the gain to meet a steady-state error 
specification using MATLAB. This exercise solves Example 7.6 
using MATLAB. 

MATLAB 

Skill-Assessment Exercise 7.3 

PROBLEM: A unity feedback system has the following forward 
transfer function: 

G(s) = 
K(s + 12) 

WileyPLUS 

Control Solutions 

(5 + 14)(5 + 18) 

Find the value of K to yield a 10% error in the steady state. 

ANSWER: K = 189 

The complete solution is at www.wiley.com/college/nise. 

Trylt 7.2 
Use MATLAB, the Control 
System Toolbox, and the 
following statements to solve 
Skill-Assessment Exercise 7.3 
and check the resulting 
system for stability. 
numg=[l 12]; 
deng=poly( [ -14 -18]); 
G=tf (numg, deng); 
Kpdk=dcgain(G); 
e s t e p = 0 . 1 ; 
K= ( l / e s t e p - l ) / K p d k 
T = f e e d b a c k ( G , l ) ; 
p o l e s = p o l e ( T ) 
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This example and exercise complete our discussion of unity feedback systems. In 
the remaining sections, we will deal with the steady-state errors for disturbances and 
the steady-state errors for feedback control systems in which the feedback is not unity. 

( 7.5 Steady-State Error for Disturbances 

D(s) 

m +, V(5). 
Controller 

GM - * $ -

Plant 

G2(s) 
C(s) 

Feedback control systems are used to compensate for disturbances or unwanted 
inputs that enter a system. The advantage of using feedback is that regardless of 
these disturbances, the system can be designed to follow the input with small or zero 

error, as we now demonstrate. Figure 7.11 shows a feedback 
control system with a disturbance, D(s), injected between the 
controller and the plant. We now re-derive the expression for 
steady-state error with the disturbance included. 

The transform of the output is given by 

FIGURE 7.11 Feedback control system showing 
disturbance 

But 

C(s) = E(s)Gi(s)G2(s) + D{s)G2(s) 

C{s) = R(s) - E(s) 

Substituting Eq. (7.59) into Eq. (7.58) and solving for E(s), we obtain 

1 _ G2{s) 
E(s) = 

l + G1{s)G2{s, -R(s) - 1+(¾ (*)<%(*; 
•D(s) 

(7.58) 

(7.59) 

(7.60) 

where we can think of 1/[1 + Gi(s)G2(s)] as a transfer function relating E(s) to R(s) 
and — Gi(s)/[1 + Gi(s)G2(s)} as a transfer function relating E(s) to D(s). 

To find the steady-state value of the error, we apply the final value theorem3 to 
Eq. (7.60) and obtain 

e(oo) = lims£(s) = l i m - — ^ , , ^ . , 
* ' 5-o w s-»ol + Gi(s)G2(s) 

= eR(oo) +e£»(oo) 

R(s) - lim 
sG2(s) 

s-,ol + G1{s)G2(s) 
D(s) (7.61) 

where 

and 

e*(co) = 

ez>(co) = 

j 1 

= lim -—-,..^., R(s) 
s-+ol + Gi(s)G2{s) w 

sG2{s) 

The first term, ê ?(oo), is the steady-state error due to R(s), which we have already 
obtained. The second term, e/j(oo), is the steady-state error due to the disturbance. 
Let us explore the conditions on ep (oo) that must exist to reduce the error due to the 
disturbance. 

At this point, we must make some assumptions about D(s), the controller, and 
the plant. First we assume a step disturbance, D(s) = 1/s. Substituting this value into 

3 Remember that the final value theorem can be applied only if the system is stable, with the roots of 
[1 + G\(s)G2{s)\ in the left-half-plane. 
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the second term of Eq. (7.61), eo(oo), the steady-state error component due to a step 
disturbance is found to be 

eo(oo) = 
1 

lim — + lim G\ (s) 
(7.62) 

This equation shows that the steady-state error produced by a step disturbance can 
be reduced by increasing the dc gain of Gi(s) or decreasing the dc gain of G2(s). 

This concept is shown in Figure 7.12, where the system of Figure 7.11 has 
been rearranged so that the disturbance, D(s), is depicted as the input and the 
error, E(s), as the output, with R(s) set equal to zero. If we want to minimize the 
steady-state value of E(s), shown as the output in Figure 7.12, we must either 
increase the dc gain of G\(s) so that a lower value of E(s) will be fed back to 
match the steady-state value of D(s), or decrease the dc value of G2(s), which 
then yields a smaller value of e(oo) as predicted by the feedback formula. 

Let us look at an example and calculate the numerical value of the 
steady-state error that results from a disturbance. 

D(.v) 

-• . 

Plant 

G2(s) 

G,W 

-E(s)^ 

•a 

Controller 

FIGURE 7.12 Figure 7.11 system 
rearranged to show disturbance as 
input and error as output, with 
R(s) = 0 

Example 7.7 

Steady-State Error Due to Step Disturbance 

PROBLEM: Find the steady-state error component due to a step disturbance for 
the system of Figure 7.13. 

R(s) + * > * » . 

-

mm 
Controller 

1000 

DM 

- % -

G2(s) 
Plant 

1 

s{s + 25) 
m 

FIGURE 7.13 Feedback control system for Example 7.7 

SOLUTION: The system is stable. Using Figure 7.12 and Eq. (7.62), we find 

^D(OO) = 

lim 1 
- , limGi(s) 
0 G2{S) .y-,0 

0 + 1000 1000 
(7.63) 

The result shows that the steady-state error produced by the step disturbance is 
inversely proportional to the dc gain of Gi (•$•). The dc gain of G2(s) is infinite in this 
example. 

Virtual Experiment 7.1 
Steady-State Error 

Put theory into practice finding 
the steady-state error of the 
Quanser Rotary Servo when 
subject to an input or a 
disturbance by simulating it 
in LabVIEW. This analysis 
becomes important when 
developing controllers for 
bottle labelling machines 
or robot joint control. 

Virtual experiments are found 
on WileyPLUS. 

Skill-Assessment Exercise 7.4 

PROBLEM: Evaluate the steady-state error component due to a step disturbance 
for the system of Figure 7.14. 
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D(s) 

- . i 

1000 I19\ 
*yy 

5 + 2 
5 + 4 

C(i) 

FIGURE 7.14 System for Skill-Assessment Exercise 7.4 

ANSWER: eD(oo) = -9.98 x 10"4 

The complete solution is at www.wiley.com/college/nise. 

( 7.6 Steady-State Error for Nonunity Feedback Systems 
Control systems often do not have unity feedback because of the compensation used to 
improve performance or because of the physical model for the system. The feedback 
path can be a pure gain other than unity or have some dynamic representation. 

A general feedback system, showing the input transducer, G\(s), controller and 
plant, G2(s), andfeedback, Hi(s), is shown in Figure 7.15(a). Pushing the input transducer 

m G,ts) + / 0 , £„,(*) 
G2(s) 

C(s) 

H,(s) 

R(s) +,o,£„( .v) 
G(s) 

//(.*) 

C(s) R(s) + x 
x — — — • • G(s) 

H(s) 

-1 

m 

ifi) 

R{s) +x-x£n(.v) 

FIGURE 7.15 Forming an 
equivalent unity feedback 
system from a general nonunity 
feedback system 

G(5) 

H(s) - I 

m 

C(s) R(s) E(s) 

-

G(s) 

1 + G(.v)//(i) - G(s) 

(el 

C(s) 
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to the right past the summing junction yields the general nonunity feedback system 
shown in Figure 7.15(5), where G(s) = G] {s)G2{s) and H(s) = H^/G^ (s). No­
tice that unlike a unity feedback system, where H(s) = 1, the error is not the difference 
between the input and the output. For this case we call the signal at the output of the 
summing junction the actuating signal, Ea(s). If r(t) and c(t) have the same units, we can 
find the steady-state error, e(oo) = r(oo) — c(oo). The first step is to show explicitly 
E{s) = R(s) — C(s) on the block diagram. 

Take the nonunity feedback control system shown in Figure 7.15(5) and form a 
unity feedback system by adding and subtracting unity feedback paths, as shown in 
Figure 7.15(c). This step requires that input and output units be the same. Next 
combine H(s) with the negative unity feedback, as shown in Figure 7.15(d). Finally, 
combine the feedback system consisting of G(s) and [H(s) - 1], leaving an equiv­
alent forward path and a unity feedback, as shown in Figure 7.15(e). Notice that the 
final figure shows E(s) = R(s) - C(s) explicitly. 

The following example summarizes the concepts of steady-state error, system 
type, and static error constants for nonunity feedback systems. 

Example 7.8 

Steady-State Error for Nonunity Feedback Systems 

PROBLEM: For the system shown in Figure 7.16, find the system type, 
the appropriate error constant associated with the system type, and 
the steady-state error for a unit step input. Assume input and output 
units are the same. 

R(s) +i Ea{s)i 100 
s(s + 10) 

C(s) 

SOLUTION: After determining that the system is indeed stable, one 
may impulsively declare the system to be Type 1. This may not be the 
case, since there is a nonunity feedback element, and the plant's 
actuating signal is not the difference between the input and the output. 
The first step in solving the problem is to convert the system of Figure 7.16 into an 
equivalent unity feedback system. Using the equivalent forward transfer function of 
Figure 7.15(c) along with 

(* + 5) 

FIGURE 7.16 Nonunity feedback control 
system for Example 7.8 

G(s) = 
100 

s{s + 10) 

and 

we find 

ffW = (s + 5) 

Ge(s) = 
G(s) 100(.5 + 5) 

1 + G(s)H{s) - G{s) s3 + 15s2 - 50s - 400 

(7.64) 

(7.65) 

(7.66) 

Thus, the system is Type 0, since there are no pure integrations in Eq. (7.66). The 
appropriate static error constant is then Kp, whose value is 

Trylt 7.3 

Use MATLAB, the Control 
System Toolbox, and the fol­
lowing statements to find 
Ge(s) in Example 7.8. 

