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^ Chapter Learning Outcomes J) 
After completing this chapter the student will be able to: 

• Make and interpret a basic Routh table to determine the stability of a system 
(Sections 6.1-6.2) 

• Make and interpret a Routh table where either the first element of a row is zero or an 
entire row is zero (Sections 6.3-6.4) 

• Use a Routh table to determine the stability of a system represented in state space 
(Section 6.5) 

^ Case Study Learning Outcomes^ 
You will be able to demonstrate your knowledge of the chapter objectives with case 
studies as follows: 

• Given the antenna azimuth position control system shown on the front endpapers, 
you will be able to find the range of preamplifier gain to keep the system stable. 

• Given the block diagrams for the UFSS vehicle's pitch and heading control systems on 
the back endpapers, you will be able to determine the range of gain for stability of 
the pitch or heading control system. 
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Chapter 6 Stability 

Introduction 
In Chapter 1, we saw that three requirements enter into the design of a control 
system: transient response, stability, and steady-state errors. Thus far we have 
covered transient response, which we will revisit in Chapter 8. We are now ready 
to discuss the next requirement, stability. 

Stability is the most important system specification. If a system is unstable, 
transient response and steady-state errors are moot points. An unstable system 
cannot be designed for a specific transient response or steady-state error require­
ment. What, then, is stability? There are many definitions for stability, depending 
upon the kind of system or the point of view. In this section, we limit ourselves to 
linear, time-invariant systems. 

In Section 1.5, we discussed that we can control the output of a system if the 
steady-state response consists of only the forced response. But the total response of a 
system is the sum of the forced and natural responses, or 

c(t) = cfotced(t) + ̂ natural (0 (6.1) 

Using these concepts, we present the following definitions of stability, instability, and 
marginal stability: 

A linear, time-invariant system is stable if the natural response approaches zero as 
time approaches infinity. 

A linear, time-invariant system is unstable if the natural response grows without 
bound as time approaches infinity. 

A linear, time-invariant system is marginally stable if the natural response neither 
decays nor grows but remains constant or oscillates as time approaches infinity. 

Thus, the definition of stability implies that only the forced response remains as the 
natural response approaches zero. 

These definitions rely on a description of the natural response. When one is 
looking at the total response, it may be difficult to separate the natural response from 
the forced response. However, we realize that if the input is bounded and the total 
response is not approaching infinity as time approaches infinity, then the natural 
response is obviously not approaching infinity. If the input is unbounded, we see an 
unbounded total response, and we cannot arrive at any conclusion about the stability 
of the system; we cannot tell whether the total response is unbounded because the 
forced response is unbounded or because the natural response is unbounded. Thus, 
our alternate definition of stability, one that regards the total response and implies 
the first definition based upon the natural response, is this: 

A system is stable if every bounded input yields a bounded output. 

We call this statement the bounded-input, bounded-output (BIBO) definition of 
stability. 

Let us now produce an alternate definition for instability based on the total 
response rather than the natural response. We realize that if the input is bounded but 
the total response is unbounded, the system is unstable, since we can conclude that 
the natural response approaches infinity as time approaches infinity. If the input is 
unbounded, we will see an unbounded total response, and we cannot draw any 
conclusion about the stability of the system; we cannot tell whether the total 
response is unbounded because the forced response is unbounded or because the 
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natural response is unbounded. Thus, our alternate definition of instability, one that 
regards the total response, is this: 

A system is unstable if any bounded input yields an unbounded output. 

These definitions help clarify our previous definition of marginal stability, 
which really means that the system is stable for some bounded inputs and unstable 
for others. For example, we will show that if the natural response is undamped, a 
bounded sinusoidal input of the same frequency yields a natural response of growing 
oscillations. Hence, the system appears stable for all bounded inputs except this one 
sinusoid. Thus, marginally stable systems by the natural response definitions are 
included as unstable systems under the BIBO definitions. 

Let us summarize our definitions of stability for linear, time-invariant systems. 
Using the natural response: 

1. A system is stable if the natural response approaches zero as time approaches 
infinity. 

2. A system is unstable if the natural response approaches infinity as time 
approaches infinity. 

3. A system is marginally stable if the natural response neither decays nor grows but 
remains constant or oscillates. 

Using the total response (BIBO): 

1. A system is stable if every bounded input yields a bounded output. 

2. A system is unstable if any bounded input yields an unbounded output. 

Physically, an unstable system whose natural response grows without bound 
can cause damage to the system, to adjacent property, or to human life. Many times 
systems are designed with limited stops to prevent total runaway. From the 
perspective of the time response plot of a physical system, instability is displayed 
by transients that grow without bound and, consequently, a total response that does 
not approach a steady-state value or other forced response.1 

How do we determine if a system is stable? Let us focus on the natural response 
definitions of stability. Recall from our study of system poles that poles in the left 
half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural 
responses. These natural responses decay to zero as time approaches infinity. Thus, if 
the closed-loop system poles are in the left half of the plane and hence have a 
negative real part, the system is stable. That is, stable systems have closed-loop 
transfer functions with poles only in the left half-plane. 

Poles in the right half-plane (rhp) yield either pure exponentially increasing or 
exponentially increasing sinusoidal natural responses. These natural responses 
approach infinity as time approaches infinity. Thus, if the closed-loop system poles 
are in the right half of the s-plane and hence have a positive real part, the system is 
unstable. Also, poles of multiplicity greater than 1 on the imaginary axis lead to 
the sum of responses of the form At11 cos (cot + ¢), where n = 1,2,..., which also 
approaches infinity as time approaches infinity. Thus, unstable systems have closed-
loop transfer functions with at least one pole in the right half-plane and/or poles of 
multiplicity greater than 1 on the imaginary axis. 

Care must be taken here to distinguish between natural responses growing without bound and a forced 
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced 
response approaches infinity is stable as long as the natural response approaches zero. 
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Finally, a system that has imaginary axis poles of multiplicity 1 yields pure 
sinusoidal oscillations as a natural response. These responses neither increase nor 
decrease in amplitude. Thus, marginally stable systems have closed-loop transfer 
functions with only imaginary axis poles of multiplicity! and poles in the left half-plane. 

As an example, the unit step response of the stable system of Figure 6.1(a) is 
compared to that of the unstable system of Figure 6.1(b). The responses, also shown 
in Figure 6.1, show that while the oscillations for the stable system diminish, those for 
the unstable system increase without bound. Also notice that the stable system's 
response in this case approaches a steady-state value of unity. 

It is not always a simple matter to determine if a feedback control system is 
stable. Unfortunately, a typical problem that arises is shown in Figure 6.2. Although 
we know the poles of the forward transfer function in Figure 6.2(a), we do not know 
the location of the poles of the equivalent closed-loop system of Figure 6.2(b) 
without factoring or otherwise solving for the roots. 

However, under certain conditions, we can draw some conclusions about 
the stability of the system. First, if the closed-loop transfer function has only 
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R(s) + x -x m r 10(5 + 2) 

s(s + 4)(5 + 6)(5 + 8)(5 + 10) 
C(s) 

(a) 

FIGURE 6.2 Common cause 
of problems in finding closed-
loop poles: a. original system; 

(b) b. equivalent system 
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55 + 2854 + 28453 + 123252 + 19305 + 20 
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left-half-plane poles, then the factors of the denominator of the closed-loop system 
transfer function consist of products of terms such as (s + a,-), where at is real and 
positive, or complex with a positive real part. The product of such terms is a 
polynomial with all positive coefficients.2 No term of the polynomial can be missing, 
since that would imply cancellation between positive and negative coefficients or 
imaginary axis roots in the factors, which is not the case. Thus, a sufficient condition 
for a system to be unstable is that all signs of the coefficients of the denominator of 
the closed-loop transfer function are not the same. If powers of s are missing, the 
system is either unstable or, at best, marginally stable. Unfortunately, if all coef­
ficients of the denominator are positive and not missing, we do not have definitive 
information about the system's pole locations. 

If the method described in the previous paragraph is not sufficient, then a 
computer can be used to determine the stability by calculating the root locations of 
the denominator of the closed-loop transfer function. Today some hand-held 
calculators can evaluate the roots of a polynomial. There is, however, another 
method to test for stability without having to solve for the roots of the denominator. 
We discuss this method in the next section. 

( 6.2 Routh-Hurwitz Criterion 
In this section, we learn a method that yields stability information without the need 
to solve for the closed-loop system poles. Using this method, we can tell how many 
closed-loop system poles are in the left half-plane, in the right half-plane, and on the 
;'w-axis. (Notice that we say how many, not where.) We can find the number of poles 
in each section of the s-plane, but we cannot find their coordinates. The method is 
called the Routh-Hurwitz criterion for stability (Routh, 1905). 

The method requires two steps: (1) Generate a data table called a Routh table 
and (2) interpret the Routh table to tell how many closed-loop system poles are in 
the left half-plane, the right half-plane, and on the jco-axis. You might wonder why we 
study the Routh-Hurwitz criterion when modern calculators and computers can tell 
us the exact location of system poles. The power of the method lies in design rather 
than analysis. For example, if you have an unknown parameter in the denominator of 
a transfer function, it is difficult to determine via a calculator the range of this 
parameter to yield stability. You would probably rely on trial and error to answer the 

The coefficients can also be made all negative by multiplying the polynomial by - 1 . This operation does 
not change the root location. 
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FIGURE 6.3 Equivalent closed-loop transfer 
function 

stability question. We shall see later that the Routh-Hurwitz criterion can yield a 
closed-form expression for the range of the unknown parameter. 

In this section, we make and interpret a basic Routh table. In the next section, 
we consider two special cases that can arise when generating this data table. 

Generating a Basic Routh Table 
Look at the equivalent closed-loop transfer function shown in Fig­
ure 6.3. Since we are interested in the system poles, we focus our 
attention on the denominator. We first create the Routh table shown 
in Table 6.1. Begin by labeling the rows with powers of s from the 
highest power of the denominator of the closed-loop transfer func­

tion to s°. Next start with the coefficient of the highest power of s in the denominator 
and list, horizontally in the first row, every other coefficient. In the second row, list 
horizontally, starting with the next highest power of s, every coefficient that was 
skipped in the first row. 

