
Time Response J 4 

^ Chapter Learning Outcomes J 
After completing this chapter the student will be able to: 

• Use poles and zeros of transfer functions to determine the time response of a control 
system (Sections 4.1-4.2) 

• Describe quantitatively the transient response of first-order systems (Section 4.3) 

• Write the general response of second-order systems given the pole location 
(Section 4.4) 

• Find the damping ratio and natural frequency of a second-order system (Section 4.5) 

• Find the settling time, peak time, percent overshoot, and rise time for an under-
damped second-order system (Section 4.6) 

• Approximate higher-order systems and systems with zeros as first- or second-order 
systems (Sections 4.7-4.8) 

• Describe the effects of nonlinearities on the system time response (Section 4.9) 

• Find the time response from the state-space representation (Sections 4.10-4.11) 

( ^ Case Study Learning Outcomes J 
You will be able to demonstrate your knowledge of the chapter objectives with case 
studies as follows-. 

• Given the antenna azimuth position control system shown on the front endpapers, 
you will be able to (1) predict, by inspection, the form of the open-loop angular 
velocity response of the load to a step voltage input to the power amplifier; 
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162 Chapter 4 Time Response 

(2) describe quantitatively the transient response of the open-loop system; 
(3) derive the expression for the open-loop angular velocity output for a step 
voltage input; (A) obtain the open-loop state-space representation; (5) plot the 
open-loop velocity step response using a computer simulation. 

• Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS) 
vehicle's pitch control system shown on the back endpapers, you will be able to 
predict, find, and plot the response of the vehicle dynamics to a step input 
command. Further, you will be able to evaluate the effect of system zeros and 
higher-order poles on the response. You also will be able to evaluate the roll 
response of a ship at sea. 

^ 4 . 1 Introduction 
In Chapter 2, we saw how transfer functions can represent linear, time-invariant 
systems. In Chapter 3, systems were represented directly in the time domain via the 
state and output equations. After the engineer obtains a mathematical representa­
tion of a subsystem, the subsystem is analyzed for its transient and steady-state 
responses to see if these characteristics yield the desired behavior. This chapter is 
devoted to the analysis of system transient response. 

It may appear more logical to continue with Chapter 5, which covers the 
modeling of closed-loop systems, rather than to break the modeling sequence with 
the analysis presented here in Chapter 4. However, the student should not continue 
too far into system representation without knowing the application for the effort 
expended. Thus, this chapter demonstrates applications of the system representation 
by evaluating the transient response from the system model. Logically, this approach 
is not far from reality, since the engineer may indeed want to evaluate the response 
of a subsystem prior to inserting it into the closed-loop system. 

After describing a valuable analysis and design tool, poles and zeros, we begin 
analyzing our models to find the step response of first- and second-order systems. 
The order refers to the order of the equivalent differential equation representing the 
system—the order of the denominator of the transfer function after cancellation of 
common factors in the numerator or the number of simultaneous first-order 
equations required for the state-space representation. 

^ 4.2 Poles, Zeros, and System Response 
The output response of a system is the sum of two responses: the forced response and 
the natural response.1 Although many techniques, such as solving a differential 
equation or taking the inverse Laplace transform, enable us to evaluate this output 
response, these techniques are laborious and time-consuming. Productivity is aided 
by analysis and design techniques that yield results in a minimum of time. If the 
technique is so rapid that we feel we derive the desired result by inspection, we 
sometimes use the attribute qualitative to describe the method. The use of poles and 

1 The forced response is also called the steady-state response or particular solution. The natural response is 
also called the homogeneous solution. 
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zeros and their relationship to the time response of a system is such a technique. 
Learning this relationship gives us a qualitative "handle" on problems. The concept 
of poles and zeros, fundamental to the analysis and design of control systems, 
simplifies the evaluation of a system's response. The reader is encouraged to master 
the concepts of poles and zeros and their application to problems throughout this 
book. Let us begin with two definitions. 

Poles of a Transfer Function 
The poles of a transfer function are (1) the values of the Laplace transform variable, 
s, that cause the transfer function to become infinite or (2) any roots of the 
denominator of the transfer function that are common to roots of the numerator. 

Strictly speaking, the poles of a transfer function satisfy part (1) of the 
definition. For example, the roots of the characteristic polynomial in the denomina­
tor are values of s that make the transfer function infinite, so they are thus poles. 
However, if a factor of the denominator can be canceled by the same factor in the 
numerator, the root of this factor no longer causes the transfer function to become 
infinite. In control systems, we often refer to the root of the canceled factor in the 
denominator as a pole even though the transfer function will not be infinite at this 
value. Hence, we include part (2) of the definition. 

Zeros of a Transfer Function 
The zeros of a transfer function are (1) the values of the Laplace transform variable, 
s, that cause the transfer function to become zero, or (2) any roots of the numerator 
of the transfer function that are common to roots of the denominator. 

Strictly speaking, the zeros of a transfer function satisfy part (1) of this 
definition. For example, the roots of the numerator are values of s that make the 
transfer function zero and are thus zeros. However, if a factor of the numerator can 
be canceled by the same factor in the denominator, the root of this factor no longer 
causes the transfer function to become zero. In control systems, we often refer to the 
root of the canceled factor in the numerator as a zero even though the transfer 
function will not be zero at this value. Hence, we include part (2) of the definition. 

Poles and Zeros of a First-Order System: An Example 
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s — - 5 , and a zero 
exists at -2 . These values are plotted on the complex s-plane in Figure 4.1(b), using 
an x for the pole and a O f°r the zero. To show the properties of the poles and zeros, 
let us find the unit step response of the system. Multiplying the transfer function of 
Figure 4.1(a) by a step function yields 

(4.i; 
S\S •+• J) S S -|- J 8 J t J 
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(4.2) 
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R(s) = r 
G(s) 

s + 2 
s + 5 

C(s) 

-*-o -5 -2 

5-plane 

• * - & 

Input pole System zero System pole 

Output 
transform 

Output 
time 

response 
c(t) = - + «** i 2 

^1 _X^ 
i *- 1 i ^ 1 
Forced response Natural response 

(c) 

FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution 
of a system response. Follow blue arrows to see the evolution of the response component 
generated by the pole or zero. 

From the development summarized in Figure 4.1(c), we draw the following 
conclusions: 

1. A pole of the input function generates the form of the forced response (that is, the 
pole at the origin generated a step function at the output). 

2. A pole of the transfer function generates the form of the natural response (that is, 
the pole at - 5 generated e- 5 ') . 

3. A pole on the real axis generates an exponential response of the form e~°", where 
-a is the pole location on the real axis. Thus, the farther to the left a pole is on the 
negative real axis, the faster the exponential transient response will decay to 
zero (again, the pole at —5 generated e~5t; see Figure 4.2 for the general case). 

4. The zeros and poles generate the amplitudes for both the forced and natural 
responses (this can be seen from the calculation of A and B in Eq. (4.1)). 

Let us now look at an example that demonstrates the technique of using poles 
to obtain the form of the system response. We will learn to write the form of the 
response by inspection. Each pole of the system transfer function that is on the real 
axis generates an exponential response that is a component of the natural response. 
The input pole generates the forced response. 
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Pole at -a generates 
response Ke~at 

J(o 

s-plane 

FIGURE 4.2 Effect of a real-axis pole upon transient response. 

Example 4.1 

Evaluating Response Using Poles 

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in general terms. 
Specify the forced and natural parts of the solution. 

SOLUTION: By inspection, each system pole generates an exponen­
tial as part of the natural response. The input's pole generates the 
forced response. Thus, 

R(s) = 7 (s + 3) 

(s + 2)(s + 4)(s + 5) 

C(s) 

C{s) = 
Kl &2 ^ 3 &4 
5 5 + 2 5 + 4 5 + 5 

J L 
Forced 

response 
Natural 
response 

Taking the inverse Laplace transform, we get 

c(t) — K\ +K.2e-2< + Kse-4' + ^4e-5' 
I I I I 
Forced 

response 
Natural 
response 

FIGURE 4.3 System for Example 4.1 

(4.3) 

(4.4) 

Skill-Assessment Exercise 4.1 

PROBLEM: A system has a transfer function, G(s) = 
10(5 + 4)(5 + 6) 

(5+l)(5 + 7)(5 + 8)(5 + 10)" 

Write, by inspection, the output, c(f), in general terms if the input is a unit step. 

ANSWER: -it c(t) =A+ Be'1 + Ce~n + De~sl + Ee ,-10/ 

In this section, we learned that poles determine the nature of the time 
response: Poles of the input function determine the form of the forced response, 
and poles of the transfer function determine the form of the natural response. 
Zeros and poles of the input or transfer function contribute to the amplitudes of the 
component parts of the total response. Finally, poles on the real axis generate 
exponential responses. 
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( 43 First-Order Systems 
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We now discuss first-order systems without zeros to define a 
performance specification for such a system. A first-order system 
without zeros can be described by the transfer function shown in 
Figure 4.4(a). If the input is a unit step, where R(s) = 1/s, the Laplace 
transform of the step response is C(s), where 

(a) (b) 

FIGURE 4.4 a. First-order system; b. pole plot 
C(s) = R{s)G(s) = 

Virtual Experiment 4.1 
First-Order 

Open-Loop Systems 
Put theory into practice and find 
a first-order transfer function 
representing the Quanser Rotary 
Servo. Then validate the model 
by simulating it in Lab VIEW. 
Such a servo motor is used in 
mechatronic gadgets such as 
cameras. 

Virtual experiments are found 
on WileyPLUS. 

s(s + a) 

Taking the inverse transform, the step response is given by 

c(t) = cf(t) + Cn(t) = 1 - e-

(4.5) 

(4.6) 

where the input pole at the origin generated the forced response Cf(t) = 1, and the 
system pole at —a, as shown in Figure 4.4(b), generated the natural response 
c«(0 = ~e~a'. Equation (4.6) is plotted in Figure 4.5. 

Let us examine the significance of parameter a, the only parameter needed to 
describe the transient response. When t — l/a, 

(4.7) \t=l/a = e~l = 0.37 

or 
c(t)\t= l/a 1 - e-at\l=l/a = 1 - 0.37 = 0.63 (4.8) 

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response 
performance specifications. 

Time Constant 
We call l/a the time constant of the response. From Eq. (4.7), the time constant can 
be described as the time for e~al to decay to 37% of its initial value. Alternately, from 
Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of 
its final value (see Figure 4.5). 

FIGURE 4.5 First-order system 
response to a unit step 

Initial slope = 1 
time constant 

63% of final value 
at t = one time constant 
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The reciprocal of the time constant has the units (1/seconds), or frequency. 
Thus, we can call the parameter a the exponential frequency. Since the derivative of 
e~at is —a when t = 0, a is the initial rate of change of the exponential at t = 0. Thus, 
the time constant can be considered a transient response specification for a first-
order system, since it is related to the speed at which the system responds to a 
step input. 

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)). 
Since the pole of the transfer function is at —a, we can say the pole is located at the 
reciprocal of the time constant, and the farther the pole from the imaginary axis, the 
faster the transient response. 

Let us look at other transient response specifications, such as rise time, Tr, and 
settling time, Ts, as shown in Figure 4.5. 