G=zpk([],[0 -10], 100); 
H=zpk([],-5,1); 
Ge=feedback... 
(G,(H-1)); 

'Ge(s)1 

Ge=tf(Ge) 
T=feedback (Ge,l); 
'Poles of T(s)' 
pole(T) 

Kp=]imGe{s) = 
100 x 5 

-400 
(7.67) 
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The steady-state error, e(oo), is 

e(oo) = 
1 1 

l + Kp 1 - ( 5 / 4 ) 
= - 4 (7.68) 

The negative value for steady-state error implies that the output step is larger 
than the input step. 

^ ( g K Gi(s) 

H(s) 

G2(5) 
C(s) 

To continue our discussion of steady-state error for systems with 
nonunity feedback, let us look at the general system of Figure 7.17, 
which has both a disturbance and nonunity feedback. We will derive a 
general equation for the steady-state error and then determine the 
parameters of the system in order to drive the error to zero for step 
inputs and step disturbances.4 

The steady-state error for this system, e(oo) = r(oo) — c(oo), is 

FIGURE 7.17 Nonunity feedback control system 
with disturbance e(oo) = HmsMCs) = lims< 

S->0 5-»0 

G1(s)G2(s) 

l + Gi(s)G2(s)ff(s). 

G2(s) 

m 

1 + G1(s)G2(s)H(s) 
D(s) 

(7.69) 

Now limiting the discussion to step inputs and step disturbances, where 
R(s) = D(s) = 1/s, Eq. (7.69) becomes 

e(oo) = lim $£(.$) = 
s—»0 

1 -
Um[Gi(5)G2(5) ] 
s—»0 

lim[l + Gi(s)G2(s)tf(s)] 
5—»0 

lim G2(s) 
s—»0 

jMa[l + Gi(s)G2{s)H{s)] 

(7.70) 

For zero error, 

g3[Gifr)(%W] 
= 1 and 

lim Gz(5) 
s—>Q 

lim[l + d(s)G2{s)H^)] * "" lim[l + G{(s)G2{s)H{s} 
= 0 (7-71! 

The two equations in Eq. (7.71) can always be satisfied if (1) the system is stable, (2) 
Gi(s) is a Type 1 system, (3) G2(s) is a Type 0 system, and (4) H(s) is a Type 0 system 
with a dc gain of unity. 

To conclude this section, we discuss finding the steady-state value of the actuating 
signal, Eai(s), in Figure 7.15(a). For this task there is no restriction that the input and 
output units be the same, since we are finding the steady-state difference between 
signals at the summing junction, which do have the same units.5 The steady-state 

4 Details of the derivation are included as a problem at the end of this chapter. 
5 For clarity, steady-state error is the steady-state difference between the input and the output. Steady-
state actuating signal is the steady-state difference at the output of the summing junction. In questions 
asking for steady-state error in problems, examples, and skill-assessment exercises, it will be assumed that 
input and output units are the same. 
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actuating signal for Figure 7.15(a) is 

€ai(oo) = lim: 
sR(s)Gi{s) 

(7.72) 
+o 1 + G2 (5)//1 (J) 

The derivation is left to the student in the problem set at the end of this chapter. 

361 

Example 7.9 

Steady-State Actuating Signal for Nonunity Feedback Systems 

PROBLEM: Find the steady-state actuating signal for the system of Figure 7.16 for a 
unit step input. Repeat for a unit ramp input. 

SOLUTION: Use Eq. (7.72) with R(s) = l/s, a unit step input, (?i(s) = l, 
G2{s) = 100/(5(5 + 10)], and #1(5) = 1/(5 + 5). Also, realize that eai(co) = e„(oo), 
since G\(s) = l.Thus, 

ea(oo) = lim , .„,>*{ , .—r- = 0 
s-»0 

1 + 
100 

5(5+io);vc*+5) 
1 

(7.73) 

Now use Eq. (7.72) with R(s) = 1/s , a unit ramp input, and obtain 

ea(oo) = lim 
s—>0 

5 - r 

1 + 
100 

s(s + 10)/ V(5 + 5) 

(7.74) 

( [ Skill-Assessment Exercise 7.5 ) 
PROBLEM: 

a. Find the steady-state error, e(oo) = r(oo) - c(co), for a unit step in 
the nonunity feedback system of Figure 7.18. Repeat for a unit rai 
Assume input and output units are the same. 

b. Find the steady-state actuating signal, e„(oo), for a unit step input 
given the nonunity feedback system of Figure 7.18. Repeat for a 
unit ramp input. 

ANSWERS: 

a. e?sieP(oo) = 3.846 x 10 - 2 ;e r a m p (oo) = oo 

b. For a unit step input, efl(oo) = 3.846 x 10~2; for a unit ramp input, 
e#{o&) — oo 

The complete solution is at www.wiley.com/college/nise. 

put given 
np input. 
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In this section, we have applied steady-state error analysis to nonunity feed­
back systems. When nonunity feedback is present, the plant's actuating signal is not 
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the actual error or difference between the input and the output. With nonunity 
feedback we may choose to (1) find the steady-state error for systems where the 
input and output units are the same or (2) find the steady-state actuating signal. 

We also derived a general expression for the steady-state error of a nonunity 
feedback system with a disturbance. We used this equation to determine the attributes 
of the subsystems so that there was zero error for step inputs and step disturbances. 

Before concluding this chapter, we will discuss a topic that is not only significant for 
steady-state errors but generally useful throughout the control systems design process. 

f 7.7 Sensitivity 
During the design process, the engineer may want to consider the extent to which 
changes in system parameters affect the behavior of a system. Ideally, parameter 
changes due to heat or other causes should not appreciably affect a system's perform­
ance. The degree to which changes in system parameters affect system transfer 
functions, and hence performance, is called sensitivity. A system with zero sensitivity 
(that is, changes in the system parameters have no effect on the transfer function) is 
ideal. The greater the sensitivity, the less desirable the effect of a parameter change. 

For example, assume the function F = K/(K + a). If K = 10 and a = 100, then 
F = 0.091. If parameter a triples to 300, then F = 0.032. We see that a fractional change 
in parameter a of (300 — 100)/100 = 2 (a 200% change), yields a change in the function 
Fof (0.032 - 0.091)/0.091 = -0.65 ( -65% change). Thus, the function P has reduced 
sensitivity to changes in parameters. As we proceed, we will see that another advantage 
of feedback is that in general it affords reduced sensitivity to parameter changes. 

Based upon the previous discussion, let us formalize a definition of sensitivity: 
Sensitivity is the ratio of the fractional change in the function to the fractional change 
in the parameter as the fractional change of the parameter approaches zero. That is, 

Sp:p — Hm 
Fractional change in the function, F 

ATQ) Fractional change in the parameter, P 
AP/P 

— lim . 
AP^oAP/P 
., PAP 

= hm —— 
A/>̂ 0 PAP 

which reduces to 

SFP = -= 
P8F 

FSP 
(7.75) 

Let us now apply the definition, first to a closed-loop transfer function and then 
to the steady-state error. 

m +/C \E(s) K 
s(s + a) 

C(s)t 

FIGURE 7.19 Feedback control 
system for Examples 7.10 and 7.11 

Example 7.10 

Sensitivity of a Closed-Loop Transfer Function 

PROBLEM: Given the system of Figure 7.19, calculate the sensitivity of 
the closed-loop transfer function to changes in the parameter a. How 
would you reduce the sensitivity? 
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SOLUTION: The closed-loop transfer function is 

T(s) = K 

s2 +as + K 

Using Eq. (7.75), the sensitivity is given by 

-Ks —as 
K 

s2 +as + K 
{s2 + as + K)2l s2 + as + K 

(7.76) 

(7.77) 

which is, in part, a function of the value of s. For any value of s, however, an increase 
in K reduces the sensitivity of the closed-loop transfer function to changes in the 
parameter a. 

Example 7.11 

Sensitivity of Steady-State Error with Ramp Input 

PROBLEM: For the system of Figure 7.19, find the sensitivity of the steady-state 
error to changes in parameter K and parameter a with ramp inputs. 

SOLUTION: The steady-state error for the system is 

l a 
e{oo)=Yv = K 

The sensitivity of e(oc) to changes in parameter a is 

_a_8e__ 
= 1 

eSa a/K K 

The sensitivity of e(oo) to changes in parameter K is 

K 
e'K e SK a/K 

—a 
K2 = - 1 

(7.78) 

(7.79) 

(7.80) 

Thus, changes in either parameter a or parameter K are directly reflected in e(oo), 
and there is no reduction or increase in sensitivity. The negative sign in Eq. (7.80) 
indicates a decrease in e(oo) for an increase in K. Both of these results could have 
been obtained directly from Eq. (7.78) since e(oo) is directly proportional to 
parameter a and inversely proportional to parameter K. 