The remaining entries are filled in as follows. Each entry is a negative determi­
nant of entries in the previous two rows divided by the entry in the first column directly 
above the calculated row. The left-hand column of the determinant is always the first 
column of the previous two rows, and the right-hand column is the elements of the 
column above and to the right. The table is complete when all of the rows are completed 
down to s°. Table 6.2 is the completed Routh table. Let us look at an example. 

TABLE 6.1 Initial layout for Routh table TABLE 6.2 Completed Routh table 
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Example 6.1 

Creating a Routh Table 

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a). 

SOLUTION: The first step is to find the equivalent closed-loop system because we 
want to test the denominator of this function, not the given forward transfer 

m 
FIGURE 6.4 a. Feedback 
system for Example 6.1; 
b. equivalent closed-
loop system 

> «*> 
9 * 

1000 
(s + 2)(s + 3)(s + 5) 

C{s) 

R(s) 1000 

s3+ 10s2 + 31s +1030 
as) 

(a) (b) 



6.2 Routh-Hurwitz Criterion 307 

TABLE 6.3 Completed Routh table for Example 6.1 
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function, for pole location. Using the feedback formula, we obtain the equivalent 
system of Figure 6.4(b). The Routh-Hurwitz criterion will be applied to this 
denominator. First label the rows with powers of s from s3 down to s° in a vertical 
column, as shown in Table 6.3. Next form the first row of the table, using the 
coefficients of the denominator of the closed-loop transfer function. Start with 
the coefficient of the highest power and skip every other power of s. Now form the 
second row with the coefficients of the denominator skipped in the previous step. 
Subsequent rows are formed with determinants, as shown in Table 6.2. 

For convenience, any row of the Routh table can be multiplied by a positive 
constant without changing the values of the rows below. This can be proved by 
examining the expressions for the entries and verifying that any multiplicative 
constant from a previous row cancels out. In the second row of Table 6.3, for 
example, the row was multiplied by 1/10. We see later that care must be taken not to 
multiply the row by a negative constant. 

Interpreting the Basic Routh Table 
Now that we know how to generate the Routh table, let us see how to interpret it. 
The basic Routh table applies to systems with poles in the left and right half-planes. 
Systems with imaginary poles and the kind of Routh table that results will be 
discussed in the next section. Simply stated, the Routh-Hurwitz criterion declares 
that the number of roots of the polynomial that are in the right half-plane is equal to 
the number of sign changes in the first column. 

If the closed-loop transfer function has all poles in the left half of the s-plane, 
the system is stable. Thus, a system is stable if there are no sign changes in the first 
column of the Routh table. For example, Table 6.3 has two sign changes in the 
first column. The first sign change occurs from 1 in the s2 row to —72 in the s1 row. 
The second occurs from —72 in the s1 row to 103 in the s° row. Thus, the system of 
Figure 6.4 is unstable since two poles exist in the right half-plane. 

Skill-Assessment Exercise 6.1 

PROBLEM: Make a Routh table and tell how many roots of the following 
polynomial are in the right half-plane and in the left half-plane. 

P(s) = 3s1 + 9s6 + 655 + 4s4 + 7s3 + 8s2 + 2s + 6 

ANSWER: Four in the right half-plane (rhp), three in the left half-plane (lhp). 

The complete solution is at www.wiley.com/college/nise. 

WileyPLUS 

C3JE9 
Control Solutions 

http://www.wiley.com/college/nise
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Now that we have described how to generate and interpret a basic Routh table, 
let us look at two special cases that can arise. 

( 6.3 Routh-Hurwitz Criterion: Special Cases 
Two special cases can occur: (1) The Routh table sometimes will have a zero only in 
the first column of a row, or (2) the Routh table sometimes will have an entire row 
that consists of zeros. Let us examine the first case. 

Zero Only in the First Column 
If the first element of a row is zero, division by zero would be required to form the 
next row. To avoid this phenomenon, an epsilon, €, is assigned to replace the zero in 
the first column. The value e is then allowed to approach zero from either the 
positive or the negative side, after which the signs of the entries in the first column 
can be determined. Let us look at an example. 

Trylt6.1 

Use the following MATLAB 
statement to find the poles of 
the closed-loop transfer 
function in Eq. (6.2). 

roots([l 2 3 6 5 3]) 

Example 6.2 

Stability via Epsilon Method 

PROBLEM: Determine the stability of the closed-loop transfer function 

10 
T(s) = 

s5 + 2s4 + 3s3 + 6s2 + 5s + 3 
(6.2) 

SOLUTION: The solution is shown in Table 6.4. We form the Routh table by using 
the denominator of Eq. (6.2). Begin by assembling the Routh table down to the row 
where a zero appears only in the first column (the 53 row). Next replace the zero by 
a small number, e, and complete the table. To begin the interpretation, we must first 
assume a sign, positive or negative, for the quantity €. Table 6.5 shows the first 
column of Table 6.4 along with the resulting signs for choices of e positive and 
€ negative. 

TABLE 6.5 Determining signs in first column of a Routh table with 
zero as first element in a row 
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If € is chosen positive, Table 6.5 will show a sign change from the s3 row to the 
s2 row, and there will be another sign change from the s2 row to the 51 row. Hence, 
the system is unstable and has two poles in the right half-plane. 

Alternatively, we could choose € negative. Table 6.5 would then show a 
sign change from the 54 row to the s3 row. Another sign change would occur 
from the s3 row to the s2 row. Our result would be exactly the same as that for 
a positive choice for e. Thus, the system is unstable, with two poles in the right 
half-plane. 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run ch6spl in Appendix F at www.wiley.com/college/ 
nise. You will learn how to use the Symbolic Math Toolbox to 
calculate the values of cells in a Routh table even if the table 
contains symbolic objects, such as €. You will see that the 
Symbolic Math Toolbox and MATLAB yield an alternate way to gen­
erate the Routh table for Example 6.2. 

Symbolic Math 

Another method that can be used when a zero appears only in the first column 
of a row is derived from the fact that a polynomial that has the reciprocal roots of the 
original polynomial has its roots distributed the same—right half-plane, left half-
plane, or imaginary axis—because taking the reciprocal of the root value does not 
move it to another region. Thus, if we can find the polynomial that has the reciprocal 
roots of the original, it is possible that the Routh table for the new polynomial will 
not have a zero in the first column. This method is usually computationally easier 
than the epsilon method just described. 

We now show that the polynomial we are looking for, the one with the 
reciprocal roots, is simply the original polynomial with its coefficients written in 
reverse order {Phillips, 1991). Assume the equation 

!» + «,_!*-* + a\S + «o — 0 (6.3) 

If s is replaced by l/d, then d will have roots which are the reciprocal of s. Making this 
substitution in Eq. (6.3), 

2 +fl"-'U 
/ i - l 

+--- + ̂ (-) "'' ° (6.4) 

Factoring out (l/d)n, 

IV 
1 + On-l[2 

- 1 

+ - .H 
(l-«) 

+ * ( 3 

= f i J [1 + an-i4 +••• + aid
{"-l) + a0d

n] = 0 (6.5) 

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients 
written in reverse order. Let us redo the previous example to show the computa­
tional advantage of this method. 

http://www.wiley.com/college/
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Example 6.3 

Stability via Reverse Coefficients 

PROBLEM: Determine the stability of the closed-loop transfer function 

T(s) = 
10 

s5 4- 2s4 + 3s3 + 6s2 + 5s + 3 
(6.6) 

SOLUTION: First write a polynomial that has the reciprocal roots of the denomi­
nator of Eq. (6.6). From our discussion, this polynomial is formed by writing the 
denominator of Eq. (6.6) in reverse order. Hence, 

D(s) = 355 + 5s4 + 6s3 + 3s2 + 2s + l (6.7) 

We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two 
sign changes, the system is unstable and has two right-half-plane poles. This is the 
same as the result obtained in Example 6.2. Notice that Table 6.6 does not have a 
zero in the first column. 

TABLE 6.6 Routh table for Example 6.3 
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Entire Row is Zero 
We now look at the second special case. Sometimes while making a Routh table, we 
find that an entire row consists of zeros because there is an even polynomial that is a 
factor of the original polynomial. This case must be handled differently from the case 
of a zero in only the first column of a row. Let us look at an example that 
demonstrates how to construct and interpret the Routh table when an entire row 
of zeros is present. 

Example 6.4 

Stability via Routh Table with Row of Zeros 

PROBLEM: Determine the number of right-half-plane poles in the closed-loop 
transfer function 

T(s) = 
10 

.y5 + 7s4 + 6s3 + 42s2 + $s + 56 
(6.8) 

SOLUTION: Start by forming the Routh table for the denominator of Eq. (6.8) 
(see Table 6.7). At the second row we multiply through by 1/7 for convenience. We 
stop at the third row, since the entire row consists of zeros, and use the following 
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TABLE 6.7 Rou th table for Example 6.4 
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procedure. First we return to the row immediately above the row of zeros and 
form an auxiliary polynomial, using the entries in that row as coefficients. The 
polynomial will start with the power of s in the label column and continue by 
skipping every other power of s. Thus, the polynomial formed for this example is 

P(s) = 54 + 6s2 + 8 (6.9) 
Next we differentiate the polynomial with respect to s and obtain 

dP{s) 
ds = As" + 125 + 0 (6.10) 

Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again, for 
convenience, the third row is multiplied by 1/4 after replacing the zeros. 

The remainder of the table is formed in a straightforward manner by 
following the standard form shown in Table 6.2. Table 6.7 shows that all entries 
in the first column are positive. Hence, there are no right-half-plane poles. 

ex. 

CK 

Let us look further into the case that yields an entire row of 
zeros. An entire row of zeros will appear in the Routh table when a 
purely even or purely odd polynomial is a factor of the original 
polynomial. For example, s4 + 5s2 + 7 is an even polynomial; it has 
only even powers of s. Even polynomials only have roots that are 
symmetrical about the origin.3 This symmetry can occur under three 
conditions of root position: (1) The roots are symmetrical and real, 
(2) the roots are symmetrical and imaginary, or (3) the roots are 
quadrantal. Figure 6.5 shows examples of these cases. Each case or 
combination of these cases will generate an even polynomial. 

It is this even polynomial that causes the row of zeros to 
appear. Thus, the row of zeros tells us of the existence of an even 
polynomial whose roots are symmetric about the origin. Some of 
these roots could be on the/'<y-axis. On the other hand, since jco roots 
are symmetric about the origin, if we do not have a row of zeros, we 
cannot possibly have jco roots. 