Rise Time, Tr 
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final 
value. Rise time is found by solving Eq. (4.6) for the difference in time at c(t) = 0.9 
and c(t) = 0.1. Hence, 

_2.31 0.11 2.2 
1 r — 

a a a 
(4.9) 

Settling Time, Ts 
Settling time is defined as the time for the response to reach, and stay within, 2% of 
its final value.2 Letting c(t) = 0.98 in Eq. (4.6) and solving for time, t, we find the 
settling time to be 

T-4-
J- S — 

a 

(4.10) 

First-Order Transfer Functions via Testing 
Often it is not possible or practical to obtain a system's transfer function analytically. 
Perhaps the system is closed, and the component parts are not easily identifiable. 
Since the transfer function is a representation of the system from input to output, the 
system's step response can lead to a representation even though the inner construc­
tion is not known. With a step input, we can measure the time constant and the 
steady-state value, from which the transfer function can be calculated. 

Consider a simple first-order system, G(s) = K/(s + a), whose step response is 

c w = * =«/5_JiAL (4.n) 
w s{s + a) s (s + a) v ' 

If we can identify K and a from laboratory testing, we can obtain the transfer 
function of the system. 

For example, assume the unit step response given in Figure 4.6. We determine 
that it has the first-order characteristics we have seen thus far, such as no overshoot 
and nonzero initial slope. From the response, we measure the time constant, that is, 
the time for the amplitude to reach 63% of its final value. Since the final value is 

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can 
be used. We will use settling time throughout the book to mean 2% settling time. 
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0.2 0.3 0.4 0.5 
Time (seconds) 

0.6 0.7 0.8 

FIGURE 4.6 Laboratory results of a system step response test 

about 0.72, the time constant is evaluated where the curve reaches 0.63 x 0.72 = 
0.45, or about 0.13 second. Hence, a = 1/0.13 = 7.7. 

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K/a = 0.72. Substituting the value of a, we find K = 5.54. Thus, the 
transfer function for the system is G(s) — 5.54/(s + 7.7). It is interesting to note that 
the response of Figure 4.6 was generated using the transfer function G(s) = 
5/(s + 7). 

Skill-Assessment Exercise 4.2 

PROBLEM: A system has a transfer function, G(s) — 
50 

5 + 50 
. Find the time con­

stant, Tc, settling time, Ts, and rise time, Tr. 

ANSWER: Tc = 0.02 s, Ts = 0.08 s, and Tr = 0.044 s. 

The complete solution is located at www.wiley.com/college/nise. 

£ 4.4 Second-Order Systems: Introduction 
Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order 
system exhibits a wide range of responses that must be analyzed and described. 
Whereas varying a first-order system's parameter simply changes the speed of the 
response, changes in the parameters of a second-order system can change the form of 
the response. For example, a second-order system can display characteristics much 

http://www.wiley.com/college/nise
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like a first-order system, or, depending on component values, display damped or 
pure oscillations for its transient response. 

To become familiar with the wide range of responses before formalizing our 
discussion in the next section, we take a look at numerical examples of the second-
order system responses shown in Figure 4.7. All examples are derived from Figure 
4.7(a), the general case, which has two finite poles and no zeros. The term in the 
numerator is simply a scale or input multiplying factor that can take on any value 
without affecting the form of the derived results. By assigning appropriate values to 
parameters a and b, we can show all possible second-order transient responses. The 
unit step response then can be found using C(s) = R(s)G(s), where R(s) = 1/s, 
followed by a partial-fraction expansion and the inverse Laplace transform. Details 
are left as an end-of-chapter problem, for which you may want to review Section 2.2. 

System Pole-zero plot Response 
G(s) 

(a) 
R(s)= | b 

P'+as + b 

C(s) 

General 

G(s) 

ib) RU)= j 

Overdamped 

J0> 

s-plane 

9 
s2+9s + 9 

C(5) 
X X -

-7.854 -1.146 

c(t) c(i) = l+0.nie-7S54' -
,4 1.171e-'-146' 

-*~<7 0.5 -

0 1 2 3 4 5 

(c) 
R(s)= I 

G(s) 

9 
s2+2s + 9 

C(s) 

Underdamped 

G(s) 

id) m> \u A C(s) 

Undamped 

G(s) 

(e) 
R(s)= I + 2 

s2+6s + 9 

C(s) 

Critically damped 

c(f) c{t) = \-eT'(cosf%t +^ sin\/80 
= 1-1.06e"' cos(/8i-l 9.47°) 

5-plane 
X 

FIGURE 4.7 Second-order 
systems, pole plots, and step 
responses 
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We now explain each response and show how we can use the poles to determine 
the nature of the response without going through the procedure of a partial-fraction 
expansion followed by the inverse Laplace transform. 

Overdamped Response, Figure 4.7(6) 
For this response, 

9 9 
C W = S(S2 + 9s + 9 ) = srs + 7.854)(5 + 1.146) ( 4 - 1 2 ) 

This function has a pole at the origin that comes from the unit step input and two real 
poles that come from the system. The input pole at the origin generates the constant 
forced response; each of the two system poles on the real axis generates an exponential 
natural response whose exponential frequency is equal to the pole location. Hence, the 
output initially could have been written as c(t) = Ki +K2e~7-854t + K3e-U4(". This 
response, shown in Figure 4.7(b), is called overdamped.3 We see that the poles tell us the 
form of the response without the tedious calculation of the inverse Laplace transform. 

Underdamped Response, Figure 4.7 (c) 
For this response, 

C(s) = , , \ (4.13) 
v ; s{s2 4-25 + 9) v ) 

This function has a pole at the origin that comes from the unit step input and two 
complex poles that come from the system. We now compare the response of the 
second-order system to the poles that generated it. First we will compare the pole 
location to the time function, and then we will compare the pole location to the plot. 
From Figure 4.7(c), the poles that generate the natural response are at s = —1 ± /Yo. 
Comparing these values to c(t) in the same figure, we see that the real part of the pole 
matches the exponential decay frequency of the sinusoid's amplitude, while the 
imaginary part of the pole matches the frequency of the sinusoidal oscillation. 

Let us now compare the pole location to the plot. Figure 
4.8 shows a general, damped sinusoidal response for a second-
order system. The transient response consists of an exponen-

Exponentiai decay generated by tially decaying amplitude generated by the real part of the 
rea par o comp ex po e pair system pole times a sinusoidal waveform generated by 

the imaginary part of the system pole. The time constant of 
the exponential decay is equal to the reciprocal of the real part 
of the system pole. The value of the imaginary part is the 
actual frequency of the sinusoid, as depicted in Figure 4.8. This 
sinusoidal frequency is given the name damped frequency of 
oscillation, cod- Finally, the steady-state response (unit step) 

Sinusoidal oscillation generated by was generated by the input pole located at the origin. We call 
imaginary part of complex pole pair t h e type of response shown in Figure 4.8 an underdamped 

*"r response, one which approaches a steady-state value via a 
FIGURE 4.8 Second-order step response components transient response that is a damped oscillation. 
generated by complex poles The following example demonstrates how a knowledge 

of the relationship between the pole location and the transient response can lead 
rapidly to the response form without calculating the inverse Laplace transform. 

c{t) 

3 So named because overdamped refers to a large amount of energy absorption in the system, which 
inhibits the transient response from overshooting and oscillating about the steady-state value for a step 
input. As the energy absorption is reduced, an overdamped system will become underdamped and exhibit 
overshoot. 
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Example 4.2 

Form of Underdamped Response Using Poles 

PROBLEM: By inspection, write the form of the step response of the 
system in Figure 4.9. R(S) = T 200 

s* + 10s + 200 

C(s) 

SOLUTION: First we determine that the form of the forced response is a 
step. Next we find the form of the natural response. Factoring the FIGURE 4.9 System for Example 4.2 
denominator of the transfer function in Figure 4.9, we find the poles 
to be s = —5 ±yl3.23. The real part, - 5 , is the exponential frequency for the 
damping. It is also the reciprocal of the time constant of the decay of the 
oscillations. The imaginary part, 13.23, is the radian frequency for the sinusoidal 
oscillations. Using our previous discussion and Figure 4.7(c) as a guide, we ob­
tain c{t) = Ki + e~5t{K2 cos 13.23? + K3 sin 13.23r) = Ki + K4e"5'(cos 13.23* - 0), 

where <p = tan-1 K^/K^, K4 = JK\ + K\, and c(t) is a constant plus an exponen­
tially damped sinusoid. 

We will revisit the second-order underdamped response in Sections 4.5 and 4.6, 
where we generalize the discussion and derive some results that relate the pole 
position to other parameters of the response. 

Undamped Response, Figure 4.7((/) 
For this response, 

o 
C(s) = sis' 9) 

(4.14) 

This function has a pole at the origin that comes from the unit step input and two 
imaginary poles that come from the system. The input pole at the origin generates 
the constant forced response, and the two system poles on the imaginary axis 
at ±/3 generate a sinusoidal natural response whose frequency is equal to the 
location of the imaginary poles. Hence, the output can be estimated as c(t) = K\ + 
K4 cos(3? - ¢). This type of response, shown in Figure 4.7(d), is called undamped. 
Note that the absence of a real part in the pole pair corresponds to an exponential 
that does not decay. Mathematically, the exponential is e~0t = 1. 

Critically Damped Response, Figure 4.7 (e) 
For this response, 

9 9 
C(") = ^ 2 + 6* + 9 ) = ^ ~ ^ 

(4.15) 

This function has a pole at the origin that comes from the unit step input and two 
multiple real poles that come from the system. The input pole at the origin generates 
the constant forced response, and the two poles on the real axis at —3 generate a 
natural response consisting of an exponential and an exponential multiplied by time, 
where the exponential frequency is equal to the location of the real poles. Hence, the 
output can be estimated as c(r) = K\ + Kze~3' + Kste~3'. This type of response, shown 
in Figure 4.7(e), is called critically damped. Critically damped responses are the fastest 
possible without the overshoot that is characteristic of the underdamped response. 
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We now summarize our observations. In this section we defined the following 
natural responses and found their characteristics: 

1. Overdamped responses 

Poles: Two real at -o\, -cr2 

Natural response: Two exponentials with time constants equal to the reciprocal of 
the pole locations, or 

c(t) = Kxe-"1' + K2e-°2t 

2. Underdamped responses 

Poles: Two complex at — a a ± jcoa 

Natural response: Damped sinusoid with an exponential envelope whose time 
constant is equal to the reciprocal of the pole's real part. The radian frequency of 
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part 
of the poles, or 

c{t) = Ae~adt cos(codt - 0) 
3. Undamped responses 

Poles: Two imaginary at ±jco\ 

Natural response: Undamped sinusoid with radian frequency equal to the 
imaginary part of the poles, or 

c(t) ~ Acos(coit - <p) 
4. Critically damped responses 

Poles: Two real at — a\ 

Natural response: One term is an exponential whose time constant is equal to the 
reciprocal of the pole location. Another term is the product of time, t, and an 
exponential with time constant equal to the reciprocal of the pole location, or 

c(t) = Kie~a'1 + K2te-axt 

The step responses for the four cases of damping discussed in this section are 
superimposed in Figure 4.10. Notice that the critically damped case is the division 

FIGURE 4.10 Step responses for second-order system damping cases 
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between the overdamped cases and the underdamped cases and is the fastest 
response without overshoot. 