Example 7.12 

Sensitivity of Steady-State Error with Step Input 

PROBLEM: Find the sensitivity of the steady-state error to changes in parameter K 
and parameter a for the system shown in Figure 7.20 with a step input. 
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R(s) + E(s) K 
(s + a)(s + -

C(S) SOLUTION: The steady-state error for this Type 0 system is 

1 1 
e(oo) = ab 

FIGURE 7.20 Feedback control system for 
Example 7.12 

1+KP 1+£ ab + K 
ab 

Trylt 7.4 
Use MATLAB, the Symbolic 
Math Toolbox, and the fol­
lowing statements to find Se!a 

in Example 7.12. 

syms K a b s 
G=K/((s+a)*(s+b)); 
Kp=subs (G, s ,o) ; 
e=l/(l+Kp); 
Sea= (a/e)*dif f (e, a); 
Sea=simple (Sea); 
'Sea' 
pre t ty(Sea) 

The sensitivity of e(oo) to changes in parameter a is 

a (ab + K)b - ab2 K _ a Se _ 
*~>e:a — ~ — — 

e 8a 
ab (ab + K)' 

Jib + K, 

The sensitivity of e(oo) to changes in parameter K is 

K Se K -ab 

ab + K 

Spir — ——— = 
-K 

e8K ab 
ab + K 

(ab + K)2 ab + K 

(7.81) 

(7.82) 

(7.83) 

Equations (7.82) and (7.83) show that the sensitivity to changes in parameter K and 
parameter a is less than unity for positive a and b. Thus, feedback in this case yields 
reduced sensitivity to variations in both parameters. 

R(s) + ^ ^ E(s) 

-. 

FIGURE 7 
Exercise 

K(s + 1) 

s2 + 2s+l0 

Skil 

m. 

.21 System for Skill-Asses* 
7.6 

>ment 

l-Assessment Exercise 7.6 ] ft 
PROBLEM: Find the sensitivity of the steady-state error to changes in 
K for the system of Figure 7.21. 

ANSWER: * * - W+7K 

The complete solution is at www.wiley.com/college/nise. 

In this section, we defined sensitivity and showed that in some cases feedback 
reduces the sensitivity of a system's steady-state error to changes in system parameters. 
The concept of sensitivity can be applied to other measures of control system perform­
ance, as well; it is not limited to the sensitivity of the steady-state error performance. 

( 7.8 Steady-State Error for Systems in State Space 
Up to this point, we have evaluated the steady-state error for systems modeled as 
transfer functions. In this section, we will discuss how to evaluate the steady-state 
error for systems represented in state space. Two methods for calculating the steady-
state error will be covered: (1) analysis via final value theorem and (2) analysis via 
input substitution. We will consider these methods individually. 

Analysis via Final Value Theorem 
A single-input, single-output system represented in state space can be analyzed for 
steady-state error using the final value theorem and the closed-loop transfer 

http://www.wiley.com/college/nise
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function, Eq. (3.73), derived in terms of the state-space representation. Consider the 
closed-loop system represented in state space: 

x = Ax + Br 

y = Cx 

The Laplace transform of the error is 

E(s) = R(s) - Y(s) 

But 

Y(s)=R(s)T(s) 

(7.84a) 

(7.84b) 

(7.85) 

(7.86) 

where T(s) is the closed-loop transfer function. Substituting Eq. (7.86) into (7.85), we 
obtain 

E(s)=R(s)[l -T(s)} 

Using Eq. (3.73) for T(s), we find 

E(s) = R{s)[l-C(sI-A)-lB) 

Applying the final value theorem, we have 

limsE(s) = limsi?(s)[l - C{sl - A)_1B] 

(7.87) 

(7.88) 

(7.89) 

Let us apply the result to an example. 

Example 7.13 

Steady-State Error Using the Final Value Theorem 

PROBLEM: Evaluate the steady-state error for the system described by Eqs. (7.90) 
for unit step and unit ramp inputs. Use the final value theorem. 

A = 
-5 

0 
20 

1 0" 
- 2 1 

-10 1 
; B = 

0 
0 
1 

C = f - 1 1 0 (7.90) 

SOLUTION: Substituting Eqs. (7.90) into (7.89), we obtain 

s + 4 
e(oo) = lim sR(s) 1 — 

5-*0 

Df,fs
3 + 6s2 

= l imsALs) -x -r^ 
s-*Q w \f + 6s2 

sJ + 6s2 + 13^ -

s3 + 6s2 + 12s + 16 
13s + 20 

20 (7.91) 

For a unit step, R(s) = 1/s, and e(oo) = 4/5. For a unit ramp, R(s) = 1/s2, and 
e(oo) = oo. Notice that the system behaves like a Type 0 system. 

Trylt 7.5 
Use MATLAB, the Symbolic 
Math Toolbox, and the fol­
lowing statements to find the 
steady-state error for a step 
input to the system of 
Example 7.13. 

syms s 
A=[-5 1 0 

0 -2 1 
2 0 - 1 0 1]; 

B=[0;0;1] ; 
C=[-l 1 0] ; 
I=[l 0 0 

0 1 0 
0 0 1]; 

E = ( l / s ) * [ l - C * . . . 
[ ( s*I -A) A -1 ]*B] ; 

%New command: 
%subs(X, o l d , new): 
t -Replace o l d i n . . . 
%X(old) w i t h new. 
e r r o r = s u b s ( s * E , s , 0 ) 
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Analysis via Input Substitution 
Another method for steady-state analysis avoids taking the inverse of {si — A) and 
can be expanded to multiple-input, multiple-output systems; it substitutes the input 
along with an assumed solution into the state equations (Hostetter, 1989). We will 
derive the results for unit step and unit ramp inputs. 

Step Inputs, Given the state Eqs. (7.84), if the input is a unit step where r = 1, a 
steady-state solution, xss, for x, is 

Xce — 

v2 
= v (7.92) 

where Vt is constant. Also, 

Xss = 0 (7.93) 

Substituting r = 1, a unit step, along with Eqs. (7.92) and (7.93), into Eqs. 
(7.84) yields 

0 = A V + B 

yss = CV 

where yss is the steady-state output. Solving for V yields 

V = - A ^ B 

(7.94a) 

(7.94b) 

(7.95) 

But the steady-state error is the difference between the steady-state input and the 
steady-state output. The final result for the steady-state error for a unit step input 
into a system represented in state space is 

- i i 
e(oo) = 1 - yss = 1 - CV = 1 + CA ~ B (7.96) 

Ramp Inputs. For unit ramp inputs, r = t, a steady-state solution for x is 

Xse — 

v2t + w2 
= Vr + W (7.97) 

Vnt+Wa. 

where V,- and Wt are constants. Hence, 

V2 
Xec — = v (7.98) 

Vn. 
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Substituting r = t along with Eqs. (7.97) and (7.98) into Eqs. (7.84) yields 

V = A(Vf+ W)+Br (7.99a) 

yss = C(Vf + W) (7.99b) 

In order to balance Eq. (7.99a), we equate the matrix coefficients of t, AV = —B, or 
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V = -A _ 1 B 

Equating constant terms in Eq. (7.99a), we have AW = V, or 

W = A_1V 

Substituting Eqs. (7.100) and (7.101) into (7.99b) yields 

yss = C[-A_1Br + A-^-A^B)] = -CJA^B/ + (A^ffi] 

The steady-state error is therefore 

-h - 1 \ 2 , e(oo) = lim (t - yss) = lim [(1 + CA_1B)f + C(A_1)^B] 
t—'00 t—*00 

(7.100) 

(7.101) 

(7.102) 

(7.103) 

Notice that in order to use this method, A- 1 must exist. That is, detA ^ 0. 
We now demonstrate the use of Eqs. (7.96) and (7.103) to find the steady-state 

error for step and ramp inputs. 

Example 7.14 

Steady-State Error Using Input Substitution 

PROBLEM: Evaluate the steady-state error for the system described by the three 
equations in Eq. (7.90) for unit step and unit ramp inputs. Use input substitution. 

SOLUTION: For a unit step input, the steady-state error given by Eq. (7.96) is 

e(oo) = 1 + CA_1B = 1 - 0.2 = 0.8 (7.104) 

where C, A, and B are as follows: 

- 5 

0 

20 

1 01 

- 2 1 

-10 1_ 

; B = 
"°1 
0 

. 1 . 

A = 

For a ramp input, using Eq. (7.103), we have 

C = [- l 1 0 (7.105) 

- l \ 2 i e(oo) = [ l i m K l + C A - ^ + CtA-'rB] = lim (0.8f + 0.08) = oo (7.106) 
t—'DO /—>0O 
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WileyPLUS 

Control Solutions 

Skill-Asse isment Exercise 7.7 

PROBLEM: Find tr 3 steady-state error for a step input given the system repre­
sented in state spac e below. Calculate the steady-state error using both the final 
value theorem and input substitution methods. 

k = 
0 1 

-3 - 6 
B = C = f l 1 

ANSWER: 

eStep(oo) = r 

The complete solul on is at www.wiley.com/college/nise. 

In this chaptt r, we covered the evaluation of steady-state error for systems 
represented by transfer functions as well as systems represented in state space. For 
systems represented in state space, two methods were presented: (1) final value 
theorem and (2) input substitution. 

Case Studies 

Antenna Control: Steady-State Error Design via Gain 
This chapter showed how to find steady-state errors for step, ramp, and parabolic 
inputs to a closed-loop feedback control system. We also learned how to evaluate 
the gain to meet a steady-state error requirement. This ongoing case study uses our 
antenna azimuth position control system to summarize the concepts. 

PROBLEM: For the antenna azimuth position control system shown on the front 
endpapers, Configuration 1, 

a. Find the steady-state error in terms of gain, K, for step, ramp, and parabolic 
inputs. 

b. Find the value of gain, K, to yield a 10% error in the steady state. 

SOLUTION: 

a. The simplified block diagram for the system is shown on the front endpapers. 
The steady-state error is given by 

sR(s) 
e(oo) = l\msE(s) = lim-—^-^-

K ' 5-0 W tf-41 + G(s) 
(7.107) 

From the block diagram, after pushing the potentiometer to the right past the 
summing junction, the equivalent forward transfer function is 

6.63K 
K) 5(5 + 1.71)(5 + 100) 

(7.108) 

http://www.wiley.com/college/nise
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To find the steady-state error for a step input, use R(s) — 1/s along with 
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(oo) = 0. 