Another characteristic of the Routh table for the case in 
question is that the row previous to the row of zeros contains the even polynomial 
that is a factor of the original polynomial. Finally, everything from the row 
containing the even polynomial down to the end of the Routh table is a test of 
only the even polynomial. Let us put these facts together in an example. 

j<0k 

i-planc 

/ X c 

\C 

A: Real and symmetrical about the origin 
B: Imaginary and symmetrical about the origin 
C: Quadrantal and symmetrical about the origin 

FIGURE 6.5 Roo t positions to generate even 

polynomials: A, S, C, or any combination 

" The polynomial s? + 5s3 + 7s is an example of an odd polynomial; it has only odd powers of s. Odd 
polynomials are the product of an even polynomial and an odd power of s. Thus, the constant term of an 
odd polynomial is always missing. 
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Example 6.5 

Pole Distribution via Routh Table with Row of Zeros 

PROBLEM: For the transfer function 

T(s) = 
20 

s* + s1 + 12s6 + 22s5 + 39s4 + 59s3 + 48s2 + 38s + 20 ^ 1 ^ 

tell how many poles are in the right half-plane, in the left half-plane, and on the 
jco-axis. 

SOLUTION: Use the denominator of Eq. (6.11) and form the Routh table in 
Table 6.8. For convenience the s6 row is multiplied by 1/10, and the s5 row is 
multiplied by 1/20. At the s3 row we obtain a row of zeros. Moving back one row to 
s4, we extract the even polynomial, P(s), as 

P{s) = s4 + 3s2 + 2 (6.12) 

TABLE 6.8 Rou th table for Example 6.5 
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0 

0 

20 

0 

0 

0 

0 

0 

0 

0 

0 

This polynomial will divide evenly into the denominator of Eq. (6.11) and thus is a 
factor. Taking the derivative with respect to s to obtain the coefficients that replace 
the row of zeros in the s3 row, we find 

dP(s) 
ds 

= 4s3 + 65 + 0 (6.13) 

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for 
convenience. Finally, continue the table to the s° row, using the standard procedure. 

How do we now interpret this Routh table? Since all entries from the even 
polynomial at the 54 row down to the s° row are a test of the even polynomial, we 
begin to draw some conclusions about the roots of the even polynomial. No sign 
changes exist from the s4 row down to the s° row. Thus, the even polynomial does 
not have right-half-plane poles. Since there are no right-half-plane poles, no left-
half-plane poles are present because of the requirement for symmetry. Hence, the 
even polynomial, Eq. (6.12), must have all four of its poles on the jco-axis. These 
results are summarized in the first column of Table 6.9. 

4 A necessary condition for stability is that the jco roots have unit multiplicity. The even polynomial must be 
checked for multiple jco roots. For this case, the existence of multiple jco roots would lead to a perfect, 
fourth-order square polynomial. Since Eq. (6.12) is not a perfect square, the four jco roots are distinct. 
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TABLE 6.9 Summary of pole locations for Example 6.5 

Location 

Right half-plane 

Left half-plane 

jiO 

Polynomial 

Even 
(fourth-order) 

0 

0 
4 

Other 
(fourth-order) 

2 

2 

0 

Total 
(eighth-order) 

2 

2 

4 

The remaining roots of the total polynomial are evaluated from the s row down 
to the s4 row. We notice two sign changes: one from the s1 row to the s row and the 
other from the s6 row to the 55 row. Thus, the other polynomial must have two roots in 
the right half-plane. These results are included in Table 6.9 under "Other". The final 
tally is the sum of roots from each component, the even polynomial and the other 
polynomial, as shown under "Total" in Table 6.9. Thus, the system has two poles in 
the right half-plane, two poles in the left half-plane, and four poles on the jco-axis; it is 
unstable because of the right-half-plane poles. 

We now summarize what we have learned about polynomials that generate entire 
rows of zeros in the Routh table. These polynomials have a purely even factor with roots 
that are symmetrical about the origin. The even polynomial appears in the Routh 
table in the row directly above the row of zeros. Every entry in the table from the even 
polynomial's row to the end of the chart applies only to the even polynomial. Therefore, 
the number of sign changes from the even polynomial to the end of the table equals the 
number of right-half-plane roots of the even polynomial. Because of the symmetry of 
roots about the origin, the even polynomial must have the same number of left-half-
plane roots as it does right-half-plane roots. Having accounted for the roots in the right 
and left half-planes, we know the remaining roots must be on the yew-axis. 

Every row in the Routh table from the beginning of the chart to the row 
containing the even polynomial applies only to the other factor of the original 
polynomial. For this factor, the number of sign changes, from the beginning of the 
table down to the even polynomial, equals the number of right-half-plane roots. 
The remaining roots are left-half-plane roots. There can be no jo) roots contained in 
the other polynomial. 

PROBLEM: Use the Routh-Hurwitz criterion to find how many poles of the 
following closed-loop system, T(s), are in the rhp, in the lhp, and on the jco-axis: 

, S 3 + 7 J 2 - 2 U + 10 
[S) s6+s5-6s4 + 0s^-s2-s + 6 

ANSWER: Two rhp, two lhp, and two jco 

The complete solution is at www.wiley.com/college/nise. 

Virtual Experiment 6.1 
Stability 

Put theory into practice and 
evaluate the stability of the 
Quanser Linear Inverted Pendu­
lum in LabVIEW. When in the 
upward balanced position, this 
system addresses the challenge of 
stabilizing a rocket during take­
off. In the downward position it 
emulates the construction 
gantry crane. 

Virtual experiments are found 
on WileyPLUS. 

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few 
additional examples. 

http://www.wiley.com/college/nise
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| 6.4 Routh-Hurwitz Criterion: Additional Examples 
The previous two sections have introduced the Routh-Hurwitz criterion. Now we need 
to demonstrate the method's application to a number of analysis and design problems. 

Example 6.6 

Standard Routh-Hurwitz 

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and 
on the /co-axis for the system of Figure 6.6. 

R(s) + / 0 \ E&L 
y 

200 

s(s3 + 6s2+ 11*+ 6) 
a*) 

FIGURE 6.6 Feedback 
control system for 
Example 6.6 

SOLUTION: First, find the closed-loop transfer function as 
200 

T(s) = s4 + 6s3 + l i s 2 +6s + 200 
(6.14) 

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For 
clarity, we leave most zero cells blank. At the sl row there is a negative coefficient; 
thus, there are two sign changes. The system is unstable, since it has two right-half-
plane poles and two left-half-plane poles. The system cannot have jco poles since a 
row of zeros did not appear in the Routh table. 

TABLE 6.10 Routh table for Example 6.6 

sA 

rf» 
r 
f 
f 

-6-

46-

1 

1 

1 

-19 

20 

11 

-6- 1 

2m 20 

200 

The next example demonstrates the occurrence of a zero in only the first 
column of a row. 

Example 6.7 

Routh-Hurwitz with Zero in First Column 

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and 
on the y'w-axis for the system of Figure 6.7. 

FIGURE 6.7 Feedback control 
system for Example 6.7 

m^ > * & 

r 
i 

s(2s4 + 3.?3 + 2.v2 + 35 + 2) 

C(.v) 



6.4 Routh-Hurwitz Criterion: Additional Examples 315 

SOLUTION: The closed-loop transfer function is 

T{S) * 2*5 + 3S* + 2 J 3 + 3 S 2 + 2S + 1
 ( 6 ' 1 5 ) 

Form the Routh table shown as Table 6.11, using the denominator of Eq. (6.15). A 
zero appears in the first column of the s' row. Since the entire row is not zero, 
simply replace the zero with a small quantity, e, and continue the table. Permitting e 
to be a small, positive quantity, we find that the first term of the 52 row is negative. 
Thus, there are two sign changes, and the system is unstable, with two poles in the 
right half-plane. The remaining poles are in the left half-plane. 

TABLE 6.11 Routh table for Example 6.7 

2 2 2 
3 3 1 

•% 6 

3 * - 4 

12c - 16 - 3e2 

9e-12 
1 

We also can use the alternative approach, where we produce a polynomial 
whose roots are the reciprocal of the original. Using the denominator of Eq. (6.15), 
we form a polynomial by writing the coefficients in reverse order, 

s5 + 2s4 + 3s3 + 2s2 +3s + 2 (6.16) 

The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in this 
case we also produce a zero only in the first column at the s~ row. However, the 
table is easier to work with than Table 6.11. Table 6.12 yields the same results as 
Table 6.11: three poles in the left half-plane and two poles in the right half-plane. 
The system is unstable. 

TABLE 6.12 Alternative Routh table for Example 6.7 

** 

1* 
s" 
-> 

r 
sl 

1 
2 

2 

-% e 
2 e - 4 

6 

2 

3 

2 
2 

2 

3 

2 

Students who are using MATLAB should now run ch6pl in Appendix B. MATLAB 

You will learn how to perform block diagram reduction to find T(s) , ^ J H 
followed by an evaluation of the closed-loop system's poles to 
determine stability. This exercise uses MATLAB to do Example 6.7. 
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In the next example, we see an entire row of zeros appear along with the 
possibility of imaginary roots. 

Trylt6.2 
Use MATLAB, The Control 
System Toolbox, and the fol­
lowing statements to find the 
closed-loop transfer function, 
T(s), for Figure 6.8 and the 
closed-loop poles. 

numg=128; 
deng=[l 3 10 24 . . . 

48 96 128 192 0]; 
G=tf (numg, deng) ; 
T=feedback(G,1) 
p o l e s = p o l e ( T ) 

Example 6.8 

Routh-Hurwitz with Row of Zeros 

PRO BLEM: Find the number of poles in the left half-plane, the right half-plane, and 
on the jco-axis for the system of Figure 6.8. Draw conclusions about the stability of 
the closed-loop system. 