Skill-Assessment Exercise 4.3 

PROBLEM: For each of the following transfer functions, write, by inspection, the 
general form of the step response: 

a. G{s) = 

b. G(s) = 

c. G(s) = 

d. G(s) = 

400 

s2 + 12s + 400 
900 

s2 + 90s + 900 
225 

s2 + 305 + 225 

625 
J 2 + 625 

ANSWERS: 

a. c(t) = A + Be'61 cos(19.08* + ¢) 

b. c(t) = A + Be-18Mt + Ce-nMl 

c. c{t) =A+ Be'151 + Cte~l5t 

d. c(t) =A+Bcos(25r + ¢) 

The complete solution is located at www.wiley.com/college/nise. 

WileyPLUS 

Control Solutions 

In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of 
second-order systems. In Section 4.6, we will focus on the underdamped case and 
derive some specifications unique to this response that we will use later for analysis 
and design. 

^ 4.5 The General Second-Order System 
Now that we have become familiar with second-order systems and their responses, 
we generalize the discussion and establish quantitative specifications defined in such 
a way that the response of a second-order system can be described to a designer 
without the need for sketching the response. In this section, we define two physically 
meaningful specifications for second-order systems. These quantities can be used to 
describe the characteristics of the second-order transient response just as time 
constants describe the first-order system response. The two quantities are called 
natural frequency and damping ratio. Let us formally define them. 

Natural Frequency, con 
The natural frequency of a second-order system is the frequency of oscillation of the 
system without damping. For example, the frequency of oscillation of a series RLC 
circuit with the resistance shorted would be the natural frequency. 

http://www.wiley.com/college/nise
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Damping Ratio, £ 
Before we state our next definition, some explanation is in order. We have already seen 
that a second-order system's underdamped step response is characterized by damped 
oscillations. Our definition is derived from the need to quantitatively describe this 
damped oscillation regardless of the time scale. Thus, a system whose transient response 
goes through three cycles in a millisecond before reaching the steady state would have 
the same measure as a system that went through three cycles in a millennium before 
reaching the steady state. For example, the underdamped curve in Figure 4.10 has an 
associated measure that defines its shape. This measure remains the same even if we 
change the time base from seconds to microseconds or to millennia. 

A viable definition for this quantity is one that compares the exponential decay 
frequency of the envelope to the natural frequency. This ratio is constant regardless 
of the time scale of the response. Also, the reciprocal, which is proportional to the 
ratio of the natural period to the exponential time constant, remains the same 
regardless of the time base. 

We define the damping ratio, £, to be 

_ Exponential decay frequency 1 Natural period (seconds) 

Natural frequency (rad/second) 27r Exponential time constant 

Let us now revise our description of the second-order system to reflect the new 
definitions. The general second-order system shown in Figure 4.7(a) can be trans­
formed to show the quantities £ and con. Consider the general system 

G(s)=^—- (4.16) 
w s2 + as + b v ' 

Without damping, the poles would be on the /w-axis, and the response would be an 
undamped sinusoid. For the poles to be purely imaginary, a = 0. Hence, 

By definition, the natural frequency, con, is the frequency of oscillation of this system. 
Since the poles of this system are on the jco-axis at ±jy/b, 

m„ = Vb (4.18) 
Hence, 

b = co\ (4-19) 

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the 
complex poles have a real part, o\ equal to -a/2. The magnitude of this value is then 
the exponential decay frequency described in Section 4.4. Hence, 

_ Exponential decay frequency \cr\ _ a/2 . . 
Natural frequency (rad/second) con con 

from which 
a = 2;con (4.21) 

Our general second-order transfer function finally looks like this: 

G(s) = 7 ™2" o (4.22) 
w s2 + 2t,a)ns + co2 
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In the following example we find numerical values for £ and con by matching the 
transfer function to Eq. (4.22). 

PROBLEM: 

SOLUTION: 
2$(o„ = 4.2 

Example 4.3 

Finding £ and m„ For a Second-Order System 

Given the transfer function of Eq. (4.23), find £ and a>n. 

Comparing 
Substituting 

CM 36 
G ( j ) 52+4.2. + 36 

Eq. (4.23) to (4.22), co2
n = 36, from which eon = 

the value of can, £ = 0.35. 

(4.23) 

= 6. Also, 

Now that we have defined t, and con, let us relate these quantities to the pole 
location. Solving for the poles of the transfer function in Eq. (4.22) yields 

si, 2 = -#fc ± c»n \ / £ 2 - l (4.24) 
From Eq. (4.24) we see that the various cases of second-order response are a function 
of £; they are summarized in Figure 4.11.4 

( Poles Step response 

o < ?< l 

C=i 

C> i 

/w 

M, 
5-plane 

jco 5-plane 

-fan 

X 

-#-

-;«„ \ / l - C 2 

yffl 

-£<»„ 

s-plane 

-fa„+6)n \]tp--\ 

\ 
-X X-

jm 

t 

5-plane 

Undcrdamped 

c(t) 

Critically damped 

FIGURE 4.11 Second-order response as a function of damping ratio 
Overdamped 

*The student should verify Figure 4.11 as an exercise. 
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In the following example we find the numerical value of £ and determine the 
nature of the transient response. 

Example 4.4 

Characterizing Response from the Value of £ 

PROBLEM: For each of the systems shown in Figure 4.12, find the value of £ and 
report the kind of response expected. 

R(s) 12 
s2+8s+12 

C(s) R(s) 16 
s2+Ss+16 

C(s) 

(a) (b) 

R{s) 20 
s2+Ss+20 

C(s) 

(c) 

FIGURE 4.12 Systems for Example 4.4 

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16) 
and (4.22). Since a = 2t;a>n and con = y/b, 

< = 
2sfb 

(4.25) 

Using the values of a and b from each of the systems of Figure 4.12, we find 
£ = 1.155 for system (a), which is thus overdamped, since f > 1; £ = 1 for system 
(6), which is thus critically damped; and £ = 0.894 for system (c), which is thus 
underdamped, since f < 1. 

Skill-Assessment Exercise 4.4 

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do 
the following: (1) Find the values of £ and con; (2) characterize the nature of the 
response. 

ANSWERS: 

a. £ = 0.3, con = 20; system is underdamped 
b. % —1.5, mn = 30; system is overdamped 
c. < = 1, con = 15; system is critically damped 
d. £ = 0, con — 25; system is undamped 

The complete solution is located at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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This section defined two specifications, or parameters, of second-order sys­
tems: natural frequency, con, and damping ratio, £. We saw that the nature of the 
response obtained was related to the value of £. Variations of damping ratio alone 
yield the complete range of overdamped, critically damped, underdamped, and 
undamped responses. 

^ 4.6 Underdamped Second-Order Systems 
Now that we have generalized the second-order transfer function in terms of £ and 
co„, let us analyze the step response of an underdamped second-order system. Not 
only will this response be found in terms of £ and con, but more specifications 
indigenous to the underdamped case will be defined. The underdamped second-
order system, a common model for physical problems, displays unique behavior that 
must be itemized; a detailed description of the underdamped response is necessary 
for both analysis and design. Our first objective is to define transient specifications 
associated with underdamped responses. Next we relate these specifications to the 
pole location, drawing an association between pole location and the form of the 
underdamped second-order response. Finally, we tie the pole location to system 
parameters, thus closing the loop: Desired response generates required system 
components. 

Let us begin by finding the step response for the general second-order system 
of Eq. (4.22). The transform of the response, C(s), is the transform of the input times 
the transfer function, or 

C(s) = _ _ ^ £, K# + K3 
s{s2 + 2ra)ns + col) s s + Z&nS + aft 

where it is assumed that £ < 1 (the underdamped case). Expanding by partial 
fractions, using the methods described in Section 2.2, Case 3, yields 

1 (̂  + ^ , , ) + - ^ 0 ^ 1 - ^ 
C(s) = f1^ (4.27) 

* (s + rconf +of( l -?) 
Taking the inverse Laplace transform, which is left as an exercise for the student, 
produces 

c(t) = 1 - e~^"1 ( cos eony/l - ft + . I .sin a>„ y/l-f 

= 1 - —L=e-^1 cotfai/1-fr - ¢) 
%/1-t2 

(4.28) 

where 4> = tan-1 (£/\A - C2)-
A plot of this response appears in Figure 4.13 for various values of £, plotted 

along a time axis normalized to the natural frequency. We now see the relationship 
between the value of £ and the type of response obtained: The lower the value of £, 
the more oscillatory the response. The natural frequency is a time-axis scale factor 
and does not affect the nature of the response other than to scale it in time. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

FIGURE 4.13 Second-order underdamped responses for damping ratio values 

coj 

We have defined two parameters associated with second-order systems, £ and 
co„. Other parameters associated with the underdamped response are rise time, peak 
time, percent overshoot, and settling time. These specifications are defined as 
follows (see also Figure 4.14): 

1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final value 
to 0.9 of the final value. 

2. Peak time, Tp. The time required to reach the first, or maximum, peak. 
3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-

state, or final, value at the peak time, expressed as a percentage of the steady-state 
value. 

4. Settling time, Ts. The time required for the transient's damped oscillations to 
reach and stay within ±2% of the steady-state value. 

0- If final 

FIGURE 4.14 Second-order underdamped response specifications 
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Notice that the definitions for settling time and rise time are basically the same as the 
definitions for the first-order response. All definitions are also valid for systems of 
order higher than 2, although analytical expressions for these parameters cannot be 
found unless the response of the higher-order system can be approximated as a 
second-order system, which we do in Sections 4.7 and 4.8. 

Rise time, peak time, and settling time yield information about the speed of the 
transient response. This information can help a designer determine if the speed and 
the nature of the response do or do not degrade the performance of the system. For 
example, the speed of an entire computer system depends on the time it takes for a 
hard drive head to reach steady state and read data; passenger comfort depends in 
part on the suspension system of a car and the number of oscillations it goes through 
after hitting a bump. 

We now evaluate Tp, %OS, and Ts as functions of % and con. Later in this 
chapter we relate these specifications to the location of the system poles. A precise 
analytical expression for rise time cannot be obtained; thus, we present a plot and a 
table showing the relationship between £ and rise time. 

Evaluation of Tp 
Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing 
after t — 0. This task is simplified by "differentiating" in the frequency domain 
by using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26), 
we get 

&[c{t)] = sC(s) = , ™n r (4.29) 

Completing squares in the denominator, we have 

(On CO, M/I-? 