To find the steady-state error for a ramp input, use R(s) — 1/s2 along with 
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(oo) = 25.79/K. 

To find the steady-state error for a parabolic input, use R(s) = 1/s3 along with 
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(oo) = oo. 

b. Since the system is Type 1, a 10% error in the steady-state must refer to a ramp 
input. This is the only input that yields a finite, nonzero error. Hence, for a unit 
m m p i n p U t ' ' - (1.71)(100) 

e(oo) = o.i = -L = 
6.63# 

25.79 
K 

(7.109) 

from which K = 257.9. You should verify that the value of K is within the range of 
gains that ensures system stability. In the antenna control case study in the last 
chapter, the range of gain for stability was found to be 0 < K < 2623.29. Hence, the 
system is stable for a gain of 257.9. 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives: Referring to the antenna azimuth position control system shown on the 
front endpapers, Configuration 2, do the following: 

a. Find the steady-state errors in terms of gain, K, for step, ramp, and parabolic 
inputs. 

b. Find the value of gain, K, to yield a 20% error in the steady state. 

Video Laser Disc Recorder: Steady-State Error 
Design via Gain 

As a second case study, let us look at a video laser disc focusing system for recording. 

PROBLEM: In order to record on a video laser disc, a 0.5^m laser spot must be 
focused on the recording medium to burn pits that represent the program material. 
The small laser spot requires that the focusing lens be positioned to an accuracy of 
±0.tfym.. A model of the feedback control system for the focusing lens is shown in 
Figure 7.22. 

The detector detects the distance between the focusing lens and the video disc by 
measuring the degree of focus as shown in Figure 7.23(a). Laser light reflected from 
the disc, D, is split by beam splitters B\ and Bi and focused behind aperture A. The 
f emainder is reflected by the mirror and focuses in front of aperture A. The amount 
of light of each beam that passes through the aperture depends on how far the 
beam's focal point is from the aperture. Each side of the split photodiode, P, 
measures the intensity of each beam. Thus, as the disc's distance from the recording 

Desired 

position + ^ 

. 

Detector 

0.12 

Filter 

Kjfa + 800) 

(s + 40,000) 

Power 
amplifier 

K2 

Motor & 
lens 

AT3 

s 2 

Actual 

position 

FIGURE 7.22 Video laser disc recording: control system for focusing write beam 
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Mirror 

P, split 
photodiode 

£,,, condensing 
lens 

D-Disc 
Bx, polarizing 
beam splitter L}, recording 

objective lens 

Differential 
voltage 

A 

0.6 

-0.6 

_̂ Distance from 
5 nominal focus 

(*) 
FIGURE 7.23 Video disc laser recording: a. focus detector optics; b. linearized transfer 
function for focus detector 

objective lens changes, so does the focal point of each beam. As a result, the rela­
tive voltage detected by each part of the split photodiode changes. When the beam 
is out of focus, one side of the photodiode outputs a larger voltage. When the beam 
is in focus, the voltage outputs from both sides of the photodiode are equal. 

A simplified model for the detector is a straight line relating the differential voltage 
output from the two elements to the distance of the laser disc from nominal focus. A 
linearized plot of the detector input-output relationship is shown in Figure 7.23(b) 
(Isailovic, 1985). Assume that a warp on the disc yields a worst-case disturbance in the 
focus of 10r2/zm. Find the value of KiK2K3 in order to meet the focusing accuracy 
required by the system. 
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SOLUTION: Since the system is Type 2, it can respond to parabolic inputs with finite 
error. We can assume that the disturbance has the same effect as an input of 
10r2/U.m. The Laplace transform of 10/2 is 20/.?3, or 20 units greater than the unit 
acceleration used to derive the general equation of the error for a parabolic input. 
Thus, e(oo) = 2QIKa. But Ka = \ims2G{s). 

s-*0 

From Figure 7.22, Ka = 0.0024KiK2K3. Also, from the problem statement, the 
error must be no greater than 0.1/xm. Hence, e(oo) = 8333.33/^1^2^3 = 0.1. Thus, 
K1K2K3 > 83333.3, and the system is stable. 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives: Given the video laser disc recording system whose block diagram is 
shown in Figure 7.24, do the following: 

a. If the focusing lens needs to be positioned to an accuracy of ±0.005/xm, find the 
value of KiK2K3 if the warp on the disc yields a worst-case disturbance in the 
focus of I5t2fim. 

b. Use the Routh-Hurwitz criterion to show that the system is stable when the 
conditions of a. are met. 

c. Use MATLAB to show that the system is stable when the condi­
tions of a. are met. 

Desired 

position + ,. 

— 1 

?\ 
9 

Detector 

0.2 

Filter 

K}(s + 600) 

(s + 20,000) 

Power Motor & 
amplifier lens A , c l u a l 

K2 
*3 

5 2 

position 

MATLA& 

FIGURE 7.24 Video laser disc recording focusing system 

^ Summary^ 
This chapter covered the analysis and design of feedback control systems for steady-
state errors. The steady-state errors studied resulted strictly from the system 
configuration. On the basis of a system configuration and a group of selected 
test signals, namely steps, ramps, and parabolas, we can analyze or design for the 
system's steady-state error performance. The greater the number of pure integra­
tions a system has in the forward path, the higher the degree of accuracy, assuming 
the system is stable. 

The steady-state errors depend upon the type of test input. Applying the final 
value theorem to stable systems, the steady-state error for unit step inputs is 

•W=I+H3B (7U0) 

The steady-state error for ramp inputs of unit velocity is 

1 
e(oo) = IT 

lim.s'G(s) 
(7.111) 
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and for parabolic inputs of unit acceleration, it is 

s—*Q 

The terms taken to the limit in Eqs. (7.110) through (7.112) are called static 
error constants. Beginning with Eq. (7.110), the terms in the denominator taken to 
the limit are called the position constant, velocity constant, and acceleration constant, 
respectively. The static error constants are the steady-state error specifications for 
control systems. By specifying a static error constant, one is stating the number of 
pure integrations in the forward path, the test signal used, and the expected steady-
state error. 

Another definition covered in this chapter was that of system type. The system 
type is the number of pure integrations in the forward path, assuming a unity 
feedback system. Increasing the system type decreases the steady-state error as long 
as the system remains stable. 

Since the steady-state error is, for the most part, inversely proportional to the 
static error constant, the larger the static error constant, the smaller the steady-state 
error. Increasing system gain increases the static error constant. Thus, in general, 
increasing system gain decreases the steady-state error as long as the system remains 
stable. 

Nonunity feedback systems were handled by deriving an equivalent unity 
feedback system whose steady-state error characteristics followed all previous 
development. The method was restricted to systems where input and output units 
are the same. 

We also saw how feedback decreases a system's steady-state error caused by 
disturbances. With feedback, the effect of a disturbance can be reduced by system 
gain adjustments. 

Finally, for systems represented in state space, we calculated the steady-state 
error using the final value theorem and input substitution methods. 

In the next chapter, we will examine the root locus, a powerful tool for the 
analysis and design of control systems. 

i 

¢^ Review Questions ^ 
1. Name two sources of steady-state errors. 
2. A position control, tracking with a constant difference in velocity, would yield 

how much position error in the steady state? 
3. Name the test inputs used to evaluate steady-state error. 
4. How many integrations in the forward path are required in order for there to be 

zero steady-state error for each of the test inputs listed in Question 3? 
5. Increasing system gain has what effect upon the steady-state error? 
6. For a step input, the steady-state error is approximately the reciprocal of the 

static error constant if what condition holds true? 
7. What is the exact relationship between the static error constants and the steady-

state errors for ramp and parabolic inputs? 
8. What information is contained in the specification Kp = 10,000? 
9. Define system type. 
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10. The forward transfer function of a control system has three poles at 
- 1 , - 2 , and - 3 . What is the system type? 

11. What effect does feedback have upon disturbances? 

12. For a step input disturbance at the input to the plant, describe the effect of 
controller and plant gain upon minimizing the effect of the disturbance. 

13. Is the forward-path actuating signal the system error if the system has nonunity 
feedback? 

14. How are nonunity feedback systems analyzed and designed for steady-state 
errors? 

15. Define, in words, sensitivity and describe the goal of feedback-control-system 
engineering as it applies to sensitivity. 

16. Name two methods for calculating the steady-state error for systems represented 
in state space. 

Problems 
1. For the unity feedback system shown in wileyPius 

Figure P7.1, where ¢ 3 2 3 

450(5 + 8)(5 + 12)(5 + 15) Conlfo1 Solutions 

Gis) = s(s + 38)(52 + 2s + 28) 

find the steady-state errors for the following test inputs: 
25w(r), 31tu{t), 47t2u(t). [Section: 7.2] 

R(s)+sc > E(s) 
G(s) 

C(s) 

FIGURE P7.1 

2. Figure P7.2 shows the ramp input r(t) and the output 
c(t) of a system. Assuming the output's steady state 
can be approximated by a ramp, find [Section: 7.1] 

a. the steady-state error; 

b. the steady-state error if the input becomes 
r(t) = tu{t). 