R(s) t/1 7\ E(-s) 128 
s(s7 + 3s6 + 10s5 + 24s4 + 48.93 + 96.v2 + 128*+ 192) 

C(s) FIGURE 6.8 
Feedback 
control system 
for Example 6.8 

SOLUTION: The closed-loop transfer function for the system of Figure 6.8 is 

128 
7 » = 58 + 3s7 + 10^6 + 24^5 + 48^4 + 96^3 + 12852 + 1925 + 128 (6.17) 

Using the denominator, form the Routh table shown as Table 6.13. A row of zeros 
appears in the s5 row. Thus, the closed-loop transfer function denominator must have 
an even polynomial as a factor. Return to the 56 row and form the even polynomial: 

P(s) =s
6 + 854 + 3252 + 64 (6.18) 

TABLE 6.13 R o u t h table for Example 6.8 

1 

• * 1 

-2" 1 
-6 - -6-3 

f' 
-*-§--. 1 

-3- 1 
3 

10 

2A 8 
-½ 8 

-©- -32- 16 

* - • 
,-40 - 5 

.24 8 

128 
Mr 
-64" 

-Qr -64 

-64 

32 

32 

32 

24 

19? 

J58~ 

-e- -e-

64 

64 

0 

Differentiate this polynomial with respect to 5 to form the coefficients that will 
replace the row of zeros: 

dP{s) 
ds 

= 6s5 + 32s3 + 645 + 0 (6.19) 

Replace the row of zeros at the s5 row by the coefficients of Eq. (6.19) and multiply 
through by 1/2 for convenience. Then complete the table. 

We note that there are two sign changes from the even polynomial at the 
56 row down to the end of the table. Hence, the even polynomial has two right-half-
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TABLE 6.14 Summary of pole locations for Example 6.8 

Location 

Right half-plane 

Left half-plane 

jo) 

Polynomial 

Even 
(sixlh-order) 

2 

2 

2 

Other 
(second-order) 

0 

0 

Total 
(eighth-order) 

2 

4 

2 

plane poles. Because of the symmetry about the origin, the even polynomial must 
have an equal number of left-half-plane poles. Therefore, the even polynomial 
has two left-half-plane poles. Since the even polynomial is of sixth order, the two 
remaining poles must be on the jco-axis. 

There are no sign changes from the beginning of the table down to the even 
polynomial at the s6 row. Therefore, the rest of the polynomial has no right-half-
plane poles. The results are summarized in Table 6.14. The system has two poles in 
the right half-plane, four poles in the left half-plane, and two poles on the yea-axis, 
which are of unit multiplicity. The closed-loop system is unstable because of the 
right-half-plane poles. 

The Routh-Hurwitz criterion gives vivid proof that changes in the gain of a 
feedback control system result in differences in transient response because of 
changes in closed-loop pole locations. The next example demonstrates this concept. 
We will see that for control systems, such as those shown in Figure 6.9, gain variations 
can move poles from stable regions of the s-plane onto the jco-axis and then into the 
right half-plane. 

Long baseline & 
emergency beacon 

Lifting bail Thrusters Syntactic 
(1 of 7) flotation module 

(1200 lbs) 

Emergency ft 
flasher 

Side-scan 
transceiver array 

I of 2) 

Wiring junction box 
( l o r 2) 

. Altimeter 
Telemetry housing w/lasers 
Manipulator electronics housing 

Computer housing w/gyro 

Side-scan sonar 
electronics housing 

Electronic compass 
FIGURE 6.9 Jason is an 
underwater, remote-controlled 
vehicle that has been used to 
explore the wreckage of the 
Lusitania. The manipulator 
and cameras comprise some of 
the vehicle's control systems 
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Example 6.9 

Stability Design via Routh-Hurwitz 

PROBLEM: Find the range of gain, K, for the system of Figure 6.10 that will cause 
the system to be stable, unstable, and marginally stable. Assume K > 0. 

FIGURE 6.10 Feedback control 
system for Example 6.9 

R(s) +^ 

-. 

>flM 

9 " 
K 

s(s + 7)(5 +11) 
C(s) 

SOLUTION: First find the closed-loop transfer function as 

T ^ = s3 + l8s2 + 77s + K 

Next form the Routh table shown as Table 6.15. 

(6.20) 

TABLE 6.15 Routh table for Example 6.9 

r1 

r 

J 
/ 

1 
18 

1386 - K 
18 
K 

77 
K 

Since K is assumed positive, we see that all elements in the first column are 
always positive except the s1 row. This entry can be positive, zero, or negative, 
depending upon the value of K. If K < 1386, all terms in the first column will be 
positive, and since there are no sign changes, the system will have three poles in the 
left half-plane and be stable. 

If K > 1386, the s1 term in the first column is negative. There are two sign 
changes, indicating that the system has two right-half-plane poles and one left-
half-plane pole, which makes the system unstable. 

If K = 1386, we have an entire row of zeros, which could signify jco poles. 
Returning to the s2 row and replacing K with 1386, we form the even polynomial 

P{s) = 18s2 + 1386 (6.21) 
Differentiating with respect to s, we have 

dP{s) 

ds 
= 36s + 0 (6.22) 

Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the Routh-
Hurwitz table shown as Table 6.16 for the case of K = 1386. 

TABLE 6.16 Routh table for Example 6.9 with K = 1386 

1 

-6- 36 

1386 

77 
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Since there are no sign changes from the even polynomial (s2 row) down to 
the bottom of the table, the even polynomial has its two roots on the/<w-axis of unit 
multiplicity. Since there are no sign changes above the even polynomial, the 
remaining root is in the left half-plane. Therefore the system is marginally stable. 

Students who are using MATLAB should now run ch6p2 in Appendix B. 
You will learn how to set up a loop to search for the range of gain to 
yield stability. This exercise uses MATLAB to do Example 6.9. 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run ch6sp2 in Appendix F at www.wiley.com/college/ 
nise. You will learn how to use the Symbolic Math Toolbox to 
calculate the values of cells in a Routh table even if the table 
contains symbolic objects, such as a variable gain, K. You will 
see that the Symbolic Math Toolbox and MATLAB yield an alterna­
tive way to solve Example 6. 9 . 

The Routh-Hurwitz criterion is often used in limited applications to factor 
polynomials containing even factors. Let us look at an example. 

PROBLEM: Factor the polynomial 

s4 + 3s3 + 30s2 + 305 + 200 (6.23) 

SOLUTION: Form the Routh table of Table 6.17. We find that the .91 row is a row of 
zeros. Now form the even polynomial at the s2 row: 

P(s) = s2 + 10 (6.24) 

TABLE 6.17 Routh table for Example 6.10 

1 30 200 

- 6 - 1 M 10 

-20- 1 2W 10 

- 0 - 2 -% 0 

10 

This polynomial is differentiated with respect to s in order to complete the Routh 
table. However, since this polynomial is a factor of the original polynomial in Eq. 
(6.23), dividing Eq. (6.23) by (6.24) yields (s2 + 3s + 20) as the other factor. Hence, 

s4 + 3s3 + 30s2 + 305 + 200 = {s2 + 10)(52 + 35 + 20) 

= {s +/3.1623)(5 -/3.1623) (6.25) 

x(5 + 1.5 +/4.213)(5 + 1.5 -/4.213) 

319 

MATLAB 

Symbolic Malh 

s 4 

.v2 

.v1 
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WileyPLUS 

Control Solutions 

Skill-Assessment Exercise 6.3 

PROBLEM: For a unity feedback system with the forward transfer function 

K(s + 20) 
[S) s(s +2)(s + 3) 

find the range of K to make the system stable. 

ANSWER: 0<K<2 

The complete solution is at www.wiley.com/college/nise. 

( 6.5 Stability in State Space 
State Space 

Up to this point we have examined stability from the s-plane viewpoint. Now we look 
at stability from the perspective of state space. In Section 4.10, we mentioned that 
the values of the system's poles are equal to the eigenvalues of the system matrix, A. 
We stated that the eigenvalues of the matrix A were solutions of the equation 
det (si - A) = 0, which also yielded the poles of the transfer function. Eigenvalues 
appeared again in Section 5.8, where they were formally defined and used to 
diagonalize a matrix. Let us now formally show that the eigenvalues and the system 
poles have the same values. 

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of X that 
permit a nontrivial solution (other than 0) for x in the equation 

Ax = A.x (6.26) 

In order to solve for the values of X that do indeed permit a solution for x, we 
rearrange Eq. (6.26) as follows: 

or 

Solving for x yields 

or 

A.x - Ax = 0 

(XI - A)x = 0 

x = (XI-A)_10 

adj(AI-A) 
det(AI-A) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

We see that all solutions will be the null vector except for the occurrence of 
zero in the denominator. Since this is the only condition where elements of x will be 
0/0, or indeterminate, it is the only case where a nonzero solution is possible. 

The values of X are calculated by forcing the denominator to zero: 

det (XI - A) = 0 (6.31) 

http://www.wiley.com/college/nise
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This equation determines the values of X for which a nonzero solution for x in 
Eq. (6.26) exists. In Section 5.8, we defined x as eigenvectors and the values of X as the 
eigenvalues of the matrix A. 

Let us now relate the eigenvalues of the system matrix, A, to the system's poles. 
In Chapter 3 we derived the equation of the system transfer function, Eq. (3.73), 
from the state equations. The system transfer function has det(sl - A) in the 

, - i denominator because of the presence of (si - A) . Thus, 

det(sl - A) = 0 (6.32) 

is the characteristic equation for the system from which the system poles can be 
found. 

Since Eqs. (6.31) and (6.32) are identical apart from a change in variable name, 
we conclude that the eigenvalues of the matrix A are identical to the system's poles 
before cancellation of common poles and zeroes in the transfer function. Thus, we 
can determine the stability of a system represented in state space by finding the 
eigenvalues of the system matrix, A, and determining their locations on the 5-plane. 

Example 6.11 

Stability in State Space 

PROBLEM: Given the system 

X = 

y = [ 

0 3 
2 8 

-10 - 5 

1 0 0]x 

1 
1 

- 2 
x + 

10 
0 
0 

(6.33a) 

(6.33b) 

find out how many poles are in the left half-plane, in the right half-plane, and on the 
jco-axis. 

SOLUTION: First form (si - A): 

0 3 11 5 - 3 - 1 1 
(sI-A)= 0 s 0 2 8 l = - 2 s - 8 - l (6.34) 

5 0 0 
0 5 0 
0 0 5 

— 
0 
2 

- 1 0 

3 
8 

- 5 

1 
1 

- 2 
= 

5 

- 2 
10 

- 3 
5 - 8 

5 

- 1 
- 1 

5 + 2 

Now find the det(sl — A): 

det(sl - A) = 53 - 652 - 75 - 52 

Using this polynomial, form the Routh table of Table 6.18. 