Therefore, 

&[c{i)] = P1 r = VX - 7 ; (4-30) 

(, + ̂  + ̂ (1-^) (* + *%)* + aft(l-rt 

c{t) = ^ ' e-^'sinojny/l - ?t (4.31) 

VW2 

Setting the derivative equal to zero yields 

con y/\ - ft = tin (4.32) 

or 

t=^==i (4-33) 

Each value of n yields the time for local maxima or minima. Letting n = 0 yields 
t = 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak, 
which occurs at the peak time, Tp, is found by letting n = 1 in Eq. (4.33): 
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Evaluation of %0S 
From Figure 4.14 the percent overshoot, %OS, is given by 

%OS = C m a x~C f i n a lxl00 
Cfinai 

(4.35) 

The term cmax is found by evaluating c(t) at the peak time, c{Tp). Using Eq. (4.34) for 
Tp and substituting into Eq. (4.28) yields 

cmax = c(Tp) = 1 - e-WV^i2) f cosn + K
 2sin TT 

= i + r ( W \ / f ? ) 

For the unit step used for Eq. (4.28), 

CGnal = 1 

Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain 

%OS = e-wV*1?) x 100 

(4.36) 

(4.37) 

(4.38) 

Notice that the percent overshoot is a function only of the damping ratio, £. 
Whereas Eq. (4.38) allows one to find %OS given £, the inverse of the equation 

allows one to solve for £ given %OS. The inverse is given by 

C = 
-ln(% OS/100) 

SJTT2 + In2 (% O5/100) 
(4.39) 

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or, 
equivalently, (4.39)) is plotted in Figure 4.15. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Damping ratio, £ 

FIGURE 4.15 Percent overshoot versus damping ratio 
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Evaluation of T5 
In order to find the settling time, we must find the time for which c(l) in Eq. (4.28) 
reaches and stays within ±2% of the steady-state value, Cfjnai. Using our definition, 
the settling time is the time it takes for the amplitude of the decaying sinusoid in 
Eq. (4.28) to reach 0.02, or 

1 " (4.40) ,-^nl. 

x/W' 
= 0.02 

This equation is a conservative estimate, since we are assuming that cos 

[con >/l - t?t - ¢) = 1 at the settling time. Solving Eq. (4.40) for r, the settling time is 

7\ = -ln(0.02Vl - C2) 
$(*>n 

(4.41) 

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as £ varies 
from 0 to 0.9. Let us agree on an approximation for the settling time that will be used 
for all values of £; let it be 

(4.42) 

Evaluation of Tr 
A precise analytical relationship between rise time and damping ratio, £, cannot be 
found. However, using a computer and Eq. (4.28), the rise time can be found. We 
first designate co„t as the normalized time variable and select a value for £. Using the 
computer, we solve for the values of co„t that yield c(t) = 0.9 and c(t) = 0.1. 
Subtracting the two values of cont yields the normalized rise time, a>nTr, for that 
value of £. Continuing in like fashion with other values of £, we obtain the results 
plotted in Figure 4.16.5 Let us look at an example. 

3.0 

| 2.6 

1 2.4 

I 2 - 2 

2 2.0 
x 
i i-8 
£ 1.6|-

1.4 h 

1.2 -
1.0 

Damping 
ratio 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Normalized 
rise time 

1.104 
1.203 
1.321 
1.463 
1.638 
1.854 
2.126 
2.467 
2.883 

0.1 0.2 0.3 0.4 0.5 0.6 
Damping ratio 

0.7 0.8 0.9 

FIGURE 4.16 Normalized rise 
time versus damping ratio for 
a second-order underdamped 
response 

5Figure 4.16 can be approximated by the following polynomials: conTr = 1.76¾3 - 0.417?2 +1.039?+ 1 
(maximum error less than | % for 0 < ? < 0.9), and f = 0.115(^,7,.)3 - 0.883(<onTr)

2+ 2.504{conTr) -
1.738 (maximum error less than 5% for 0.1 < f < 0.9). The polynomials were obtained using MATLAB's 
polyfit function. 
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Example 4.5 

Finding Tp, %0S, Ts, and Tr from a Transfer Function 

Virtual Experiment 4.2 
Second-Order 

System Response 

Put theory into practice studying 
the effect that natural frequency 
and damping ratio have on 
controlling the speed response 
of the Quanser Linear Servo in 
LabVIEW. This concept is ap­
plicable to automobile cruise 
controls or speed controls of 
subways or trucks. 

Virtual experiments are found 
on WileyPLUS. 

PROBLEM: Given the transfer function 

G(s) = 
100 

s2 + 15s + 100 
(4.43) 

find Tp, %OS, Ts, and Tr. 

SOLUTION: co„ and £ are calculated as 10 and 0.75, respectively. Now substitute 
£ and con into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that 
Tp = 0.475 second, %OS = 2.838, and 7 , = 0.533 second. Using the table 
in Figure 4.16, the normalized rise time is approximately 2.3 seconds. Dividing by con 

yields Tr = 0.23 second. This problem demonstrates that we can find Tp, %OS, Ts, 
and Tr without the tedious task of taking an inverse Laplace transform, plotting the 
output response, and taking measurements from the plot. 

.i") 

1 ^ ^ 

1 o \ 
-^0),,= -0,, 

* - - • 

s-plane 

- -jw„il- $2=-ja>a 

FIGURE 4.17 Pole plot for an underdamped 
second-order system 

We now have expressions that relate peak time, percent over­
shoot, and settling time to the natural frequency and the damping 
ratio. Now let us relate these quantities to the location of the poles 
that generate these characteristics. 

The pole plot for a general, underdamped second-order sys­
tem, previously shown in Figure 4.11, is reproduced and expanded in 
Figure 4.17 for focus. We see from the Pythagorean theorem that the 
radial distance from the origin to the pole is the natural frequency, 
con, and the cos 9 = ¢. 

Now, comparing Eqs. (4.34) and (4.42) with the pole location, 
we evaluate peak time and settling time in terms of the pole location. 
Thus, 

TP = 
n 71 

CO nVl-? m 
(4.44) 

r, = $Un 

7X (4.45) 

where coa is the imaginary part of the pole and is called the damped frequency of 
oscillation, and ad is the magnitude of the real part of the pole and is the exponential 
damping frequency. 



4.6 Underdamped Second-Order Systems 183 

%0S-> 

%OS\ 

i-plane 

FIGURE 4.18 Lines of 
constant peak time, Tp, 
settling time, Ts, and percent 
overshoot, %OS. Note: 
TS2 < TSl; TP2 < Tpi; 
%OS\ < %OS2. 

Equation (4.44) shows that Tp is inversely proportional to the imaginary 
part of the pole. Since horizontal lines on the s-plane are lines of constant imagmary 
value, they are also lines of constant peak time. Similarly, Eq. (4.45) tells us that 
settling time is inversely proportional to the real part of the pole. Since vertical lines 
on the s-plane are lines of constant real value, they are also lines of constant settling 
time. Finally, since £ = cos 0, radial lines are lines of constant £. Since percent 
overshoot is only a function of £, radial lines are thus lines of constant percent 
overshoot, %OS. These concepts are depicted in Figure 4.18, where lines of constant 
Tp, Ts, and %OS are labeled on the s-plane. 

At this point, we can understand the significance of Figure 4.18 by examining 
the actual step response of comparative systems. Depicted in Figure 4.19(A) are the 
step responses as the poles are moved in a vertical direction, keeping the real part the 
same. As the poles move in a vertical direction, the frequency increases, but the 
envelope remains the same since the real part of the pole is not changing. The figure 
shows a constant exponential envelope, even though the sinusoidal response is 
changing frequency. Since all curves fit under the same exponential decay curve, the 
settling time is virtually the same for all waveforms. Note that as overshoot increases, 
the rise time decreases. 

Let us move the poles to the right or left. Since the imaginary part is now 
constant, movement of the poles yields the responses of Figure 4.19(b). Here the 
frequency is constant over the range of variation of the real part. As the poles move 
to the left, the response damps out more rapidly, while the frequency remains the 
same. Notice that the peak time is the same for all waveforms because the imaginary 
part remains the same. 

Moving the poles along a constant radial line yields the responses shown in 
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the 
responses look exactly alike, except for their speed. The farther the poles are from 
the origin, the more rapid the response. 

We conclude this section with some examples that demonstrate the relation­
ship between the pole location and the specifications of the second-order under-
damped response. The first example covers analysis. The second example is a simple 
design problem consisting of a physical system whose component values we want to 
design to meet a transient response specification. 
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c(t) 

Envelope the same 

FIGURE 4.19 Step responses 
of second-order underdamped systems 
as poles move: a. with constant real 
part; b. with constant imaginary part; 
c. with constant damping ratio 
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Example 4.6 

Finding Tp, %0S, and T5 from Pole Location 

-/7 = -jo)d 

FIGURE 4.20 Pole plot for Example 4.6 

PROBLEM: Given the pole plot shown in Figure 4.20, find £, con, Tp, 
%OS, and Ts. 

SOLUTION: The damping ratio is given by £ = cos# = cos[arctan 
(7/3)] = 0.394. The natural frequency, to,,, is the radial distance 

from the origin to the pole, or con = y 72 + 32 = 7.616. The peak 
time is 

(4.46) TD = — = - = 0.449 second 
cod 7 

The percent overshoot is 

%OS = e-^/v7!3?) x 100 = 26% 

The approximate settling time is 

4 4 
Ts = — = x = 1.333 seconds 

Od 3 

(4.47) 

(4.48) 
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Students who are using MATLAB should now run ch4pl in Appendix B . 
You will learn how to generate a second-order polynomial from 
two complex poles as well as extract and use the coefficients of 
the polynomial to calculate Tp, %0S, and Ts. This exercise uses 
MATLAB to solve the problem in Example 4 . 6 . 

MATLAB 

Example 4.7 

Transient Response Through Component Design 

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20% 
overshoot and a settling time of 2 seconds for a step input of torque T(t). 

T(t) 0(t) 

-OM^-£VQ J 
K = 5N-m/ra6 D 

FIGURE 4.21 Rotational mechanical system for Example 4.7 

SOLUTION: First, the transfer function for the system is 

From the transfer function, 

and 

But, from the problem statement, 

J_ 

G(s) 
s2 

co„ = 

2$Q)n 

1// 
D 

+ 7S + 

s 
D 

~7 

K 
J 

Ts = 2 = 
fan 

or i;con — 2. Hence, 

2^a)n = 4 = -

Also, from Eqs. (4.50) and (4.52), 

^i = 2 v l 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

From Eq. (4.39), a 20% overshoot implies % = 0.456. Therefore, from Eq. (4.54), 

7~ %=2y^=°-456 
(4.55) 
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Hence, 

Uom (4.56) 

From the problem statement, K = 5 N-m/rad. Combining this value with Eqs. 
(4.53) and (4.56), D = 1.04 N-m-s/rad, and J = 0.26 kg-m2. 

Second-Order Transfer Functions via Testing 
Just as we obtained the transfer function of a first-order system experimentally, we 
can do the same for a system that exhibits a typical underdamped second-order 
response. Again, we can measure the laboratory response curve for percent over­
shoot and settling time, from which we can find the poles and hence the denomina­
tor. The numerator can be found, as in the first-order system, from a knowledge of 
the measured and expected steady-state values. A problem at the end of the chapter 
illustrates the estimation of a second-order transfer function from the step response. 

Trylt 4.1 
Use the following MATLAB 
statements to calculate the 
answers to Skill-Assessment 
Exercise 4.5. Ellipses mean 
code continues on next line. 

numg=361; 
deng=(l 16 361]; 
o m e g a n = s q r t ( d e n g ( 3 ) . . . 