**• /(sec) 

FIGURE P7.2 

3. For the unity feedback system shown in Figure P7.1, 
where 

G(s) = 
60(5 + 3)(5 + 4)(5 + 8) 

52(5+ 6)(5+ 17) 

find the steady-state error if the input is S0t2u(t). 
[Section: 7.2] 

4. For the system shown in Figure P7.3, what steady-
state error can be expected for the following test 
inputs: \5u(t), 15ta(f), 15t2u{t). [Section: 7.2] 

*»tf9\ + / 0 \ 
yy K y s 

45 

tfi* -
*s i + 3 

3 

C(s) 

FIGURE P7.3 

For the unity feedback system shown in Figure P7.1, 
where 

G(s) = 
500 

(5+ 24)(52+ 85+ 14) 

find the steady-state error for inputs of 30u(t), 10tu(t), 
and 81t2u(t). [Section: 7.3] 

6. An input of 25t3u(t) is applied to the input of a Type 
3 unity feedback system, as shown in Figure P7.1, 
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where 

G(s) = 
210(5 + 4)(5 + 6)(5 + 11)(5 + 13) 

s3{s + 7)(5 + 14)(5 +19) 

Find the steady-state error in position. [Section: 7.3] 
7. The steady-state error in velocity of a wileyPLUS 

system is defined to be EVJim 
rdr _ dc" 
dt dt 

where r is the system input, and c is the system 
output. Find the steady-state error in velocity for an 
input of t"u(t) to a unity feedback system with a 
forward transfer function of [Section: 7.2] 

100(5+1)(5 + 2) 
{) 52(5 + 3)(5 + 10) 

8. What is the steady-state error for a step input of 15 
units applied to the unity feedback system of Figure 
P7.1, where [Section: 7.3] 

1020(5 + 13)(5 + 26)(5 + 33) 
G{l) = (5 + 65)(5 + 75)(5 + 91) 

9. A system has Kp — 4. What steady-state error can be 
expected for inputs of 70u(f) and70to(f)? [Section7.3] 

10. For the unity feedback system shown in Figure P7.1, 
where [Section: 7.3] 

5000 
G{S) = ^75) 

a. What is the expected percent overshoot for a unit 
step input? 

b. What is the settling time for a unit step input? 
c. What is the steady-state error for an input of 5w(f)? 
d. Whatisthesteady-stateerrorforaninputof5m(r)? 
e. What is the steady-state error for an input 

of5r2«(f)? 

11. Given the unity feedback system shown in Figure 
P7.1, where 

G(s) = 
100500(5 + 5)(5 + 14)(5 + 23) 

s(s + 27)(5 + a)(5 + 33) 

find the value of a to yield a Kv = 25000. [Section: 7.4] 
12. For the unity feedback system of Figure 

P7.1, where 
K(5+ 2)(5+ 4)(5+ 6) 

{> 52(5 + 5)(5 + 7) 
find the value of K to yield a static error constant of 
10,000. [Section: 7.4] 

13. For the system shown in Figure P7.4, [Section: 7.3] 
a. Find Kp, K^ and Ka. 
b. Find the steady-state error for an input of 50«(r), 

50m(0, and 50t2u(t). 
c. State the system type. 

Control Solutions R{s) + / 

_. ~~ .̂ 

5 

s(s+\)(s + 2) 

(s + 3) 

C(s) 

FIGURE P7.4 

14. A Type 3 unity feedback system has r{t) — lOr3 

applied to its input. Find the steady-state position 
error for this input if the forward transfer fun ction is 
[Section: 7.3] 

_ 1030(52 + 85 + 23)(52 + 215 + U) 
{S)~ 5̂ (5 + 6)(5+13) 

15. Find the system type for the system of Figure P7.5. 
[Section: 7.3] 

R(s) +x 100(5 + 2) 

s(s + 5) 

10 — 

1000 
s 

C(s) 

FIGURE P7.5 

16. What are the restrictions on the feedforward trans­
fer function ¢2(5) in the system of Figure P7.6 to 
obtain zero steady-state error for step iniDuts if: 
[Section: 7.3] 

a. G\(s) is a Type 0 transfer function; 
b. G\(s) is a Type 1 transfer function; 
c. Gi(s) is a Type 2 transfer function? 

WileyPLUS 

Control Solutions 

R(s) 

G2(s) 

E(s) 
G](s) ^ g ) ^ - ^ - . ,+3) 

C(5) 

FIGURE P7.6 
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17. The steady-state error is defined to be the difference in 
position between input and output as time approaches 
infinity. Let us define a steady-state velocity error, 
which is the difference in velocity between input 
and output. Derive an expression for the error in 
velocity, e(oo) = r(oo) — c(oo), and complete Table 
P7.1 for the error in velocity. [Sections: 7.2, 7.3] 

21. 

In
pu

t 

TABLE P7.1 

Step 

Ramp 

Parabola 

Type 

0 1 2 

WileyPLUS 

CB3J 
Control Solutions 

18. For the system shown in Figure P7.7, 
[Section: 7.4] 

a. What value of K will yield a 
steady-state error in position of 0.01 for an input 
of (1/10)/? 

b. What is the Kv for the value of K found in Part a? 

c. What is the minimum possible steady-state posi­
tion error for the input given in Part a? 

™±£ A E{s\ 
9 * 

K(s + 7) 
s(s + 5)(s + 8)(^ +12) 

C(s) 

FIGURE P7.7 

19. Given the unity feedback system of Figure P7.1, where 

K(s + a) 
^^ 5(5 + 2)(5+13) 

find the value of Ka so that a ramp input of slope 40 
will yield an error of 0.006 in the steady state when 
compared to the output. [Section: 7.4] 

20. Given the system of Figure P7.8, design the value of 
K so that for an input of 100fw(f), there will be a 0.01 
error in the steady state. [Section: 7.4] 

Find the value of K for the unity feedback system 
shown in Figure P7.1, where 

G(s) = 
£(5 + 3) 

22. 

s2(s + 7) 

if the input is 10t2u(t), and the desired steady-state 
error is 0.061 for this input. [Section: 7.4] 

The unity feedback system of Figure P7.1, where 
WileyPLUS 

G(s) = 
K{s2 + 35 + 30) 

5"(5 + 5) Control Solutions 

23. 

is to have 1/6000 error between an input of 10ta(r) 
and the output in the steady state. [Section: 7.4] 

a. Find K and n to meet the specification. 

b. What are Kp, K„ and Kal 

For the unity feedback system of Figure P7.1, where 
[Section: 7.3] 

G(s) = 
K{s2 + 65 + 6) 

(5 + 5)2(5 + 3) 

24. 

a. Find the system type. 

b. What error can be expected for an input of 
12w(f)? 

c. What error can be expected for an input of 
12ta(f)? 

For the unity feedback system of Figure P7.1, where 

£(5 + 13)(5+19) 
G(5) = 

5(5 + 6)(5 + 9)(5 + 22) 

25. 

find the value of K to yield a steady-state error of 0.4 
for a ramp input of 27tu(t). [Section: 7.4] 

Given the unity feedback system of Figure P7.1, 
where 

G(s) = 
K{s + 6) 

(5+ 2)(52+ 105 + 29) 

R(s) tc 
' \ 

^ ) P 

H 
\ 

V 

K 
s(s+\) 

IPs 
K 

•+ 1 

m 26. 

find the value of K to yield a steady-state error of 
8%. [Section: 7.4] 

For the unity feedback system of Figure P7.1, where 

G » « 
K 

5(5 + 4)(5 + 8)(5 + 10) 

FIGURE P7.8 

find the minimum possible steady-state position 
error if a unit ramp is applied. What places the 
constraint upon the error? 
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27. The unity feedback system of Figure P7.1, wileypms 
where O E J 

Control Solutions 

G(s) = 
{s + py 

is to be designed to meet the following specifica­
tions: steady-state error for a unit step input = 0.1; 
damping ratio = 0.5; natural frequency — \/l0. Find 
K, a, and £. [Section: 7.4] 

28. A second-order, unity feedback system is to follow a 
ramp input with the following specifications: 
the steady-state output position shall differ from 
the input position by 0.01 of the input velocity; the 
natural frequency of the closed-loop system shall be 
10 rad/s. Find the following: 

a. The system type 

b. The exact expression for the forward-path trans­
fer function 

c. The closed-loop system's damping ratio 

29. The unity feedback system of Figure P7.1, where 

G<s) = 
K(s 

*(* + « 
is to be designed to meet the following require­
ments: The steady-state position error for a unit 
ramp input equals 1/10; the closed-loop poles will be 
located at - 1 ± ; 1 . Find K, a, and /3 in order to meet 
the specifications. [Section: 7.4] 

30. Given the unity feedback control system of Figure 
P7.1, where 

K ' s"(s + a) 

find the values of n, K, and a in order to meet 
specifications of 12% overshoot and Kv = 110. 
[Section: 7.4] 

31. Given the unity feedback control system of Figure 
P7.1, where 

find the following: [Section: 7.4] 

a. K and a to yield Kv = 1000 and a 20% overshoot 

b. K and a to yield a 1 % error in the steady state 
and a 10% overshoot 

32. Given the system in Figure P7.9, find the following: 
[Section: 7.3] 

a. The closed-loop transfer function 

b. The system type 

c. The steady-state error for an input of 5u(t) 

d. The steady-state error for an input of 5tu(t) 

e. Discuss the validity of your answers to Parts c 
and d. 

*» i<*+xx. 
k 
— 

r * 
i 

i ' 2 ( i -+D 

i 
s 

1 

52(.V + 3) 

C(s) 

FIGURE P7.9 

33. Repeat Problem 32 for the system shown in Figure 
P7.10. [Section: 7.3] 

R(s) +/0* -
- > 

2 
+ x—>. 