TABLE 6.18 Routh table for Example 6.11 

S 
i 

s 

(6.35) 

--6 

' 3 

1 
- 3 

- 1 

-26 

^-52-

-% 

- 7 
-26 

0 
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MATLAB 

Since there is one sign change in the first column, the system has one right-
half-plane pole and two left-half-plane poles. It is therefore unstable. Yet, you may 
question the possibility that if a nonminimum-phase zero cancels the unstable pole, 
the system will be stable. However, in practice, the nonminimum-phase zero or 
unstable pole will shift due to a slight change in the system's parameters. This 
change will cause the system to become unstable. 

Students who are using MATLAB should now run ch6p3 in Appendix B. 
You will learn how to determine the stability of a system repre­
sented in state space by finding the eigenvalues of the system 
matrix. This exercise uses MATLAB to do Example 6.11. 

Wileypms 

Control Solutions 

Trylt 6.3 

Use the following MATLAB 
statements to find the eigen­
values of the system described 
in Skill-Assessment 
Exercise 6.4. 

A=[2 1 1 
1 7 1 
- 3 4 - 5 ] ; 

E i g = e i g ( A ) 

Skill-Assessment Exercise 6.4 

PROBLEM: For the following system represented in state space, find out how many 
poles are in the left half-plane, in the right half-plane, and on the /Vy-axis. 

x = 

2 1 
1 7 
3 4 

1 
1 

-5 
x + 

0 
0 
1 

y = [0 1 0]x 

ANSWER: Two rhp and one lhp. 

The complete solution is at www.wiley.com/college/nise. 

In this section, we have evaluated the stability of feedback control systems 
from the state-space perspective. Since the closed-loop poles and the eigenvalues of 
a system are the same, the stability requirement of a system represented in state 
space dictates that the eigenvalues cannot be in the right half of the .s-plane or be 
multiple on the yw-axis. 

We can obtain the eigenvalues from the state equations without first convert­
ing to a transfer function to find the poles: The equation det(sl - A) = 0 yields the 
eigenvalues directly. If det(sl — A), a polynomial in s, cannot be factored easily, we 
can apply the Routh-Hurwitz criterion to it to evaluate how many eigenvalues are in 
each region of the s-plane. 

We now summarize this chapter, first with case studies and then with a written 
summary. Our case studies include the antenna azimuth position control system and 
the UFSS. Stability is as important to these systems as it is to the system shown in 
Figure 6.11. 

http://www.wiley.com/college/nise
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FIGURE 6.11 TheFANUC 
M-410iB™ has 4 axes of 
motion. It is seen here moving 
and stacking sacks of 
chocolate 

Case Studies 

Antenna Control: Stability Design via Gain 
This chapter has covered the elements of stability. We saw that stable systems have 
their closed-loop poles in the left half of the s-plane. As the loop gain is changed, 
the locations of the poles are also changed, creating the possibility that the poles 
can move into the right half of the s-plane, which yields instability. Proper gain 
settings are essential for the stability of closed-loop systems. The following case 
study demonstrates the proper setting of the loop gain to ensure stability. 

PROBLEM: You are given the antenna azimuth position control system shown on 
the front endpapers, Configuration 1. Find the range of preamplifier gain required 
to keep the closed-loop system stable. 

SOLUTION: The closed-loop transfer function was derived in the case studies in 
Chapter 5 as 

T, » 6.63*: 
T{S) = 53 + 101.71^ + 171, + 6.631 ( 6 3 6 ) 

Using the denominator, create the Routh table shown as Table 6.19. The third row of 
the table shows that a row of zeros occurs UK — 2623. This value of K makes the 
system marginally stable. Therefore, there will be no sign changes in the first column 
if 0 < K < 2623. We conclude that, for stability, 0 < K < 2623. 

TABLE 6.19 Routh table for antenna control case study 

f 
s2 

.v1 

f 

1 

101.71 
17392.41-6.63iC 

6.63/: 

171 

6.63# 
0 

17392.41-6.63iC
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CHALLENGE: We now give you a problem to test your knowledge of this chapter's 
objectives. Refer to the antenna azimuth position control system shown on the 
front endpapers, Configuration 2. Find the range of preamplifier gain required to 
keep the closed-loop system stable. 

UFSS Vehicle: Stability Design via Gain 
Design For this case study, we return to the UFSS vehicle and study the stability of the pitch 
H ^ ) control system, which is used to control depth. Specifically, we find the range of 

pitch gain that keeps the pitch control loop stable. 

PROBLEM: The pitch control loop for the UFSS vehicle {Johnson, 1980) is shown 
on the back endpapers. Let K2 = l and find the range of K\ that ensures that the 
closed-loop pitch control system is stable. 

SOLUTION: The first step is to reduce the pitch control system to a single, closed-
loop transfer function. The equivalent forward transfer function, Ge(s), is 

C M = 0 .25^(5 + 0.435) 
em s4 + 3.45653 + 3.45752 + 0.7195 + 0.0416 K } 

With unity feedback the closed-loop transfer function, T(s), is 

r n = 0.25^(5 + 0.435) 
{S) 54 + 3.45653+3.45752 + (0.719 + 0.25^1)5+(0.0416 + 0.109^1) l ' 

The denominator of Eq. (6.38) is now used to form the Routh table shown as Table 6.20. 

TABLE 6.20 Routh table for UFSS case study 
.94 1 3.457 0.0416 + 0.109¾ 

.v3 3.456 0.719 + 0.25¾ 

r 11.228-0.25¾ 0.144 + 0.377¾ 
j -0.0625/^ + 1.324¾ + 7.575 

j > 

11.228-0.25¾ 
0.144 + 0.377¾ 

Note: Some rows have been multiplied by a positive constant for convenience. 

Looking at the first column, the s4 and sr rows are positive. Thus, all elements of 
the first column must be positive for stability. For the first column of the s2 row to be 
positive, —oo < K\ < 44.91. For the first column of the 51 row to be positive, the 
numerator must be positive, since the denominator is positive from the previous 
step. The solution to the quadratic term in the numerator yields roots of K\ = 
-4.685 and 25.87. Thus, for a positive numerator, -4.685 < K\ < 25.87. Finally, for 
the first column of the 5° row to be positive, -0.382 < K\ < oo. Using all three 
conditions, stability will be ensured if —0.382 <K\ < 25.87. 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on 
the back endpapers and introduced in the UFSS case study challenge in Chapter 5, 
do the following: 

MATLAB a. Find the range of heading gain that ensures the vehicle's stability. Let K2 = 1 

E I B b. Repeat Part a using MATLAB . 



Review Questions 

In our case studies, we calculated the ranges of gain to ensure stability. The student 
should be aware that although these ranges yield stability, setting gain within these 
limits may not yield the desired transient response or steady-state error character­
istics. In Chapters 9 and 11, we will explore design techniques, other than simple gain 
adjustment, that yield more flexibility in obtaining desired characteristics. 

^ Summary^ 
In this chapter, we explored the concepts of system stability from both the classical 
and the state-space viewpoints. We found that for linear systems, stability is based on 
a natural response that decays to zero as time approaches infinity. On the other hand, 
if the natural response increases without bound, the forced response is overpowered 
by the natural response, and we lose control. This condition is known as instability. A 
third possibility exists: The natural response may neither decay nor grow without 
bound but oscillate. In this case, the system is said to be marginally stable. 

We also used an alternative definition of stability when the natural response is 
not explicitly available. This definition is based on the total response and says that a 
system is stable if every bounded input yields a bounded output (BIBO) and 
unstable if any bounded input yields an unbounded output. 

Mathematically, stability for linear, time-invariant systems can be determined 
from the location of the closed-loop poles: 

• If the poles are only in the left half-plane, the system is stable. 

• If any poles are in the right half-plane, the system is unstable. 

• If the poles are on the ;*<w-axis and in the left half-plane, the system is marginally 
stable as long as the poles on the ;&>-axis are of unit multiplicity; it is unstable if 
there are any multiple jco poles. 

Unfortunately, although the open-loop poles may be known, we found that in higher-
order systems it is difficult to find the closed-loop poles without a computer program. 

The Routh-Hurwitz criterion lets us find how many poles are in each of the 
sections of the s-plane without giving us the coordinates of the poles. Just knowing 
that there are poles in the right half-plane is enough to determine that a system is 
unstable. Under certain limited conditions, when an even polynomial is present, the 
Routh table can be used to factor the system's characteristic equation. 

Obtaining stability from the state-space representation of a system is based on the 
same concept—the location of the roots of the characteristic equation. These roots are 
equivalent to the eigenvalues of the system matrix and can be found by solving 
det(sl - A) = 0. Again, the Routh-Hurwitz criterion can be applied to this polynomial. 
The point is that the state-space representation of a system need not be converted to a 
transfer function in order to investigate stability. In the next chapter, we will look at steady-
state errors, the last of three important control system requirements we emphasize. 

^ Review Questions^ 
1. What part of the output response is responsible for determining the stability of a 

linear system? 

2. What happens to the response named in Question 1 that creates instability? 
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State Space 

State Space 

3. What would happen to a physical system that becomes unstable? 

4. Why are marginally stable systems considered unstable under the BIBO 
definition of stability? 

5. Where do system poles have to be to ensure that a system is not unstable? 

6. What does the Routh-Hurwitz criterion tell us? 

7. Under what conditions would the Routh-Hurwitz criterion easily tell us the 
actual location of the system's closed-loop poles? 

8. What causes a zero to show up only in the first column of the Routh table? 

9. What causes an entire row of zeros to show up in the Routh table? 

10. Why do we sometimes multiply a row of a Routh table by a positive constant? 

11. Why do we not multiply a row of a Routh table by a negative constant? 

12. If a Routh table has two sign changes above the even polynomial and five sign 
changes below the even polynomial, how many right-half-plane poles does the 
system have? 

13. Does the presence of an entire row of zeros always mean that the system has jco 
poles? 

14. If a seventh-order system has a row of zeros at the s3 row and two sign changes 
below the s4 row, how many jw poles does the system have? 