/ deng( l ) ) 
zeta=(deng(2)/deng(l)) . . . 
/<2*omegan) 

T s = 4 / ( z e t a * omegan) 
T p = p i / ( o m e g a n * s q r t . . . 

( l - z e t a " 2 ) ) 
pos=100* exp ( - ze ta* . . . 
p i / s q r t ( l - z e t a A 2 ) ) 

T r = ( 1 . 7 6 8 * z e t a A 3 
0 .417*ze t a A 2 + 1 . 0 3 9 * . . 
z e t a + 1) /omegan 

Skill-Assessment Exercise 4.5 

wileyPLUs PROBLEM: Find £, con, Ts, Tp, Tr, and %OS for a system whose 
CEEJ , - . • ^, x ' 36i 

Control Solutions t r a n s f e r f u n c t l ° n l S G(*) = ^ + 16s + 36f 

ANSWERS: 

t = 0.421, con = 19, Ts = 0.5 s, Tp = 0.182 s, Tr = 0.079 s, and %OS = 23.3%. 

The complete solution is located at www.wiley.com/college/nise. 

Now that we have analyzed systems with two poles, how does the addition of 
another pole affect the response? We answer this question in the next section. 

| 4.7 System Response with Additional Poles 
In the last section, we analyzed systems with one or two poles. It must be emphasized 
that the formulas describing percent overshoot, settling time, and peak time were 
derived only for a system with two complex poles and no zeros. If a system such as 
that shown in Figure 4.22 has more than two poles or has zeros, we cannot use the 
formulas to calculate the performance specifications that we derived. However, 
under certain conditions, a system with more than two poles or with zeros can be 

http://www.wiley.com/college/nise
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FIGURE 4.22 Robot follows 
input commands from a 
human trainer 

approximated as a second-order system that has just two complex dominant poles, 
Once we justify this approximation, the formulas for percent overshoot, settling 
time, and peak time can be applied to these higher-order systems by using the 
location of the dominant poles. In this section, we investigate the effect of an 
additional pole on the second-order response. In the next section, we analyze the 
effect of adding a zero to a two-pole system. 

Let us now look at the conditions that would have to exist in order to 
approximate the behavior of a three-pole system as that of a two-pole system. 
Consider a three-pole system with complex poles and a third pole on the real axis. 
Assuming that the complex poles are at — £&>„ ±j(ony/l — £2 and the real pole is at 
-ar, the step response of the system can be determined from a partial-fraction 
expansion. Thus, the output transform is 

A | B(s + Sa>n) + Ccod | D 

s (s + S(Dn)
2 + a>l 

or, in the time domain, 
s + ar 

c(t) = Au(t) + e~K<°n'(B cos codt + C sin codt) + De -art 

(4.57) 

(4.58) 

The component parts of c(t) are shown in Figure 4.23 for three cases of ar. For 
Case I, ar = an and is not much larger than £o)„; for Case II, ar = an and is much 
larger than t;con; and for Case III, ar = oo. 

Let us direct our attention to Eq. (4.58) and Figure 4.23. If ar > t,a>n (Case II), the 
pure exponential will die out much more rapidly than the second-order underdamped 
step response. If the pure exponential term decays to an insignificant value at the time of 
the first overshoot, such parameters as percent overshoot, settling time, and peak time 
will be generated by the second-order underdamped step response component. Thus, 
the total response will approach that of a pure second-order system (Case III). 



188 Chapter 4 Time Response 

JO) Jo) 

Pi • 

X 
/>3 

X 
Pi 

Case I 

i-plane 
Pi 

-a. 
r2 

Pi 

X 

X 
Pi 

Case II 
(a) 

s-plane 

J 
Pi 

X 

X 
Pi 

03 

i-plane 

Case III 

FIGURE 4.23 Component 
responses of a three-pole 
system: a. pole plot; 
b. component responses: 
Nondominant pole 
is near dominant second-order 
pair (Case I), far from the pair 
(Case II), and at infinity 
(Case III) 
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If ar is not much greater than £m„ (Case I), the real pole's transient response 
will not decay to insignificance at the peak time or settling time generated by the 
second-order pair. In this case, the exponential decay is significant, and the system 
cannot be represented as a second-order system. 

The next question is, How much farther from the dominant poles does the third 
pole have to be for its effect on the second-order response to be negligible? The 
answer of course depends on the accuracy for which you are looking. However, this 
book assumes that the exponential decay is negligible after five time constants. Thus, 
if the real pole is five times farther to the left than the dominant poles, we assume 
that the system is represented by its dominant second-order pair of poles. 

What about the magnitude of the exponential decay? Can it be so large that its 
contribution at the peak time is not negligible? We can show, through a partial-
fraction expansion, that the residue of the third pole, in a three-pole system with 
dominant second-order poles and no zeros, will actually decrease in magnitude as 
the third pole is moved farther into the left half-plane. Assume a step response, C(s), 
of a three-pole system: 

bc A Bs + C D f.eriS 
C(s) = ~To TT7 s = - + -i Z + (4-59) 

w s(s2 + as + b)(s + c) s s2 + as + b s + c 
where we assume that the nondominant pole is located at - c on the real axis and that 
the steady-state response approaches unity. Evaluating the constants in the numer­
ator of each term, 

.4 = 1; B = ca - cr 
c2 + b - ca 

(4.60a) 

_ca2 — (P-a — be _ —b 
c2 + b — ca c2 + b - ca 

(4.60b) 



4.7 System Response with Additional Poles 189 

As the nondominant pole approaches oo, ore -» oo, 
A = \\B = -l\ C=-a- D = 0 (4.61) 

Thus, for this example, D, the residue of the nondominant pole and its response, 
becomes zero as the nondominant pole approaches infinity. 

The designer can also choose to forgo extensive residue analysis, since all 
system designs should be simulated to determine final acceptance. In this case, the 
control systems engineer can use the "five times" rule of thumb as a necessary but 
not sufficient condition to increase the confidence in the second-order approxima­
tion during design, but then simulate the completed design. 

Let us look at an example that compares the responses of two different three-
pole systems with that of a second-order system. 

Example 4.8 

Comparing Responses of Three-Pole Systems 

PROBLEM: Find the step response of each of the transfer functions shown in 
Eqs. (4.62) through (4.64) and compare them. 

riW=*3 , f 5 4 L , , (4-62) s2 + 45 + 24.542 

245.42 
(5 + 10)(52 + 4s + 24.542) 

73.626 
(5 + 3)(*2+4*+ 24.542) 

(4.63) 

(4.64) 

SOLUTION: The step response, Cj(s), for the transfer function, Tj(s), can be found 
by multiplying the transfer function by I/5, a step input, and using partial-fraction 
expansion followed by the inverse Laplace transform to find the response, c,-(f). 
With the details left as an exercise for the student, the results are 

d (?) = 1 - i.09e-^eos(4.532« - 23.8°) (4.65) 

c2(t) = 1 - 0.29<T10' - 1.189e^cos(4.532r - 53.34°) (4.66) 

c3(/) = 1 - 1.14c-3' + 0.707<r2'cos(4.532f + 78.63°) (4.67) 

The three responses are plotted in Figure 4.24. Notice that ci(t), with its third pole 
at —10 and farthest from the dominant poles, is the better approximation of c\ (t), 

1.0 1.5 2.0 
Time (seconds) 

FIGURE4.24 Step responses 
of system ^1(5), system 7/2(5), 
and system 7/3(5) 
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MATLAB 

Simulink 

Gui Tool 

the pure second-order system response; c3(r), with a third pole close to the 
dominant poles, yields the most error. 

Students who are using MATLAB should now run ch4p2 in Appendix B. 
You will learn how to generate a step response for a transfer 
function and how to plot the response directly or collect the 
points for future use. The example shows how to collect the points 
and then use them to create a multiple plot, title the graph, and 
label theaxesandcurvestoproducethegraphinFigure4 . 24 tosolve 
Example 4 . 8 . 

System responses can alternately be obtained using Simulink. 
Simulink is a software package that is integrated with MATLAB 
to provide a graphical user interface (GUI) for defining systems 
and generating responses. The reader is encouraged to study 
Appendix C, which contains a tutorial on Simulink as well as 
some examples. One of the illustrative examples, Example C.l, 
solves Example 4.8 using Simulink. 

Another method to obtain systems responses is through the use of 
MATLAB's LTI Viewer. An advantage of the LTI Viewer is that it 
displaysthevaluesof settlingtime, peaktime, risetime, maximum 
response, andthefinalvalueon thestepresponseplot. Thereaderis 
encouraged to study Appendix E at www.wiley.com/college/nise, 
whichcontainsatutorialontheLTIVieweraswellas someexamples . 
Example E. 1 solves Example 4 . 8 using the LTI Viewer. 

Ttylt4.2 

Use the following MATLAB 
and Control System Toolbox 
statements to investigate the 
effect of the additional pole 
in Skill-Assessment Exer­
cise 4.6(a). Move the higher-
order pole originally at —15 
to other values by changing 
" a " in the code. 

a=15 
numga=100*a; 
denga=conv([ l a ] , . . . 
[1 4 100]); 

Ta=t f (numga, denga) ; 
numg=100; 
deng=(l 4 100] ; 
T=tf (numg,deng); 
s t e p ( T a , ' . ' , T , ' - ' ) 

Skill-Assessment Exercise 4.6 

PROBLEM: Determine the validity of a second-order approximation for each of 
these two transfer functions: 

a. G(s) = 

b. G(s) = 

700 
(5 + 15)(52 + 45 +100) 

360 
(5 + 4)(52 + 2s + 90) 

ANSWERS: 

a. The second-order approximation is valid. 

b. The second-order approximation is not valid. 

The complete solution is located at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
http://www.wiley.com/college/nise
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( 4.8 System Response With Zeros 
Now that we have seen the effect of an additional pole, let us add a zero to the 
second-order system. In Section 4.2, we saw that the zeros of a response affect 
the residue, or amplitude, of a response component but do not affect the nature of 
the response—exponential, damped sinusoid, and so on. In this section, we add a 
real-axis zero to a two-pole system. The zero will be added first in the left half-plane 
and then in the right half-plane and its effects noted and analyzed. We conclude the 
section by talking about pole-zero cancellation. 

Starting with a two-pole system with poles at (-1 ±j2.828), we consecutively 
add zeros at - 3 , - 5 , and —10. The results, normalized to the steady-state value, are 
plotted in Figure 4.25. We can see that the closer the zero is to the dominant poles, 
the greater its effect on the transient response. As the zero moves away from the 
dominant poles, the response approaches that of the two-pole system. This analysis 
can be reasoned via the partial-fraction expansion. If we assume a group of poles and 
a zero far from the poles, the residue of each pole will be affected the same by the 
zero. Hence, the relative amplitudes remain appreciably the same. For example, 
assume the partial-fraction expansion shown in Eq. (4.68): 

T(s) = A B 
+ (s + b){s + c) s + b s + c 

(-b + a)/(-b + c) -c + a)/{-c + b) 

s+b s + c 

If the zero is far from the poles, then a is large compared to b and c, and 

a 

(4.68) 

T(s) 
l/(-b + c) + l/(-c + b) 

s + b s + c [s + b)(s + c) 
(4.69) 

Hence, the zero looks like a simple gain factor and does not change the relative 
amplitudes of the components of the response. 