— 

10 
.V(*+1)(J- + 3)(5 ' + 4 ) 

Is 

C(s) 

FIGURE P7.10 

34. For the system shown in Figure MATLAB 

P 7 . l l , u se MATLAB t o find t h e 
following: [Section: 7.3] 

a. The system type 

b. Kp, Kv, and Ka 

c. The steady-state error for inputs of 
100u(t), 100tu(t), andl00t2uft; 

Ms) + (5 + 9) 

s(#+ 6)(.5+ 12)(5+ 14) 

6(s + 9)(s + 17) 

(5+12)(5 + 32)(5 + 68) 

C(s) 

13 

5 + 7 

FIGURE P7.11 

35. The system of Figure P7.12 is to have 
the following specifications: Kv = 
10; f = 0.5. Find the values of Ki and 
Kf required for the specifications of the 
system to be met. [Section: 7.4] 

WileyPLUS 

Control Solutions 

P7.ll
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(5) + ( ®-* * -̂ a— 10 
s(s+l) 

W 

K,.v 

FIGURE P7.12 

36. The transfer function from elevator deflection to 
altitude change in a Tower Trainer 60 Unmanned 
Aerial Vehicle is 

m 
P(s) = 

-34.1653 - 144.452 + 7047^ + 557.2 
55 + 13.1854 + 95.9353 + 14.6152 + 31.945 

An autopilot is built around the aircraft as shown in 
Figure P7.13, with F(s) = H{s) = 1 and 

_ 0.00842(5 + 7.895)(52 + 0.1085 + 0.3393) 
^ ~ (5 + 0.07895) (52 + 45 + 8) 

(Barkana, 2005). The steady-state error for a ramp 
input in this system is ess = 25. Find the slope of the 
ramp input. 

R(s) 

m +<&- GOO P(s) as) 

His) 

FIGURE P7.13 

37. A block diagram representing the Ktesibios' water 
clock discussed in Section 1.2 is shown in Chapter 5, 
Problem 58, Figure P5.38(6) (Lepschy, 1992), 

a. Find the system's type. 

b. For hT{t) = u{t), find the steady-state value of 
e{t) = hr{t)-hf{t). 

38. Find the total steady-state error due to a unit step 
input and a unit step disturbance in the system of 
Figure P7.14. [Section: 7.5] 

m 
mi6?) * 

yy 

i 

5 + 5 - ^ -
100 

5 + 2 
m 

FIGURE P7.14 

39. Design the values of K\ and # 2 in the system of 
Figure P7.15 to meet the following specifications: 
Steady-state error component due to a unit step 
disturbance is -0.000012; steady-state error compo­
nent due to a unit ramp input is 0.003. [Section: 7.5] 

D(s) 

mt&\ . 
*w * L_ 

£,(5 +2) 

(s + 3) -4— *2 
s(s + 4) 

as) 

FIGURE P7.15 

40. In Figure P7.16, let G(s) = 5 and P{s) = 
7 

5 + 2 
a. Calculate the steady-state error due to a com-

3 
mand input R(s) = - with D(s) = 0. 

s 
b. Verify the r e s u l t of Par t a Simulink 

using Simulink. 

c. Calculate the steady-state error due to a distur­

bance input D(s) = — with R(s) = 0. 

d. Verify the result of Part c .. .. . 
J Simulink 

using Simulink . ^ E ^ P 
e. Calculate the total steady-state error due to a 

3 
command input R(s) = - and a disturbance 

D(s) = — applied simultaneously. 

f. Verify the result of Part e 
Simulink 

using Simulink. 
D(s) 

m \ i&h G(^ -2^8)+ P(s) as) 

FIGURE P7.16 

41. Derive Eq. (7.72) in the text, the final value of the 
actuating signal for nonunity feedback systems. 
[Section: 7.6] 

42. For each of the systems shown in Figure P7.17, find 
the following: [Section: 7.6] 

a. The system type 

b. The appropriate static error constant 

c. The input waveform to yield a constant error 
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d. The steady-state error for a unit input of the 
waveform found in Part c 

e. The steady-state value of the actuating signal 

R(s) + 

mi6 
— , : 

10(5+10) 

s(s + 2) 

(s + 4) 

C(s) 

System 1 

mi* 
— i 

2\ » 
9 * 

10(5+10) 
5(5 + 2) 

(5+1) 

C{s) 

System 2 
FIGURE P7.17 Closed-loop systems with nonunity feedback 

43. For each of the systems shown in Figure P7.18, find 
the appropriate static error constant as well as the 
steady-state error, r(oo) - c(oo), for unit step, ramp, 
and parabolic inputs. [Section: 7.6] 

R(s) 
~ * l . 

P 
5+4 

(5+3)(5+7) 

10 

C(s) 

System 1 

m 7\ . 
O • 

5+4 
(5+3)(5+7) 

5 

10 
C(s) 

<g>~ ( J+ l ) 
^(5 + 2) 

C(s) 

K 

FIGURE P7.19 

45. For the system shown in Figure P7.20, [Section: 7.6] 

a. What is the system type? 

b. What is the appropriate static error constant? 

c. What is the value of the appropriate static error 
constant? 

d. What is the steady-state error for a unit step 
input? 

R(s) t& #(5+1) 

52(5 + 3) 

(s + 4) 
(5 + 2) 

C(5) 

M 

MATLAB 

FIGURE P7.20 

46. For the system shown in Figure 
P7.21, use MATLAB to find the 
following for K = 10, and 
K= 106 : [Section: 7.6] 

a. The s y s t e m t y p e 

b. Kp, Kv, a n d Ka 

c. The s t e a d y - s t a t e e r r o r f o r i n p u t s of 
3 0 u ( t ) , 3 0 t u ( t ) , a n d 3 0 t 2 u ( t ) 

R(s) + <8K 
#(5+1) (5 + 2) 

52(5 + 4)(5 + 5)(5 + 6) 

C(5) 

(J + 6) 

(5 + 8)(5 + 9) 

System 2 

FIGURE P7.18 

44. Given the system shown in Figure P7.19, W'leyPLUS 
find the following: [Section: 7.6] t M £ f 
a. The system type control solutions 

b. The value of K to yield 0.1% error in the steady 
state 

FIGURE P7.21 

47. A dynamic voltage restorer (DVR) is a device that is 
connected in series to a power supply. It continu­
ously monitors the voltage delivered to the load, 
and compensates voltage sags by applying the nec­
essary extra voltage to maintain the load voltage 
constant. 

In the model shown in Figure P7.22, ur represents 
the desired reference voltage, u0 is the output 
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voltage, and Z/, is the load impedance. All other 
parameters are internal to the DVR (Lam, 2004). 

a. Assuming ZL = -^-, and 0 ^ 1, find the system's 
type. SCL 

b. Find the steady-state error to a unit step input as 
a function of ft. 

"- —^H^: 

FIGURE P7.22 DVR Model 

48. Derive Eq. (7.69) in the text. [Section: 7.6] 
49. Given the system shown in Figure P7.23, do the 

following: [Section: 7.6] 
a. Derive the expression for the error, 

E(s) = R(s) - C(s), in terms of R(s) and D(s). 
b. Derive the steady-state error, e(oo), if R(s) and 

D(s) are unit step functions. 
c. Determine the attributes of Gi(s), G2(s), and 

H(s) necessary for the steady-state error to 
become zero. 

•wjo, -
-

GM —»• G2(s) 
C(s) 

FIGURE P7.23 System with input and disturbance 

50. Given the system shown in Figure P7.24, find the 
sensitivity of the steady-state error to parameter a. 
Assume a step input. Plot the sensitivity as a func­
tion of parameter a. [Section: 7.7] 

*W+/$> -
*s 

K 
s(s+ l)(s + 4) 

(s + a) 

0 » , 

51. a. Show that the sensitivity to plant changes in the 
system of Figure P7.13 is 

-££!_ _L 
T:P~T8P~1 + L(s) 

where L(s) = G(s)P(s)H{s) and 
CU) F(s)L(s) 

T(s) = 
R{s) 1+R(s)' 

T(s) 
b. Show that STP(S) + -=TT = 1 for all values of s. 

F(s) 

52. In Figure P7.13, P(s) =-, 

T(s) = UK C{s)= 

R(s) (s + l){s + 2)(s2 + 5s + 14)' 

and 
P8T 

•JT-.P = 7 ? T S = 
S2 + 55 

T8P s2 + 5s + W 

a. Find F(s) and G(s). 
b. Find the value of K that will result in zero steady-

state error for a unit step input. 

53. For the system shown in Figure P7.25, Wileypws 
find the sensitivity of the steady-state d J J J 
error for changes in Ki and in K2, when coniroi solutions 
K\ = 100 and &% = 0.1. Assume step inputs for both 
the input and the disturbance. [Section: 7.7] 

D(s) 

R(s) +, 
Ki -*&- £ C(s) 

s+\ 

FIGURE P7.24 

FIGURE P7.25 System with input and disturbance 

54. Given the block diagram of the active suspension 
system shown in Figure P5.43 (Lin, 1997): 
a. Find the transfer function from a road distur­

bance r to the error signal e. 
b. Use the transfer function in Part a to find the steady-

state value of e for a unit step road disturbance. 
c. Use the transfer function in Part a to find the steady-

state value of e for a unit ramp road disturbance. 
d. From your results in Parts b and c, what is the 

system's type for el 

55. For each of the following closed-loop systems, find 
the steady-state error for unit step and unit ramp 
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inputs. Use both the final value theorem and input 
substitution methods. [Section: 7.8] 

a. x = 

b. x = 

C. X 

- 5 
- 3 
- 1 

0 
-5 
- 1 
- 9 

1 
- 3 

- 4 
-10 

1 
1 

- 9 
0 

- 5 
0 

- 2 

-2] 
0 

- 5 J 
01 
7 

oJ 

x + 

x + 
roi 
0 

L i J 

r i i 
l 

LoJ 

n 

- 1 1 
- 2 
- 5 

x + 
[21 
3 

[5] 

r;y = [-l 2 1 

0 Olx 

r;y = [l -2 4]x 

56. An automobile guidance system yields an actual 
output distance, X(s), for a desired input distance, 
Xe(s), as shown in Figure P7.26(a). Any difference, 
Xe(s), between the commanded distance and the 
actual distance is converted into a velocity com­
mand, Vc(s), by the controller and applied to the 
vehicle accelerator. The vehicle responds to the 
velocity command with a velocity, V(s), and a dis­
placement, X(s), is realized. The velocity control, 
G2(s), is itself a closed-loop system, as shown in 
Figure P7.26(6). Here the difference, Ve(s), between 
the commanded velocity, Vc(s), and the actual vehi­
cle velocity, V(s), drives a motor that displaces the 
automobile's accelerator by Yc(s) (Stefani, 1978). 
Find the steady-state error for the velocity control 
loop if the motor and amplifier transfer function 
Gs(s) = K/[s(s + l)]. Assume G^s) to be a first-
order system, where a maximum possible 1-foot 
displacement of the accelerator linkage yields a 
steady-state velocity of 100 miles/hour, with the 
automobile reaching 60 miles/hour in 10 seconds. 