15. Is it true that the eigenvalues of the system matrix are the same as the closed-
loop poles? 

16. How do we find the eigenvalues? 

Problems 
1. Tell how many roots of the following polynomial are 

in the right half-plane, in the left half-plane, and on 
the ;'ft>-axis: [Section: 6.2] 

P(s) =s5+ 3s4 + 5s3 + 4s2 + s + 3 

2. Tell how many roots of the following polynomial are 
in the right half-plane, in the left half-plane, and on 
the jco-axis: [Section: 6.3] 

P(S) = ^ + 6s3 + 5s2 + 8s + 20 

3. Using the Routh table, tell how many wileyPLUs 
poles of the following function are in C' i J«K 
the right half-plane, in the left half- control solutions 
plane, and on the jco-axis: [Section: 6.3] 

T n = s_ + S 
{S) s5 - s4 + 4s3 - 4s2 + 3s - 2 

4. The closed-loop transfer function of a system is 
[Section: 6.3] 

T n _ I +2s2 + 75 + 21 
{S) s5 - 2s4 + 3s3 -6s2 + 2s-4 

Determine how many closed-loop poles lie in the right 
half-plane, in the left half-plane, and on the jco-axis. 

5. How many poles are in the right half-plane, in the 
left half-plane, and on the y'cy-axis for the open-loop 
system of Figure P6.1? [Section: 6.3] 

R(s) s2 + 4s - 3 
s4 + 4s2 + 8A2 + 205 +15 

C{s) 

FIGURE P6.1 

6. How many poles are in the right half-plane, the left 
half-plane, and on the jco-axis for the open-loop 
system of Figure P6.2? [Section: 6.3] 

m -6 

s6 + s5 - 6.y4 + 52 + s - 6 

C(s) 

FIGURE P6.2 

7. Use MATLAB to find the pole 
locations for the system of 
Problem 6 . 

MATtAB 
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8. Use MATLAB and the Symbolic 
Math Toolbox to generate a 
Routh table to solve Problem 3 . 

9. Determine whether the unity feedback 
system of Figure P6.3 is stable if 
[Section: 6.2] 

symbolic Math 1 5 G i v e n t h e u n i t y feedback system of Figure P6.3 with 

G(s) = 
WileyPLUS 

Control Solutions 

G(s) = 
240 

[s + \)(s + 2)(s + 3)(s + 4) 

Ris) +<-> m G(s) 
C(s) 

FIGURE P6.3 

10. Use MATLAB t o find t h e p o l e MATLAB 
l o c a t i o n s for the system of fl B 
Problem 9 . 

11. Consider the unity feedback system of Figure P6.3 
with 

GW = 
1 

4s2(s2 + V 

Using the Routh-Hurwitz criterion, find the region 
of the s-plane where the poles of the closed-loop 
system are located. [Section: 6.3] 

12. In the system of Figure P6.3, let 

G(s) = 
K(s + 2) 

s{s-l)(s + 3) 

Find the range of K for closed-loop stability. 
[Section: 6.4] 

13. Given the unity feedback system of Figure P6.3 with 
[Section: 6.3] 

G(s) = 
84 

s(s7 + 5s6 + 12s5 + 25s4 + 45s3 + 50s2 + 82s + 60) 

tell how many poles of the closed-loop transfer func­
tion lie in the right half-plane, in the left half-plane, 
and on the /a>-axis. [Section: 6.3] 

14. Using the Routh-Hurwitz criterion and the unity 
feedback system of Figure P6.3 with 

G(s) = 
1 

2s4 + 5s3 + s2 + 2s 

tell whether or not the closed-loop system is stable. 
[Section: 6.2] 

s(s6 - 2s5 - s4 + 2s3 + 4s2 - 8s - 4) 

tell how many closed-loop poles are located in the 
right half-plane, in the left half-plane, and on the jco-
axis. [Section: 6.3] 

MATLAB 
16. Repeat Problem 15 using MATLAB. 

17. Consider the following Routh table. Notice that the 
s5 row was originally all zeros. Tell how many roots 
of the original polynomial were in the right half-
plane, in the left half-plane, and on the jco-axis. 
[Section: 6.3] 

.v7 

.v6 

,5 

-v4 

if 
s2 

.v1 

.v° 

1 
1 

3 

1 

7 

- 1 5 

- 9 

-21 

2 
2 

4 

- 1 

8 

-21 

0 

0 

- 1 
- 1 

- 1 

- 3 

0 

o 
0 

0 

- 2 
- 2 

0 

0 

0 

0 

0 

0 

18. For the system of Figure P6.4, tell how WileyPLUS 
many closed-loop poles are located in 
the right half-plane, in the left half- Co^oi solutions 
plane, and on the jco-axis. Notice that 
there is positive feedback. [Section: 6.3] 

R(s) + o £ ( { ) 18 

j 5 + j4-7.r3-752-18A' 
C(s) 

FIGURE P6.4 

19. Using the Routh-Hurwitz criterion, tell how many 
closed-loop poles of the system shown in Figure P6.5 
lie in the left half-plane, in the right half-plane, and 
on the ;<w-axis. [Section: 6.3] 

m +, ->s , 

p 
507 

.?4+3.<r3+10s2+30s+l69 

1 
s 

C{s) 

FIGURE P6.5 
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20. Determine if the unity feedback system of Figure 
P6.3 with 

G(s) = 
K{s2 + 1) 

(5 + 1)(5 + 2) 

can be unstable. [Section: 6.4] 

21. For the unity feedback system of Figure P6.3 with 

C M , ^ + 6 ) 
U 5(5 + 1)(5 + 4) 

determine the range of £ to ensure stability. 
[Section: 6.4] 

22. In the system of Figure P6.3, let 

K(s - a) 
G(s) = 

s(s - b) 

Find the range of £ for closed-loop stability when: 
[Section: 6.4] 

a. a < 0, b < 0 

b. a < 0, b > 0 

c. a > 0, b < 0 

d. a > 0, b>Q 
WileyPLUS 

23. For the unity feedback system of J J J 3 3 
Figure P6.3 with Controi So|ulions 

G(s) = 
£(5 + 3)(5 + 5) 
( 5 - 2 ) ( 5 - 4 ) 

determine the range of £ for stability. [Section: 6.4] 
MATLAB 

24. Repea t Problem 2 3 u s i n g MATLAB. flTTVfc 

25. Use MATLAB and t h e Symbol ic symbolic Math 
Math Toolbox t o g e n e r a t e a 
Routh t a b l e i n t e r m s of K t o 
s o l v e Problem 2 3 . 

26. Find the range of £ for stability for the unity feed­
back system of Figure P6.3 with [Section: 6.4] 

G(5) = 
£(5 + 4 ) ( 5 - 4 ) 

(5^+3) 

27. For the unity feedback system of Figure P6.3 with 

£(5 + 1) 

find the range of £ for stability. [Section: 6.4] 

28. Find the range of gain, £ , to ensure stability in the 
unity feedback system of Figure P6.3 with [Section: 
6.4] 

G(s) = 
£ ( 5 - 2 ) ( 5 + 4)(5 + 5) 

(52 + 12) 

29. Find the range of gain, £ , to ensure stability in the 
unity feedback system of Figure P6.3 with [Section: 
6.4] 

£(5 + 2) 
G(s) = 

[S2 + 1)(5 + 4 ) (5 -1 ) 

30. Using the Routh-Hurwitz criterion, find the value of 
£ that will yield oscillations for the unity feedback 
system of Figure P6.3 with [Section: 6.4] 

K 
G(s) = 

(5 + 77)(5 + 27)(5 + 38) 

31. Use the Routh-Hurwitz criterion to find the range 
of £ for which the system of Figure P6.6 is stable. 
[Section: 6.4] 

R(s) + E(s) 
K(s2-2s + 2) 

C(s) 

1 

s2 + 2s + 4 

FIGURE P6.6 

32. Repeat Problem 31 for the system of WileyPLUS 
Figure P6.7. [Section: 6.4] djgj 

Control Solutions 

-

> EU 

9 
K{s + 2) 

s(s+ l)(s + 3) 

s + 6 
s + 7 

cm 

FIGURE P6.7 

33. Given the unity feedback system of Figure P6.3 with 

G ( J ) = * < J + 4> 
W 5(5+1.2)(5 + 2) 

find the following: [Section: 6.4] 

a. The range of £ that keeps the system stable 

b. The value of £ that makes the system oscillate 
c. The frequency of oscillation when £ is set to the 

value that makes the system oscillate 
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34. Repeat Problem 33 for [Section: 6.4] 

K{s-l)(s-2) 
G(s) = 

5 + 2)(52+ 25+ 2) 

35. For the system shown in Figure P6.8, find the 
value of gain, K, that will make the system oscil­
late. Also, find the frequency of oscillation. 
[Section: 6.4] 

41 

a. Find the range of K for stability. 

b. Find the frequency of oscillation when the system 
is marginally stable. 

Using the Routh-Hurwitz criterion and the 
unity feedback system of Figure P6.3 with 
[Section: 6.4] 

G{s) = 
K 

5(5 + 1)(5 + 2)(5+5) 

mt§ 7\ ? K t<S 
»[X) -

1 
s(s+l)(s+3) 

s 

C{s) 

FIGURE P6.8 

WileyPLUS 

36. Given the unity feedback system of fTTTTTfc 
Figure P6.3 with [Section: 6.4] 

42. 

Control Solutions 

G(s) = 
Ks(s + 2) 

a. Find the range of K for stability. 

b. Find the value of K for marginal stability. 

c. Find the actual location of the closed-loop poles 
when the system is marginally stable. 

Find the range of K to keep the system shown in 
Figure P6.9 stable. [Section: 6.4] 

R(s) + 

> 2 - 45 + 8)(5 + 3) 

a. Find the range of K for stability. 

b. Find the frequency of oscillation when the system 
is marginally stable. 

MATLAB 
37. Repea t Problem 36 u s i n g MATLAB. 

38. For the unity feedback system of Figure P6.3 with 

K{s + 2) 

43. 

FIGURE P6.9 

Find the value of K in the system of wileypws 
Figure P6.10 that will place the closed- flVJili'E 
loop poles as shown. [Section: 6.4] control solutions 

G(s) = 
>2+ 1)(5+ 4)(5-1) 

R(s) 

find the range of K for which there will be only two 
closed-loop, right-half-plane poles. [Section: 6.4] 

39. For the unity feedback system of Figure P6.3 with 
[Section: 6.4] 

G(s) = f 
(5 + l)3(5 + 4) 

a. Find the range of K for stability. 

b. Find the frequency of oscillation when the system 
is marginally stable. 