Another way to look at the effect of a zero, which is more general, is as follows 
(Franklin, 1991): Let C(s) be the response of a system, T(s), with unity in the 

Trylt 4.3 

Use the following MATLAB 
and Control System Toolbox 
statements to generate Figure 
4.25. 

deng=[l 2 9] ; 
Ta= t f ([1 3 ] * 9 / 3 , d e n g ) ; 
T b = t f ( [ l 5] * 9 / 5 , d e n g ) ; 
Tc=tf ([1 10] * 9 /10 , deng); 
T=tf (9 ,deng) ; 
s t e p ( T , T a , T b , Tc) 
t e x t ( 0 . 5 , 0 . 6 , 'no ze ro ' ) 
t e x t ( 0 . 4 , 0 . 7 , . . . 

' z e ro a t - 1 0 ' ) 
t e x t ( 0 . 3 5 , 0 . 8 , . . . 

' ze ro a t - 5 ' ) 
t e x t ( 0 . 3 , 0 . 9 , ' z e r o a t -3 ') 

2.0 4.0 
Time (seconds) 

FIGURE 4.25 Effect of adding 

a zero to a two-pole system 
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FIGURE 4.26 Step response of a _o.5 
nonminimum-phase system 

2.0 3.0 4.0 5.0 
Time (seconds) 

6.0 

numerator. If we add a zero to the transfer function, yielding (s + a) T(s), the Laplace 
transform of the response will be 

(s + a)C(s) = sC(s) + aC{s) (4.70) 

Thus, the response of a system with a zero consists of two parts: the derivative of the 
original response and a scaled version of the original response. If a, the negative of 
the zero, is very large, the Laplace transform of the response is approximately aC(s), 
or a scaled version of the original response. If a is not very large, the response has an 
additional component consisting of the derivative of the original response. As a 
becomes smaller, the derivative term contributes more to the response and has 
a greater effect. For step responses, the derivative is typically positive at the start of a 
step response. Thus, for small values of a, we can expect more overshoot in second-
order systems because the derivative term will be additive around the first over­
shoot. This reasoning is borne out by Figure 4.25. 

An interesting phenomenon occurs if a is negative, placing the zero in the right 
half-plane. From Eq. (4.70) we see that the derivative term, which is typically 
positive initially, will be of opposite sign from the scaled response term. Thus, if the 
derivative term, sCXs), is larger than the scaled response, aC(s), the response will 
initially follow the derivative in the opposite direction from the scaled response. The 
result for a second-order system is shown in Figure 4.26, where the sign of the input 
was reversed to yield a positive steady-state value. Notice that the response begins to 
turn toward the negative direction even though the final value is positive. A system 
that exhibits this phenomenon is known as a nonminimum-phase system. If a 
motorcycle or airplane was a nonminimum-phase system, it would initially veer 
left when commanded to steer right. 

Let us now look at an example of an electrical nonminimum-phase network. 

Example 4.9 

Transfer Function of a Nonminimum-Phase System 

PROBLEM: 

a. Find the transfer function, V0(s)/Vi(s) for the operational amplifier circuit 
shown in Figure 4.27. 
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b. If i?i = R2, this circuit is known as an all-pass filter, since it 
passes sine waves of a wide range of frequencies without 
attenuating or amplifying their magnitude (Dorf, 1993). 
We will learn more about frequency response in Chap­
ter 10. For now, let Rx = R2) R3C = 1/10, and find the step 
response of the filter. Show that component parts of the 
response can be identified with those in Eq. (4.70). 

SOLUTION: FIGURE 4.27 Nonminimum-phase electric circuit 
a. Remembering from Chapter 2 that the operational ampli- (Reprinted with permission of John Wiley & 

fier has a high input impedance, the current, I(s), through S o n s ' inc-> 
i?i and R2, is the same and is equal to 

Also, 

But 

=̂¾̂  
V0(s)^A(V2(s)-V1(s)) 

Vi(s)=lWMi + Va® 

(4.71) 

(4.72) 

(4.73) 

Substituting Eq. (4.71) into (4.73), 

Vi(s) = 
R1+M2 

(RiVi(s)+R2V0(s)) 

Using voltage division, 

V2(s) = Vi{S). 
1/Cs 

R^h 

(4.74) 

(4.75) 

Substituting Eqs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields 

V0(s) A(R2-RxR3Cs) 

V,{s) (MsCs + t m . + l f e ( l + i i ) ) 
(4.76) 

Since the operational amplifier has a large gain, A, let A approach infinity. 
Thus, after simplification 

V0(s) R2 - R1R3CS Ri Vs " R^c) 

R3C 

Vi(s) R2R3Cs + R2 R2 / , 1 

b. Letting jRj = R2 and R3C = 1/10, 

Vo(s) R3CJ (s - 10) 
Vi(s) 

s + R3C 
(s + 10) 

(4.77) 

(4.78) 
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For a step input, we evaluate the response as suggested by Eq. (4.70): 

5-10) 1 _ 1 
C(s) = -

where 

4 ? + 10) s + 10 ' 1 0 s(s + 10) 

C0(s) = - l 

= sC0(s) - 10Co{s) (4.79) 

(4.80) 
s{s + 10) 

is the Laplace transform of the response without a zero. Expanding 
Eq. (4.79) into partial fractions, 

1 1_ _\_ 1 1_ _ 1 2 _ 
W 5+10 5(5 + 10)" _ 5 + 10 + 5~5 + 1 0 _ 5 ~ 5 + 10 

(4.81) 
or the response with a zero is 

c(r) = -e-1 0 ' + 1 - <T10' = 1 - 2e~m 

Also, from Eq. (4.80), 

or the response without a zero is 

(4.82) 

(4.83) 

(4.84) 

The normalized responses are plotted in Figure 4.28. Notice the immediate 
reversal of the nonminimum-phase response, c(t). 

-0.5 

0.2 0.3 
Time (seconds) 

0.4 0.5 

FIGURE 4.28 Step response of the nonminimum-phase network of Figure 4.27 (c(t)) and 
normalized step response of an equivalent network without the zero (—l0co(t)) 

We conclude this section by talking about pole-zero cancellation and its effect 
on our ability to make second-order approximations to a system. Assume a three-
pole system with a zero as shown in Eq. (4.85). If the pole term, (5 + p3), and the zero 
term, (5 + z), cancel out, we are left with 

T(s) = Kl?<z) 
i^rp^) (s2 + as + b) 

(4.85) 
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as a second-order transfer function. From another perspective, if the zero at — z is 
very close to the pole at —/?3, then a partial-fraction expansion of Eq. (4.85) will show 
that the residue of the exponential decay is much smaller than the amplitude of the 
second-order response. Let us look at an example. 

Example 4.10 

Evaluating Pole-Zero Cancellation Using Residues 

PROBLEM: For each of the response functions in Eqs. (4.86) and (4.87), determine 
whether there is cancellation between the zero and the pole closest to the zero. For 
any function for which pole-zero cancellation is valid, find the approximate response. 

Ci(s) = 
26.25(^ + 4) 

C2(s) = 

5(5 + 3.5)(5 + 5)(5 + 6) 

26.25(5 + 4) 
5(5 + 4.01)(5 + 5)(5 + 6) 

SOLUTION: The partial-fraction expansion of Eq. (4.86) is 

3.5 1 
5 + 6 5 + 3.5 

r t \ 1 3 -5 

Cl{s) = S-iT5 

(4.86) 

(4.87) 

(4.88) 

The residue of the pole at -3.5, whichis closest to the zero at - 4 , is equal to 1 andis not 
negligible compared to the other residues. Thus, a second-order step response 
approximation cannot be made for C\ (5). The partial-fraction expansion for C2(s) is 

C2(s) = 
0.87 5.3 4.4 

+ 5 5 + 6 

0.033 
+ 4.01 

(4.89) 

The residue of the pole at -4.01, which is closest to the zero at —4, is equal to 0.033, 
about two orders of magnitude below any of the other residues. Hence, we make a 
second-order approximation by neglecting the response generated by the pole at -4.01: 

Ci{s) 
0.87 

5 

5.3 4.4 
+ 5 + 5 5 + 6 

and the response C2{t) is approximately 

c2(t) ^ 0.87 - 5.3e--5/ + 4.4«T6' 

(4.90) 

(4.91) 

Itylt 4.4 
Use the following MATLAB 
and Symbolic Math Toolbox 
statements to evaluate the ef­
fect of higher-order poles by 
finding the component parts of 
the time response of ci(t) and 
Cz(t) in Example 4.10. 

syms s 
Cl=26.25*<s+4)/ . . . 

(s*(s + 3 . 5 ) * . . . 
(s+5)*(s+6)); 

C2=26.25*(s+4) / . . . 
(s*(s+4.0D*. . . 
( s+5) ' ( s + 6) ) ; 

c l = i l a p l a c e ( C l ) ; 
c l = v p a ( c l , 3); 
' e i 
pretty (cl) 
c2=ilaplace(C2); 
c2=vpa (c2, 3); 
'c2' 
pretty (c2); 

Skill-Assessment Exercise 4.7 

PROBLEM: Determine the validity of a second-order step-response approxima­
tion for each transfer function shown below. 

185.71(5 + 7) 
a. G{s) = 

b. G(s) 

(5 + 6.5)(5 + 10)(5 + 20) 

197.14(5 + 7) 
(5 + 6.9)(5 + 10)(5 + 20) 

WileyPLUS 

Control Solutions 
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ANSWERS: 

a. A second-order approximation is not valid. 
b. A second-order approximation is valid. 

The complete solution is located at www.wiley.com/college/nise. 

In this section, we have examined the effects of additional transfer func­
tion poles and zeros upon the response. In the next section we add nonlinearities of 
the type discussed in Section 2.10 and see what effects they have on system response. 

^ 4 . 9 Effects of Nonlinearities Upon Time Response 
In this section, we qualitatively examine the effects of nonhnearities upon the time 
response of physical systems. In the following examples, we insert nonlinearities, 
such as saturation, dead zone, and backlash, as shown in Figure 2.46, into a system to 
show the effects of these nonlinearities upon the linear responses. 

The responses were obtained using Simulink, a simulation software package 
that is integrated with MATLAB to provide a graphical user interface (GUI). 
Readers who would like to learn how to use Simulink to generate nonlinear 
responses should consult the Simulink tutorial in Appendix C. Simulink block 
diagrams are included with all responses that follow. 

Let us assume the motor and load from the Antenna Control Case Study of 
Chapter 2 and look at the load angular velocity, co0(s), where co0(s) = 0.1 sdm(s) = 
0.2083 Ea(s)/(s + 1.71) from Eq. (2.208). If we drive the motor with a step input 

i I 1 
i i i 

Without saturation i 

| I 
! ; ] : 
j | 

i : 

: i 

i ! 
i i : ! 