Commanded Distance Velocity 

m^. .*,,.,, 
r 

um V,(.v) <*m VCsi 1 
s 

Actual 

XU) 

(a) 

Accelerator 
Velocity Velocity Motor and Accelerator and Automobile 

command error amplifier displacement automobile velocity 

K,(5) V,-(s) Vels) 
G3(s) G&) 

V(s) 

(b) 

FIGURE P7.26 Automobile guidance system: a. displacement 
control system; b. velocity control loop 

57. A simplified block diagram of a meter used to measure 
oxygen concentration is shown in Figure P7.27. The 
meter uses the paramagnetic properties of a stream of 

Oxygen 
concentration 

R(s) 
ti 

Body 
torque 

+ /< >sr(s)J 

Body 
displacement 

1 

Js2 + Ds 

em 

«3 

K2 

Voltage 
out 

C(.0 

FIGURE P7.27 Block diagram of a paramagnetic oxygen 
analyzer 

oxygen. A small body is placed in a stream of oxygen 
whose concentration is R(s), and it is subjected to a 
magnetic field. The torque on the body, KiR(s), due to 
the magnetic field is a function of the concentration 
of the oxygen. The displacement of the body, 0(s), is 
detected, and a voltage, C(s), is developed propor­
tional to the displacement. This voltage is used to 
develop an electrostatic field that places a torque, 
K$C(s), on the body opposite to that developed by 
the magnetic field. When the body comes to rest, the 
output voltage represents the strength of the magnetic 
torque, which in turn is related to the concentration 
of the oxygen (Chesmond, 1982). Find the steady-
state error between the output voltage, representing 
oxygen concentration, and the input oxygen con­
centration. How would you reduce the error to zero? 

58. A space station, shown in Figure P7.28(a), will keep 
its solar arrays facing the Sun. If we assume that 
the simplified block diagram of Figure PI.28(b) 
represents the solar tracking control system that 
will be used to rotate the array via rotary joints 
called solar alpha rotary joints (Figure P7.28(c)). 
Find {Kumar, 1992) 

a. The steady-state error for step commands 
b. The steady-state error for ramp commands 
c. The steady-state error for parabolic commands 
d. The range of Kc/J to make the system stable 

Solar alpha 
rotary joint 

Z (Nadir) 

(a) 
FIGURE P7.28 A space station: a. configuration 
(© 1992 AIAA); (figure continues) 

Solar arrays 
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Commanded 
joint angle 

0,1 '^®~ 

Velocity Gain and dynamics Actual 
controller | j joint angl 

(b) 

Bearing race and 
trundle bearings 

Inner shear Outer shear 
plate \ \ / plate 

Motor and 
pinion 

\ 
Bull gear and 

trundle bearings 
O 

FIGURE P7.28 {Continued) b. simplified block diagram; 
c. alpha joint drive train and control system (© 1992 AIAA) 

59. A simplified model of the steering of a four-wheel 
drive vehicle is shown in Figure P7.29. 

In this block diagram, the output r is the vehicle's 
yaw rate, while 5/ and 8r are the steering angles of the 
front and rear tires respectively. In this model, 

s 

r*(s) = 300 + 0.8 

Or(s) = 

io + 1 

h3s + bi 

,Gf(s) = 
h\s + hi 

s2 4- a\s + «2 ' 

ais + a-i 

and K(s) is a controller to be designed. (Yin, 2007). 

K 
u(Sr)_ 

FIGURE P7.29 Steering model for a four-wheel drive vehicle 
(© 2007 IEEE) 

a. Assuming a step input for <5/, find the minimum 
system type of the controller K(s) necessary so 
that in steady-state the error as defined by the 
signal e in Figure P7.29 is zero if at all possible. 

b. Assuming a step input for 6y, find the system type 
of the controller K(s) necessary so that in steady 
state the error as defined by 6/(00) — r(oo) is zero 
if at all possible. 

DESIGN PROBLEMS 
60. The following specification applies to a position con­

trol: Kv = 10. On hand is an amplifier with a variable 
gain, K2, with which to drive a motor. Two one-turn 
pots to convert shaft position into voltage are also 
available, where ±3n volts are placed across the pots. 
A motor is available whose transfer function is 

0m(s) = K 
Ea{s) s(s + a) 

where 0m (s) is the motor armature position and Ea(s) 
is the armature voltage. The components are inter­
connected as shown in Figure P7.30. 

Pot Amplifier Motor 

Outboard 

*• K\ 
- n 

K2 

K| 

K 
s(s + a) 

Cis) 

Pot 

FIGURE P7.30 Position control system 

The transfer function of the motor is found 
experimentally as follows. The motor and load are 
driven separately by applying a large, short square 
wave (a unit impulse) to the armature. An oscillo­
graph of the response shows that the motor reached 
63% of its final output value 0.5 second after appli­
cation of the impulse. Furthermore, with 10 volts dc 
applied to the armature, the constant output speed 
was 100 rad/s. Draw the completed block diagram of 
the system, specifying the transfer function of each 
component of the block diagram. 

61. A boat is circling a ship that is using a tracking radar. 
The speed of the boat is 20 knots, and it is circling 
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the ship at a distance of 1 nautical mile, as shown in 
Figure P7.31(a). A simplified model of the tracking 
system is shown in Figure P7.31 (b). Find the value of 
K so that the boat is kept in the center of the radar 
beam with no more than 0.1 degree error. 

Boat 

Boat's trajectory 

e M) + 0..(.v) K 
5(5 + 4) 

ea(s) 

(b) 

FIGURE P7.31 Boat tracked by ship's radar: a. physical 
arrangement; b. block diagram of tracking system 

62. Figure P7.32 shows a simplified block diagram of a 
pilot in a loop to control the roll attitude of an Army 
UH-60A Black Hawk twin-engine helicopter with a 
single main rotor (Hess, 1993). 
a. Find the system type. 

b. The pilot's response determines Kx. Find the 
value of A'I if an appropriate static error constant 
value of 700 is required. 

c. Would a pilot whose K\ is the value found in Part 
b be hired to fly the helicopter? 

Note: In the block diagram GD(s) is a delay of about 
0.154 second and can be represented by a Pade 
approximation of GD(s) = -\s - \2>)/{s -f13). 

63. Motion control, which includes position wileypius 
or force control, is used in robotics and d 2 3 
machining. Force control requires the control solutions 
designer to consider two phases: contact and non-
contact motions. Figure P7.33(a) is a diagram of a 
mechanical system for force control under contact 
motion. A force command, Fcmii(s), is the input to the 
system, while the output, F(s), is the controlled 
contact force. 

In the figure a motor is used as the force actuator. 
The force output from the actuator is applied to the 

ft.*) 

Environment (DgS + Ke) 

(a) 

und<*> +< 

^ 
F(s) 

p-s®- *•! 
(0K,<» 1 

K2 

1 
s 

*e*-rn e 

ft>(.s) 1 
s 

tf(s) 

(*) 
FIGURE P7.33 a. Force control mechanical loop under 
contact motion (© 1996 IEEE); b. block diagram 
(© 1996 IEEE) 

Commanded 
roll angle 

Central nervous system Neuromuscular system 

K< 

- 2 

Vestibular system 

^ R > - GD(s) -|t(g)-t(g>* 100 
s2+14s+100 

5 + 0.2 

Actual 
roll angle 

0„(v) 

(5 + 0.5)(52 + 9.55 + 78) 

FIGURE P7.32 Simplified block diagram of a pilot in a loop (© 1992 AIAA) 
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object through a force sensor. A block diagram rep­
resentation of the system is shown in Figure PI.33(b). 
K2 is velocity feedback used to improve the transient 
response. The loop is actually implemented by an 
electrical loop (not shown) that controls the armature 
current of the motor to yield the desired torque at the 
output. Recall that Tm = Ktia (Ohnishi, 1996). Find 
an expression for the range of K2 to keep the steady-
state force error below 10% for ramp inputs of com­
manded force. 

64. Problem 50 in Chapter 4 describes an open-loop 
swivel controller and plant for an industrial robot. 
The transfer function for the controller and plant is 

= co0{s) = K 
e U Vi{s) (s + 10)(^2 + 4* + 10) 

where co0(s) is the Laplace transform of the robot's 
angular swivel velocity and Vj(s) is the input voltage 
to the controller. Assume Ge(s) is the forward 
transfer function of a velocity control loop with 
an input transducer and sensor, each represented 
by a constant gain of 3 (Schneider, 1992). 

a. Find the value of gain, K, to minimize the steady-
state error between the input commanded angu­
lar swivel velocity and the output actual angular 
swivel velocity. 

b. What is the steady-state error for the value of K 
found in Part a? 

c. For what kind of input does the design in Part a 
apply? 