40. Given the unity feedback system of Figure P6.3 with 
[Section: 6.4] 

G(s) = 

^0^ K C(s) 

I +¾ 
1 

JCO 

;: 

( 5 + 4 9 ) ( 5 2 + 4 5 + 5) FIGURE P6.10 Closed-loop system with pole plot 
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44. The closed-loop transfer function of a system is 

s2+KlS + K2 

48. A linearized model of a torque-controlled crane 
hoisting a load with a fixed rope length is 

T(s) = 
s4 + K^3 + K2s

2 +5s + l 

m=m=- m 

Determine the range of K\ in order for the system to 
be stable. What is the relationship between K\ and 
K2 for stability? [Section: 6.4] 

45. For the transfer function below, find the constraints 
on K\ and K2 such that the function will have only 
two jco poles. [Section: 6.4] 

T(s) = 
Kis + K2 

s4 + Kis3 + s2 + K2s + 1 

FT(s) mT s2{s2 +aa>l) 

where COQ = Jj-, L = the rope length, mj = the mass 

of the car, a — the combined rope and car mass , / r = 
the force input applied to the car, and xj = the 
resulting rope displacement {Marttinen, 1990). If 
the system is controlled in a feedback configuration 
by placing it in a loop as shown in Figure P6.ll , with 
K > 0, where will the closed-loop poles be located? 

46. The transfer function relating the output engine fan 
speed (rpm) to the input main burner fuel flow rate 
(lb/h) in a short takeoff and landing (STOL) fighter 
aircraft, ignoring the coupling between engine fan 
speed and the pitch control command, is (Schier-
man, 1992) [Section: 6.4] 

1.357 + 90,556 + 1970s5 +15,000.94 + 3120A3 - 41,300s2 - 50005 - 1840 
GW ~ <fi + 103s7 + 118056 + 40405s + 2150s4 - 896053 - 10,600s2 - 1550s - 415 4 9 . 

a. Find how many poles are in the right half-plane, 
in the left half-plane, and on the y'w-axis. 

b. Is this open-loop system stable? 

47. An interval polynomial is of the form 

P(s) = «o + a\s + &2S2 + a3,s3 + «4^4 + #5^ H 

with its coefficients belonging to intervals 
xi < cij < v,-, where Xj, y, are prescribed constants. 
Kharitonov's theorem says that an interval polyno­
mial has all its roots in the left half-plane if each one 
of the following four polynomials has its roots in the 
left half-plane {Minichelli, 1989): 

Ms) + 

m 
C(s) 

FIGURE P6.11 

The read/write head assembly arm of a computer 
hard disk drive (HDD) can be modeled as a rigid 
rotating body with inertia /¾. Its dynamics can be 
described with the transfer function 

* » - $ - -I** 

K\ (s) =XQ+ XIS + y2s
2 + V3.S3 + x4s

4 + x5s
5 + y6s

6 + 

where X(s) is the displacement of the read/write 
head and F(s) is the applied force (Yan, 2003). 
Show that if the HDD is controlled in the con­
figuration shown in Figure P6. l l , the arm will 
oscillate and cannot be positioned with any pre­
cision over a HDD track. Find the oscillation 
frequency. 

yxs + y2s
2 + X3S3 + X4S4 K2(s)=x0 

^3(5) = y0 + x\s + x2s
2 + y353 

y5
s +yes 50. A system is represented in state space as state space 

V 4 5 4 + X5S" x6s
6 + 

K4 {s) =yo+y>iS + x2s
2 + X3S3 + y4s

4 + y5s
5 + x^ -\ 

Use Kharitonov's theorem and the Routh-Hurwitz 
criterion to find if the following polynomial has any 
zeros in the right-half-plane. 

x = 

y = 

"0 
2 
1 

1 1 

1 
2 

- 4 

31 
- 4 

3 
x-t-

roi 
1 
0 

Olx 

P(s) = ao + a\s + a2s
2 + a^s3 

2 < a0 < 4; 1 < a\ < 2; 4 < a2 < 6; « 3 - 1 

Determine how many eigenvalues are in the right 
half-plane, in the left half-plane, and on the y'w-axis. 
[Section: 6.5] 

P6.ll
P6.ll
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51. UseMATLABtofind t h e e i g e n v a l ­
ues of t h e f o l l o w i n g s y s t e m : 

MATLAB 

0 1 
0 1 

- 1 1 

0" 
- 4 

8 
x + 

0 
0 
0 

0 
0 
3 

1 
1 

- 4 

01 
3 

- 5 
x + 

0 
0 
1 

State Space 

X = 

y = [ 0 0 l]x 

52. The following system in state space 
represents the forward path of a unity 
feedback system. Use the Routh-
Hurwitz criterion to determine if 
the closed-loop system is stable. [Sec­
tion: 6.5] 

x = 

y = [0 1 l ]x 

53. Repeat Problem 52 using 
MATLAB. 

54. A Butterworth polynomial is of the form 

Bn(s) = 1 + (-1)11 f—1 ",n>0. 

State Space 

WileyPLUS 

Control Solutions 

of gain, K, that will keep the system stable. Can the 
system ever be unstable for positive values of K7 

56. A common application of control systems is in 
regulating the temperature of a chemical process 
(Figure P6.13). The flow of a chemical reactant to a 
process is controlled by an actuator and valve. The 
reactant causes the temperature in the vat to 
change. This temperature is sensed and compared 
to a desired set-point temperature in a closed loop, 
where the flow of reactant is adjusted to yield the 
desired temperature. In Chapter 9, we will learn 
how a PID controller is used to improve the per­
formance of such process control systems. Figure 
P6.13 shows the control system prior to the addition 
of the PID controller. The PID controller is 
replaced by the shaded box with a gain of unity. 
For this system, prior to the design of the PID 
controller, find the range of amplifier gain, K, to 
keep the system stable. 

MATLAB 
Desired 

temperature 
scl point + 

W * I 

Actuator Chemical 
Future PID and heat 
controller Amplifier valve process Actual 

temperature 

s + 0.4 
0.7 

s2+ 1.75 + 0.25 

0.1 
5 + 0.1 

Temperature 
sensor 

Use the Routh-Hurwitz criteria to find the zeros of FIGURE P6.13 Block diagram of a chemical process control 
a Butterworth polynomial for: system 

a. n = 1; 

b. n=2 

DESIGN PROBLEMS 
55. A model for an airplane's pitch loop is 

shown in Figure P6.12. Find the range 

WileyPLUS 

Control Solutions 

Commanded 
pitch angle + 

Controller Aircraft dynamics 

K(s+l) 

(.9 + 4.85) 

s+\0 

s2 + 0.6s + 9 

Pitch atmle 

Gyro 

FIGURE P6.12 Aircraft pitch loop model 

57. A robot arm called ISAC (Intelligent Soft Arm 
Control) can be used as part of a system to feed 
people with disabilities (see Figure P6.14(a)). The 
control system guides the spoon to the food and 
then to a position near the person's mouth. The arm 
uses a special pneumatically controlled actuator 
called a rubbertuator. Rubbertuators consist of rub­
ber tubes covered with fiber cord. The actuator 
contracts in length when pneumatic pressure is 
increased and expands in length when pressure is 
decreased. This expansion and contraction in length 
can drive a pulley or other device. A video camera 

*" provides the sight for the robot and the tracking 
loop {Kara, 1992). Assume the simplified block 
diagram shown in Figure P6.14(fr) for regulating 
the spoon at a distance from the mouth. Find the 
range of K for stability. (Use of a program with 
symbolic capability is recommended.) 
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III 

mi(9s 
- A 

Controller 

£(5+0.01)(5+6) 

5(.v+20)(5+l00) 

Rubbertuator 
and load 

10 

52+10s+29 

H
I 

a*) 

FIGURE P6.14 a. IS AC used for feeding (Courtesy of 
Kazuhiko Kawamura, Vanderbilt University.) 
b. simplified block diagram 

WileyPLUS 

Control Solutions j 

58. Often an aircraft is required to tow 
another vehicle, such as a practice 
target or glider. To stabilize the 
towed vehicle and prevent it from 
rolling, pitching, and yawing, an autopilot is built 
into the towed vehicle. Assume the block diagram 
shown in Figure P6.15 represents the autopilot roll 
control system (Cochran, 1992). Find the range of K 
to keep the roll angle stable. 

Commanded 
roll angle 

¢,-(1) + 

Compensator Actuator 

® -
K(5+0.6)(5+6) 

(s+0.l)(5+100) 
—̂ - 200 

,s2+12s+100 

Roll Actual 
dynamics roll angle 

#fe'J 500 
4(5+6) 

FIGURE P6.15 Towed vehicle roll control 

59. Cutting forces should be kept constant during 
machining operations to prevent changes in spindle 
speeds or work position. Such changes would dete­
riorate the accuracy of the work's dimensions. A 
control system is proposed to control the cutting 
force. The plant is difficult to model, since the 

Desired 
force 
mt&) . 

^yy 

I 

Controller 

K 

Plant 

63X106 

(5+30)(5+140)(5 + 2.5) 

Actual 
force 

cm 

FIGURE P6.16 Cutting force control system (Reprinted with 
permission of ASME.) 

factors that affect cutting force are time varying 
and not easily predicted. However, assuming 
the simplified force control model shown in Figure 
P6.16, use the Routh-Ffurwitz criterion to find the 
range of K to keep the system stable (Rober, 1997). 

60. Transportation systems that use magnetic levitation 
can reach very high speeds, since contact friction at 
the rails is eliminated (see Figure P6.17(a)). Electro­
magnets can produce the force to elevate the vehi­
cle. Figure P6.17(6) is a simulation model of a 
control system that can be used to regulate the 
magnetic gap. In the figure, Zvin(s) represents a 
voltage proportional to the desired amount of levi­
tation, or gap. Zvout(s) represents a voltage propor­
tional to the actual amount of levitation. The plant 
models the dynamic response of the vehicle to 

A, i ^ ? ^ 
<f 

Controller 

£(5+0.8)(5+103) 

Plant 

7570 
(5+62.61)(5-62.61) 

2,.,,,,,(5) 

(b) 
FIGURE P6.17 a. A magnetic levitation transportation system 
(© Japan Air Lines/Photo Researchers); b. simplified block 
diagram (© 1998 IEEE) 
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signals from the controller {Bittar, 1998). Use the 
Routh-Hurwitz criterion to find the range of gain, 
K, to keep the closed loop system stable. 