I | 

i 
i 

With saturation 

i : : 

0 2 4 6 8 10 
Time (seconds) 

(a) 

FIGURE 4.29 a. Effect of amplifier saturation on load angular velocity response; 

(figure continues) 

http://www.wiley.com/college/nise
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Step 
10 volts 

-^ 
/ -

Saturation 
±5 volts 

0.2083 
s + 1.71 

Motor, load, 
& gears 

0.2083 
s+1.71 

{ \1 
Mux Sc°Pe 

00 

Motor, load, 
& gears 

FIGURE 4.29 (Continued) b. Simulink block diagram 

through an amplifier of unity gain that saturates at ±5 volts, Figure 4.29 shows that 
the effect of amplifier saturation is to limit the obtained velocity. 

The effect of dead zone on the output shaft driven by a motor and gears is 
shown in Figure 4.30. Here we once again assume the motor, load, and gears from 
Antenna Control Case Study of Chapter 2. Dead zone is present when the motor 
cannot respond to small voltages. The motor input is a sinusoidal waveform chosen 
to allow us to see the effects of dead zone vividly. The response begins when the input 
voltage to the motor exceeds a threshold. We notice a lower amplitude when dead 
zone is present. 

The effect of backlash on the output shaft driven by a motor and gears is shown 
in Figure 4.31. Again we assume the motor, load, and gears from the Antenna 
Control Case Study of Chapter 2. The motor input is again a sinusoidal waveform, 

5 10 15 20 25 
Time (seconds) 

(a) 

FIGURE 4.30 a. Effect of dead zone on load angular displacement response; (figure continues) 
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^ 
\J 

Sine wave 

Frequency = 1 rad/s 

/ 
/ 0.2083 

s+1.71 

Dead zone M o t o r l o a d 

-2 to +1 & gears 

0.2083 
s+1.71 

1 
s 

Integrator 

1 
s 

—1— 
J 1 
Mux 

1 1 
Scope 

Motor, load, 
& gears 

Integrator 

FIGURE 4.30 (Continued) b . Simulink block diagram 

0.25 

0.2 

1 0.15 

0.1 

0.05 

Without backlash j 

IT 

t 
With backlash j 1 / 1 

\\m\l\\ t v r~r~'i V"V pt v~x~ ft T T T 

10 15 

Time (seconds) 

(a) 

20 25 

rv 
Sine wave 

Amplitude = 5 
Frequency = 1 rad/s 

0.2083 
s+ 1.71 # 

Motor, load. Integrator Backlash 
and gears deadband width 

0.15 
0.2083 
s+1.71 

Motor, load, 
and gears 

Integrator 

Mux Scope 

FIGURE 4.31 a. Effect of backlash on load angular displacement response; b . Simulink block 

diagram 
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which is chosen to allow us to see vividly the effects of backlash in the gears driven by 
the motor. As the motor reverses direction, the output shaft remains stationary while 
the motor begins to reverse. When the gears finally connect, the output shaft itself 
begins to turn in the reverse direction. The resulting response is quite different from 
the linear response without backlash. 

Skill-Assessment Exercise 4.8 

PROBLEM: Use MATLAB's Simulink to reproduce Figure 4 . 3 1 . 

ANSWER: See Figure 4.31. 

Simulink 

Now that we have seen the effects of nonlinearities on the time response, let us 
return to linear systems. Our coverage so far for linear systems has dealt with finding 
the time response by using the Laplace transform in the frequency domain. Another 
way to solve for the response is to use state-space techniques in the time domain. 
This topic is the subject of the next two sections. 

t 4.10 Laplace Transform Solution 
of State Equations 

In Chapter 3, systems were modeled in state space, where the state-space represen­
tation consisted of a state equation and an output equation. In this section, we use 
the Laplace transform to solve the state equations for the state and output vectors. 

Consider the state equation 
x = Ax + Bu (4.92) 

and the output equation 
y = Cx + Du (4.93) 

Taking the Laplace transform of both sides of the state equation yields 

sX(s) - x(0) = AX(s) + BU(s) (4.94) 

In order to separate X(s), replace sX(s) with sIX(s), where I is an n x n 
identity matrix, and n is the order of the system. Combining all of the X(.s') terms, 
we get 

(si - A)X(s) = x(0) + BU(s) (4.95) 

Solving for X(s) by premultiplying both sides of Eq. (4.95) by (si — A) \ the final 
solution for X(s) is 

State Space 

X(s) = (si - A)_1x(0) + (si - A)~1BV(s) 

adj(sI-A) 
det(sl - A) [x(0)+BU(s)] 

(4.96) 
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Taking the Laplace transform of the output equation yields 

Y(s) = CX(s) + DU{s) (4.97) 

Eigenvalues and Transfer Function Poles 
We saw that the poles of the transfer function determine the nature of the transient 
response of the system. Is there an equivalent quantity in the state-space represen­
tation that yields the same information? Section 5.8 formally defines the roots of 
det(sl - A) = 0 (see the denominator of Eq. (4.96)) to be eigenvalues of the system 
matrix, A.6 Let us show that the eigenvalues are equal to the poles of the system's 
transfer function. Let the output, Y(s), and the input, U(s), be scalar quantities Y(s) 
and U(s), respectively. Further, to conform to the definition of a transfer function, let 
x(0), the initial state vector, equal 0, the null vector. Substituting Eq. (4.96) into 
Eq. (4.97) and solving for the transfer function, Y(s)/U(s), yields 

Y{s) = radj(sI-A) 
U(s) det(sl - A) J B + D 

C adjfrl - A)B + D detfrl - A) 
det(sl - A) (4.98) 

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the 
denominators of Eqs. (4.96) and (4.98) are identical, the system poles equal the 
eigenvalues. Hence, if a system is represented in state-space, we can find the poles 
from det(sl - A) = 0. We will be more formal about these facts when we discuss 
stability in Chapter 6. 

The following example demonstrates solving the state equations using the 
Laplace transform as well as finding the eigenvalues and system poles. 

Example 4.11 

Laplace Transform Solution; Eigenvalues and Poles 

PROBLEM: Given the system represented in state space by Eqs. (4.99), 

X = 

y = [ 

)) = 

0 

0 

-24 

1 1 

'1* 

0 

2 

1 

0 

-26 

0]x 

0 

1 

- 9 

x + 

0 

0 

1 

(4.99a) 

(4.99b) 

(4.99c) 

6 Sometimes the symbol X is used in place of the complex variable s when solving the state equations 
without using the Laplace transform. Thus, it is common to see the characteristic equation also written as 
det (XI - A) = 0. 
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do the following: 

a. Solve the preceding state equation and obtain the output for the given 
exponential input. 

b. Find the eigenvalues and the system poles. 

SOLUTION: 

a. We will solve the problem by finding the component parts of Eq. (4.96), 
followed by substitution into Eq. (4.97). First obtain A and B by comparing 
Eq. (4.99a) to Eq. (4.92). Since 

then 

and 

(si-A) -i 

sl = 

(sl-\) = 

s 0 

0 s 

0 0 

r s 
0 

24 

\{s2 + 9s + 26) 

-24 

-24s 

5 3 -

0 

0 

s 

-1 0 

s - 1 

26 5 + 9 

(5 + 9) r 

s2 + 9s s 

-(26^ + 24) s2_ 

H 9s2+ 26. - + 24 

(4.100) 

(4.101) 

(4.102) 

Since U(s) (the Laplace transform for e ') is 1/(5 + 1), X(s) can be calculated. 
Rewriting Eq. (4.96) as 

X(5) = (5l - A)"1 [x(0) + BU(5)] (4.103) 

and using B and x(0) from Eqs. (4.99a) and (4.99c), respectively, we get 

(53 + 1052 + 375 + 29) 
X,(s) = 

X2(s) = 

^ 3 ( 5 ) = 

(5+1)(5 + 2)(5 + 3)(5 + 4) 

(252 - 215 - 24) 
(5 + 1)(5 + 2)(5 + 3)(5 + 4) 

5(252 - 215 - 24) 
(5+1)(5 + 2)(5 + 3)(5 + 4) 

(4.104a) 

(4.104b) 

(4.104c) 

The output equation is found from Eq. (4.99b). Performing the indicated addition 
yields 

Y(5) = [l 1 0; 

X3(5) 

= X1(s)+X2{s) (4.105) 
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or 

Symbolic Math 

Y(s) = 
{s3 + 1252 + 165 + 5) 

(s + l)(s + 2)(s + 3){s + 4) 

-6.5 19 11.5 
(4.106) 

s+2 s + 3 s+4 

where the pole at - 1 canceled a zero at - 1 . Taking the inverse Laplace 
transform, 

, - 2 f y(t) = -6.5e~Zf -f 19e~M -U.5e .-At (4.107) 

b. The denominator of Eq. (4.102), which is det(sl - A), is also the denominator 
of the system's transfer function. Thus, det(.sl - A) = 0 furnishes both the 
poles of the system and the eigenvalues -2 , - 3, and -4 . 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run ch4spl in Appendix F at www.wiley.com/college/ 
nise. You will learn how to solve state equations for the output 
response using the Laplace transform. Example 4.11 will be 
solved using MATLAB and the Symbolic Math Toolbox. 

WileyPLUS 

dJEJ 
Conlrol Solutions 

Skill-Assessment Exercise 4.9 

PROBLEM: Given the system represented in state space by Eqs. (4.108), 

0 

- 3 

2 

-5_ 
x + 

0 

1 
x = x + e~' (4.108a) 

7 = 11 3]x (4.108b) 
Trylt 4.5 

Use the following MATLAB 
and Symbolic Math Toolbox 
statements to solve Skill-
Assessment Exercise 4.9. 

Syms s 
A=[0 2 ; - 3 - 5 ] ; B=[0;1]; 
C=[l 3];X0=[2;1]; 
U = l / ( s + l ) ; 
I= [ l 0 ;0 1] ; 
X=( (s*I-A) A - l ) * . . . 
(X0+B*U); 

Y=C*X; Y=simplify (Y); 
y=ilaplace (Y); 
pretty(y) 
eig(A) 

*(0) = (4.108c) 

do the following: 

a. Solve for y(t) using state-space and Laplace transform techniques. 
b. Find the eigenvalues and the system poles. 

ANSWERS: 

a. y(t) = -0.5*r' - 12e-2' + 17.5e-3' 

b. -2 , - 3 

The complete solution is located at www.wiley.com/college/nise. 

http://www.wiley.com/college/
http://www.wiley.com/college/nise
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t 4.11 Time Domain Solution of State 
Equations 

We now look at another technique for solving the state equations. Rather than using 
the Laplace transform, we solve the equations directly in the time domain using a 
method closely allied to the classical solution of differential equations. We will find 
that the final solution consists of two parts that are different from the forced and 
natural responses. 

The solution in the time domain is given directly by 

x(t) = eAtx(0) + [ ex{t-T)Bu(r)dr 
JQ 

= *(*)x(0) + [ ®(t- r)Bu(r)rfr 
Jo 

(4.109) 

where <&(t) = e^ by definition, and which is called the state-transition matrix. 
Eq. (4.109) is derived in Appendix I located at www.wiley.com/college/nise. Readers 
who are not familiar with this equation or who may want to refresh their memory 
should consult Appendix I before proceeding. 