65. Packet information flow in a router working under 
TCP/IP can be modeled using the linearized transfer 
function . 

Pis)=m= hil 
{) f(s) ( 2N\f 1\ 

where 

C = link capacity (packets/second). 

N= load factor (number of TCP sessions) 

Q = expected queue length 

R = round trip time (second) 

p = probability of a packet drop 

The objective of an active queue management 
(AQM) algorithm is to automatically choose a 
packet-drop probability, p, so that the queue length 
is maintained at a desired level. This system can be 
represented by the block diagram of Figure P7.13 
with the plant model in. the P(s) block, the AQM 
algorithm in the G(s) block, and F(s) = H(s) = 1. 

Several AQM algorithms are available, but one that 
has received special attention in the literature is the 
random early detection (RED) algorithm. This al-

T IS 

gorithm can be approximated with G(s) — , 
s + K 

where L and K are constants (Hollot, 2001). Find the 
value of L required to obtain a 10% steady-state 
error for a unit step input when C = 3750 packets/s, 
N = 50 TCP sessions, I? = 0.1 s, and £ = 0.005. 

66. In Figure P7.16, the plant, P(s) — -3—hcr^r, repre-

sents the dynamics of a robotic manipulator joint. The 
system's output, C(s), is the joint's angular position 
(Low, 2005). The system is controlled in a closed-loop 

configuration as shown with G(s) = Kp H , a 

proportional-plus-integral (PI) controller to be dis­
cussed in Chapter 9. R(s) is the joint's desired angular 
position. D(s) is an external disturbance, possibly 
caused by improper dynamics modeling, Coulomb 
friction, or other external forces acting on the joint. 

a. Find the system's type. 

b. Show that for a step disturbance input, ess = 0 
when K[ ^ 0. 

c. Find the value of Kj that will result in e$$ — 5% 
for a parabolic input. 

d. Using the value of Kj found in Part c, find the 
range of KP for closed-loop stability. 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 

67. High-speed rail pantograph. Problem 21 in Chapter 1 
discusses the active control of a pantograph mecha­
nism for high-speed rail systems. In Problem 79(a), 
Chapter 5, you found the block diagram for the active 
pantograph control system. Use your solution for 
Problem 79(a) in Chapter 5 to perform steady-state 
error analysis and design as follows (O'Connor, 1997): 

a. Find the system type. 

b. Find the value of controller gain, K, that mini­
mizes the steady-state force error. 

c. What is the minimum steady-state force error? 

68. Control of HIV/AIDS. Consider the HIV infection 
model of Problem 68 in Chapter 6 and its block 
diagram in Figure P6.20 (Craig, 2004). 

a. Find the system's type if G(s) is a constant. 

b. It was shown in Problem 68, Chapter 6, that when 
G(s) = K the system will be stable when 
K < 2.04 x 10"4. What value of K will result in 
a unit step input steady-state error of 10%? 
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e. It is suggested that to reduce the steady-state 
error the system's type should be augmented by 

making G(s) = — • Is this a wise choice? What is 
s 

the resulting stability range for K1 
69. Hybrid vehicle. Figure P7.34 shows the block diagram 

of the speed control of an HEV taken from Figure 
P5.54, and rearranged as a unity feedback system 
(Preitl, 2007). Here the system output is, C{s) = 
Kss V(s), the output voltage of the speed sensor/trans­
ducer. 

/?(*). E(s) 
GUs) 

UAs) 0.11 (A+0.6) 

;(.t + O.S173) + 5 (s + 0.6)(s + 0.019 

C(s) 

FIGURE P7.34 

a. Assume the speed controller is given as 
Gsc(s) = Kpsc. Find the gain, Kpsc, that yields 
a steady-state error, eslep(oo) — \%. 

b. Now assume that in order to reduce the steady-
state errorforstepinputs,integrationis added to the 
controller yielding Gsc(s) = KPsc + (Kisc/s) = 
100+ (Klsc/s)). Find the value of the integral 
gain, Kisc, that results in a steady-state error, 
<?ramp(oo) = 2 . 5 % . 

c. In Parts a and b, the HEV was assumed to be driven 
on level ground. Consider the case when, after 
reaching a steady-state speed with a controller 

40 
given by G .̂ (s) = 100 H »the car starts climbing 

o 

up a hill with a gradient angle, a = 5°. For small 
angles sin a = a (in radians) and, hence, when 
reflected to the motor shaft the climbing torque is: 

7\, = 
Fstr mer . mgra 

"— = — a n a = —e— 
hot hot hot 

1590 x 9.8 x 0.3 x 5 
= 83.7Nm. 

4.875 x 57.3 
The block diagram in Figure P7.35 represents the con­
trol system of the HEV rearranged for Part c. 

G2(s) = Equivalent transfer function of the car 

-E(s)=-Kss V(s) TM) 
^ * & 

6.13x1 ( r 3 

s+0.01908 

13.53 ^ 

O + 0.5) 

100J + 40 3 (,i + 0.6) 
( j + 0.5) 

Gj(i) = Transfer function representation 
of torque & speed controllers 

FIGURE P7.35 

In this diagram, the input is Tst(t) = 83.7^(/), corre­
sponding to a = 5°, and the output is the negative error, 
-e{t) = -c{t) = ~Kssv{t), proportional to the change 
in car speed, v(t). Find the steady-state error e(oo) due 
to a step change in the disturbance; e.g., the climbing 
torque, Tst(0 = 83.7 u{t). 

R(s) + 
G(s) 

H{s) 

FIGURE P7.36 

C(s) 

Cyber Exploration Laboratory 
Experiment 7.1 

Objective To verify the effect of input waveform, loop gain, and system type 
upon steady-state errors. 

Minimum Required Software Packages MATLAB, Simulink, and the 
Control System Toolbox 

Prelab 

1. What system types will yield zero steady-state error for step inputs? 
2. What system types will yield zero steady-state error for ramp inputs? 
3. What system types will yield infinite steady-state error for ramp inputs? 
4. What system types will yield zero steady-state error for parabolic inputs? 
5. What system types will yield infinite steady-state error for parabolic inputs? 
6. For the negative feedback system of Figure P7.36, where G(s) = 

— ^ - — - — —• and H(s) = 1, calculate the steady-state error 

in terms of K for the following inputs: 5u(t), 5tu(t), and 5t2u{t). 



7. Repeat Prelab 6 for G(s) = 
#(5 + 6)(5 + 8) 

8. Repeat Prelab 6 for G(s) = , 

Lab 

5(5 + 4)(5 + 7)(5 + 9)(5 + 12) 
K{s + 1)(5 + 6)(5 + 8) 

Cyber Exploration Laboratory 

and H{s) = 1. 

52(5+ 4)(5+ 7)(5+ 9)(5+ 12) 
and H(s) = 1. 

1. Using Simulink, set up the negative feedback system of Prelab 6. Plot on one 
graph the error signal of the system for an input of 5u(t) and K = 50, 500, 1000, 
and 5000. Repeat for inputs of 5tu(t) and 5t2u(t). 

2. Using Simulink, set up the negative feedback system of Prelab 7. Plot on one 
graph the error signal of the system for an input of 5u(t) and K = 50, 500, 1000, 
and 5000. Repeat for inputs of 5tu{t) and 5t2u(t). 

3. Using Simulink, set up the negative feedback system of Prelab 8. Plot on one 
graph the error signal of the system for an input of 5u(t) and K = 200, 400, 800, 
and 1000. Repeat for inputs of 5tu{t) and 5t2u(t). 

Postlab 
1. Use your plots from Lab 1 and compare the expected steady-state errors to those 

calculated in the Prelab. Explain the reasons for any discrepancies. 
2. Use your plots from Lab 2 and compare the expected steady-state errors to those 

calculated in the Prelab. Explain the reasons for any discrepancies. 
3. Use your plots from Lab 3 and compare the expected steady-state errors to those 

calculated in the Prelab. Explain the reasons for any discrepancies. 

Experiment 7.2 

Objective To use the LabVIEW Control Design and Simulation Module for 
analysis of steady-state performance for step and ramp inputs. 

Minimum Required Software Package Lab 
VIEW with the Control Design and Simulation Module 

Prelab You are given the model of a single joint of a 
robotic manipulator shown in Figure P7.37 (Spong, 
2005), where B is the coefficient of viscous friction, 
6d(s) is the desired angle, 6(5) is the output angle, and 
D(s) is the disturbance. We want to track the joint angle 
using a PD controller, which we will study in Chapter 9. 
Assume / = B = 1. Find the step and ramp responses of this system for the following 
combinations of PD gains {KP,KD): (16, 7), (64,15), and (144, 23). 

Lab 

1. Create a LabVIEW VI to simulate the response of this system to a step and a 
ramp inputs, under no-disturbance conditions. Use the functions available in the 
Control Design and Simulation/Control Design palette. 

2. Create a LabVIEW VI using the functions available in the Control Design and 
Simulation/Simulation palette, to track an input set-point of 10 under a disturbance 
ofD = 40. 

Postlab Compare your results with those of the Prelab. What conclusions can you 
draw from the various responses of this system to different inputs and different PD 
parameters? What is the system type? Does the steady-state behavior corroborate the 
theory you learned regarding system type and the steady-state error for various 
inputs? Explain your answer. 

D(s) 
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