61. A transfer function from indoor radiator power, 
Q(s), to room temperature, T(s), in an 11m2 

room is 

- ZM - 1 x l(T6j2 + 1.314 x 10"9y + 2.66 x 10"13 

Q(s) " s3 + 0.00163̂ 2 + 5.272 x 10_7s + 3.538 x 10-11 

where Q is in watts and Tis in °C (Thomas, 2005). 
The room's temperature will be controlled by 
embedding it in a closed loop, such as that of Figure 
P6.11. Find the range of K for closed-loop stability. 

62. During vertical spindle surface grinding, adjust­
ments are made on a multi-axis computer numerical 
control (CNC) machine by measuring the applied 
force with a dynamometer and applying appropriate 
corrections. This feedback force control results in 
higher homogeneity and better tolerances in the 
resulting finished product. In a specific experiment 
with an extremely high feed rate, the transfer func­
tion from the desired depth of cut (DOC) to applied 
force was 

F(s) Kc 

DOC{s) 1 + 
K< Kc 1 

ms2 + bs + k KfTs+1 

where k = 2.1 xl04N/m, b = 0.78 Ns/m, m = 1.2x 
1(T4 Kg, Kc = 1.5 x 104 N/mm and T = 0.004 s. Kf 

is a parameter that is varied to adjust the system. 
Find the range of Kf under which the system is 
stable (Hekman, 1999). 

63. Figure P6.18 depicts the schematic diagram of a 
phase shift oscillator. 

The circuit will oscillate if it is designed to have 
poles on the y'w-axis. 
a. Show that the transfer function for the passive 

network in the circuit is given by 

V2(s) -1 
ViCO "-±)fr* ; 

sRC 
3 sRC 

b. Show that the oscillator's characteristic equation 
is given by 

\-K * = 0. 

1 + 
1 

sRC 
2 + 

1 

sRC 
- 3 -

sRC 

where K = — 
Ri 

c. Use the Routh-Hurwitz criterion to obtain the 
oscillation condition and the oscillation 
frequency. 

64. In order to obtain a low-cost lithium-ion battery 
charger, the feedback loop of Figure P6.3 is used, 
where G(s) = Gc(s)P(s). The following transfer 
functions have been derived for G(s) (Tsang, 
2009): 

P(s) = 
R\R2CiC2s

2 + (Ri C, + R2Ci + R2C2)s + 1 
Ct(l+R2Cz)s 

K, 
Gc(s)=Kp + -t-

FIGURE P6.18 Phase shift oscillator 

If Rt = 0,15 0;i% = 0.44(1; Ci = 7200 F; and C2 = 
170 F use the Routh-Hurwitz criteria to find the 
range of positive Kj> and Kj for which the system is 
closed-loop stable. 

65. Figure P6.19 is a simplified and linearized block 
diagram of a cascade control system, which is used 
to control water level in a steam generator of a 
nuclear power plant (Wang, 2009,). 

In this system, the level controller, G/C(s), is the 
master controller and the feed-water flow controller, 
Gpc(s) is the slave controller. Using mass balance 
equations, the water level would ordinarily be 
regarded as a simple integration process of water 
flow. In a steam generator, however, steam flow rate 
and the cooling effect of feed-water change the 
dynamics of that process. Taking the latter into 
account and ignoring the much-less pronounced 
impact of changes in steam flow rate, a first-order 
lag plus time delay is introduced into the transfer 
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Set point 

_ it 
G,.v(s) >6& * 

1 i 

GFC (S) 
Y(s) 

Gv(.v) 

FIGURE P6.19 

Q,As) 
GfiAs) 

Controlled 
level 
C(s) 

function, Gfti.(s), relating the controlled level, C(s), 
to feed-water flow rate, Qw(s) as follows: 

G fw 5 = 
C(s) 

Qw(s) s(Tis + r 
2 

2e -2S 

s{25s + 1) 

5(255+ 1)(252+ 25 + 1) 

where K-\ = 2 is the process gain, TI = 2 is the pure 
time delay, and T\ — 25 is the steam generator's 
time constant. (The expression e~TlS represents 
a time delay. This function can be represented by 
what is known as a Pade approximation. This ap­
proximation can take on many increasingly compli­
cated forms, depending upon the degree of accuracy 
required. Here we use the Pade approximation, 

e~x ss ~, and specific numerical values for 

the considered steam generator.) 
The dynamic characteristics of the control valve 

are approximated by the transfer function: 
Qw(s) Kv 1 

Gv(s) = where Kv is the 
Y(s) Tvs + 1 3s + 1' 

valve gain and Tv is its time constant. 
Given that: GFC(s) = KPFC + KDFCS = 0.5 + 2s 

and GLC{$) = KpLC + KDLC S = 0.5 +KS, use the 
Routh-Hurwitz criterion to find the range of the 
level controller's derivative gain, KoLC = K > 0, 
that will keep the system stable. 

66. Look-ahead information can be used to automati­
cally steer a bicycle in a closed-loop configuration. 
A line is drawn in the middle of the lane to be 
followed, and an arbitrary point is chosen in the 
vehicle's longitudinal axis. A look-ahead offset is 
calculated by measuring the distance between the 
look-ahead point and the reference line and is used 
by the system to correct the vehicle's trajectory. A 
linearized model of a particular bicycle traveling on 
a straight-line path at a fixed longitudinal speed is 

V 

r 

f 
[Y,\ 

= 

11.7 
-3.5 

0 
1 

6 
-24 

1 
0 

61.6K 
66.9K 
0 

10 

7.7tf] 
8AK 
0 
0 

~V 1 
/' 

In this model, V=bicycle's lateral velocity, r = 
bicycle's yaw velocity, ^ = bicycle's yaw accelera­
tion, and Yg = bicycle's center of gravity coordinate 
on the y-axis. K is a controller parameter to be 
chosen by the designer (Ozgiiner, 1995). Use the 
Routh-Hurwitz citerion to find the range of K for 
which the system is closed-loop stable. 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 
67. High-speed rail pantograph. Problem 21 in Chapter 1 

discusses active control of a pantograph mechanism 
for high-speed rail systems. In Problem 79(a), Chap­
ter 5, you found the block diagram for the active 
pantograph control system. Using your solution for 
Problem 79(a) in Chapter 5 and the Routh-Hurwitz 
criterion, find the range of controller gain, K, that will 
keep the system stable (O'Connor, 1997). 

68. Control of HIV/AIDS. The HIV infection linear­
ized model developed in Problem 82, Chapter 4, can 
be shown to have the transfer function 

P(s) = 
-520s - 10.3844 Y{s) 

Ui{s) s3 + 2.6817^2 + 0.11^ + 0.0126 

Desired virus 
count elianjje + 

'0~* G(s) ^-H Pis) 
Virus count change. K(.v) 

FIGURE P6.20 

It is desired to develop a policy for drug delivery to 
maintain the virus count at prescribed levels. For 
the purpose of obtaining an appropriate ui(t), 
feedback will be used as shown in Figure P6.20 
(Craig, 2004). 
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Ref. 
signal 

+ 

Speed 
error 
EM 

Speed 
controller 

Ks + 40 

Feedback 
speed signal 

KssGOd 

Uc(s) 

Torque 
controller 
& power 
amplifier 

>& 
IO5 + 6 

Ua(s) 

Armature 
resistance 

R„(s) 

5® 
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FIGURE P6.21 

Motive 
torque 
T(s) 

+ 

0.6154 * 

TL(s) 

0-
Friction 
torque 
Tds) 

1 

7.2265 

0.1 

Motor 
angular 
speed 

n(S) 0.3 
4.875 

Vehicle 
speed 
V(s) 

• 

As a first approach, consider G(s) = K, a constant 
to be selected. Use the Routh-Hurwitz criteria to 
find the range of K for which the system is closed-
loop stable. 

69. Hybrid vehicle. Figure P6.21 shows the HEV system 
presented in Chapter 5, where parameter values 

have been substituted. It is assumed here that the 
speed controller has a proportional gain, Kp, to be 
adjusted. Use the Routh-Hurwitz stability method 
to find the range of positive Kp for which the system 
is closed-loop stable (Graebe, 1995). 

Cyber Exploration Laboratory 
Experiment 6.1 

Obj ectives To verify the effect of pole location upon stability. To verify the effect 
upon stability of loop gain in a negative feedback system. 

Minimum Required Software Packages MATLAB, Simulink, and the 
Control System Toolbox 

Prelab 
1. Find the equivalent transfer function of the negative feedback system of Figure 

P6.22 if 

G(s) = 
K 

s{s + 2V 
and H(s) = 1 

2. For the system of Prelab 1, find two values of gain that will yield closed-loop, 
overdamped, second-order poles. Repeat for underdamped poles. 

3. For the system of Prelab 1, find the value of gain, K, that will make the system 
critically damped. 

«w + ^ . 

— V G(s) 

H(s) -̂ — 

cm 

FIGURE P6.22 
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4. For the system of Prelab 1, find the value of gain, K, that will make the system 
marginally stable. Also, find the frequency of oscillation at that value of K that 
makes the system marginally stable. 

5. For each of Prelab 2 through 4, plot on one graph the pole locations for each case 
and write the corresponding value of gain, K, at each pole. 

Lab 

1. Using Simulink, set up the negative feedback system of Prelab 1. Plot the step 
response of the system at each value of gain calculated to yield overdamped, 
underdamped, critically damped, and marginally stable responses. 

2. Plot the step responses for two values of gain, K, above that calculated to yield 
marginal stability. 

3. At the output of the negative feedback system, cascade the transfer function 

Set the gain, K, at a value below that calculated for marginal stability and plot the 
step response. Repeat for K calculated to yield marginal stability. 

Postlab 
1. From your plots, discuss the conditions that lead to unstable responses. 
2. Discuss the effect of gain upon the nature of the step response of a closed-loop 

system. 

Experiment 6.2 

Objective To use the Lab VIEW Control Design and Simulation Module for 
stability analysis. 

Minimum Required Software Package Lab VIEW with the Control Design 
and Simulation Module 

Prelab Select six transfer functions of various orders and use Routh-Hurwitz to 
determine their stability. 

Lab Create a LabVIEW VI that receives the order and the coefficients of the 
characteristic equation and outputs the location of the poles and information 
regarding stability. 

Postlab Verify the stability of the systems from your Prelab. 
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