Notice that the first term on the right-hand side of the equation is the response 
due to the initial state vector, x(0). Notice also that it is the only term dependent on 
the initial state vector and not the input. We call this part of the response the zero-
input response, since it is the total response if the input is zero. The second term, 
called the convolution integral, is dependent only on the input, u, and the input 
matrix, B, not the initial state vector. We call this part of the response the zero-state 
response, since it is the total response if the initial state vector is zero. Thus, there is a 
partitioning of the response different from the forced/natural response we have seen 
when solving differential equations. In differential equations, the arbitrary constants 
of the natural response are evaluated based on the initial conditions and the initial 
values of the forced response and its derivatives. Thus, the natural response's 
amplitudes are a function of the initial conditions of the output and the input. In 
Eq. (4.109), the zero-input response is not dependent on the initial values of the 
input and its derivatives. It is dependent only on the initial conditions of the state 
vector. The next example vividly shows the difference in partitioning. Pay close 
attention to the fact that in the final result the zero-state response contains not only 
the forced solution but also pieces of what we previously called the natural response. 
We will see in the solution that the natural response is distributed through the zero-
input response and the zero-state response. 

Before proceeding with the example, let us examine the form the elements of 
<&(t) take for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace 
transform of the response for unforced systems, is the transform of 4>(f)x(0), the 
zero-input response from Eq. (4.109). Thus, for the unforced system 

JS?[x(r)] = if [*(f)x(0)] = (si - A)_1x(0) (4.110) 

from which we can see that (si — A)" is the Laplace transform of the state-transition 
matrix, ¢(/1). We have already seen that the denominator of (si - A) - is a 
polynomial in s whose roots are the system poles. This polynomial is found from 

http://www.wiley.com/college/nise
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the equation det(.sl - A) = 0. Since 

-h &-l[{si-A)-l] = se 7-1 adj(sI-A) 
det{sl - A) 

= #(fj (4.111) 

each term of ¢(/) would be the sum of exponentials generated by the system's poles. 
Let us summarize the concepts with two numerical examples. The first example 

solves the state equations directly in the time domain. The second example uses 
the Laplace transform to solve for the state-transition matrix by finding the inverse 
Laplace transform of (si - A)-1. 

Example 4.12 

Time Domain Solution 

PROBLEM: For the state equation and initial state vector shown in Eqs. (4.112), 
where u(t) is a unit step, find the state-transition matrix and then solve for x(t). 

x(0) = 

0 1 

- 8 - 6 

1 

0 

*(') + u{t) 

SOLUTION: Since the state equation is in the form 

±(t) = Ax(0 + Bu(t) 

(4.112a) 

(4.112b) 

(4.113) 

find the eigenvalues using det(sl - A) = 0. Hence, s2 + 6s + 8 = 0, from which 
Sl = - 2 and 52 = -4 . Since each term of the state-transition matrix is the sum of 
responses generated by the poles (eigenvalues), we assume a state-transition 
matrix of the form 

¢(0 = 
(Kie-

2< + K2e-4<) (K3e-2t + K4e~4t) 

I {K5e-2t + K6e~4t) {K^21 + K8e~41) 
(4.114) 

In order to find the values of the constants, we make use of the properties of 
the state-transition matrix derived in Appendix J located at www.wiley.com/ 
college/nise. 

¢(0) = 1 (4.115) 

Ki + K2 = 1 

K3 + K4 = 0 

K5 + K6 = 0 

#7+-^8 = 1 

(4.116a) 

(4.116b) 

(4.116c) 

(4.116d) 

http://www.wiley.com/
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and since 

then 
6(0) = A 

- 2 £ i - 4K2 = 0 

-2K3 -4K4 = 1 

-2K5 - 4K6 = - 8 

-2K-, - 4K8 = - 6 

(4.117) 

(4.118a) 

(4.118b) 

(4.118c) 

(4.118d) 

The constants are solved by taking two simultaneous equations four times. For 
example, Eq. (4.116a) can be solved simultaneously with Eq. (4.118a) to yield the 
values of K\ and K2. Proceeding similarly, all of the constants can be found. 
Therefore, 

* ( ' ) = 
(2e * -e4') (\e-2t-\e-M 

. (-4e~2' + 4e~4t) (-e~2t + 2e~4t) . 

Also, 

4>(f - r)B = 

Ie-2('-r) _ie-4(f-r) 

(-e-2«-T)+2e-4«-r)\ 

Hence, the first term of Eq. (4.109) is 

4>(r)x(0) = 

The last term of Eq. (4.109) is 

(2e~21 - e~4t) 

|_(-4e-2' + 4<?-4,)J 

I ®{t - r)Bu(r)<fr = 
Jo 

l-e-21 ['fdr-le-* f J*dz 
2 Jo 2 JQ 

-e~2t [ e2Tdr + 2e-4' f e4xd% 
Jo Jo 

8 4 + 8 

L 2 2 

(4.119) 

(4.120) 

(4.121) 

(4.122) 

Notice, as promised, that Eq. (4.122), the zero-state response, contains not only the 
forced response, 1/8, but also terms of the form Ae~2t and Be~4t that are part of 
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what we previously called the natural response. However, the coefficients, A and 
B, are not dependent on the initial conditions. 

The final result is found by adding Eqs. (4.121) and (4.122). Hence, 

x(r) = 3>(r)x(0) + / ¢ ( / - r)Bu{r)dz = 8 4 8 
(4.123) 

Symbolic Math 

Example 4.13 

State-Transition Matrix via Laplace Transform 

PROBLEM: Find the state-transition matrix of Example 4.12, using (si - A) - 1 . 

SOLUTION: We use the fact that €>(?) is the inverse Laplace transform of 
(si - A)_ 1 . Thus, first find (si - A) as 

(,1 - A) = 
- 1 

(s + 6) 
(4.124) 

from which 

- i 
(sl-A)-l = 

s + 6 1 

- 8 s 
s + 6 1 

s2 + 6s + 8 s2 + 6s + 
- 8 s s2 + 6s + 8 

Ls2 + 6s + 8 s2 + 6s + 8J 

Expanding each term in the matrix on the right by partial fractions yields 

2 1 \ / 1 / 2 1/2 

(4.125) 

-3 
(sI-Ap = 

s + 2 s + 4/ V̂  + 2 s + 4 

- 4 4 
+ . V * + 2 s + 4/ V s + 2 s + 4/ . 

1 2 
• + 

(4.126) 

Finally, taking the inverse Laplace transform of each term, we obtain 

{2e-2'-e-4') 

'-4e-2< + 4e-4') {-e~2r + 2e'4') J 
*(0 = 8 * * - 5 ^ (4.127) 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run ch4sp2 in Appendix F at www.wiley.com/college/ 
nise . You will learn how to solve state equations for the output 
response using the convolution integral. Examples 4.12 and 4.13 
will be solved using MATLAB and the Symbolic Math Toolbox. 

http://www.wiley.com/college/
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Systems represented in state space can be simulated on the digital computer. 
Programs such as MATLAB can be used for this purpose. Alternately, the user can write 
specialized programs, as discussed in Appendix G.l at www.wiley.com/college/nise. 

Students who are using MATLAB should now run ch4p3 in Appendix B. 
This exercise uses MATLAB to simulate the step response of systems 
represented in state space. In addition to generating the step 
response, you will learn how to specify the range on the time axis 
for the plot. 

MATLAB 

Skill-Assessment Exercise 4.10 

PROBLEM: Given the system represented in state space by Eqs. (4.128): 

x = 
0 

-2 

2^ 

- 5 x + 
0 

1 
, - 2 / 

y = [2 l]x 

1 
x(0) = 

do the following: 

a. Solve for the state-transition matrix. 

b. Solve for the state vector using the convolution integral. 

c. Find the output, y(t). 

(4.128a) 

(4.128b) 

(4.128c) 

ANSWERS: 

a. #{*) = 

b. x(t) = 

4 -, 1 -At 
3 3 

2 -r , 2 -* 
-3« + S ' 
10 _, _2, 4 _At — e ' -e --e m 

3 3 

•** — t ^ -At 

36 ~36 

3 + 3 

5 
~3e 

8 
+ 3 e " 

c. y{i) = 5e~' - e~2t 

The complete solution is located at www.wiley.com/college/mse. 

WileyPLUS 

Conlrol Solutions 

Case Studies 

Antenna Control: Open-Loop Response 
In this chapter, we have made use of the transfer functions derived in Chapter 2 
and the state equations derived in Chapter 3 to obtain the output response of an 

http://www.wiley.com/college/nise
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open-loop system. We also showed the importance of the poles of a system in deter­
mining the transient response. The following case study uses these concepts to analyze 
an open-loop portion of the antenna azimuth position control system. The open-loop 
function that we will deal with consists of a power amplifier and motor with load. 

PROBLEM: For the schematic of the azimuth position control system shown on 
the front endpapers, Configuration 1, assume an open-loop system (feedback path 
disconnected). 

a. Predict, by inspection, the form of the open-loop angular velocity response of 
the load to a step-voltage input to the power amplifier. 

b. Find the damping ratio and natural frequency of the open-loop system. 

c. Derive the complete analytical expression for the open-loop angular velocity 
response of the load to a step-voltage input to the power amplifier, using 
transfer functions. 

d. Obtain the open-loop state and output equations. 

e. Use M ATLAB t o o b t a i n a p l o t of t h e o p e n - l o o p a n g u l a r v e l o c i t y 
r e s p o n s e t o a s t e p - v o l t a g e i n p u t . 

SOLUTION: The transfer functions of the power amplifier, motor, and load as 
shown on the front endpapers, Configuration 1, were discussed in the Chapter 2 
case study. The two subsystems are shown interconnected in Figure 4.32(a). 
Differentiating the angular position of the motor and load output by multiplying 
by s, we obtain the output angular velocity, co0, as shown in Figure 4.32(a). The 
equivalent transfer function representing the three blocks in Figure 4.32(a) is the 
product of the individual transfer functions and is shown in Figure 4.32(b).7 

a. Using the transfer function shown in Figure 4.32(b), we can predict the nature of 
the step response. The step response consists of the steady-state response 
generated by the step input and the transient response, which is the sum of 
two exponentials generated by each pole of the transfer function. Hence, the 
form of the response is 

-100f co0{t) = A + Be-1™ + Ce , - l .T l l (4.129) 

b. The damping ratio and natural frequency of the open-loop system can be found 
by expanding the denominator of the transfer function. Since the open-loop 

VM 

Power amp 

100 
(5+100) 

Convert to 
Motor and load angular velocity 

Eu(s) 0.2083 
5(.V+1.71) 

e,M m s 
{0,,(5) ^ 

(fl) 

V*3 20.83 
(5+100)(5+1.71) 

co„(s) 

(b) 
FIGURE 4.32 Antenna azimuth position control system for angular velocity: a. forward 
path; b. equivalent forward path 

7This product relationship will be derived in Chapter 5. 
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transfer function is 
70 83 

G ^ + ioi.7i, + i71
 (413°) 

(on = V171 = 13.08, and£ = 3.89 (overdamped). 

c. In order to derive the angular velocity response to a step input, we multiply the 
transfer function of Eq. (4.130) by a step input, lis, and obtain 

90 83 

^ = , ( , + 100)(, + 1.71) ( 4 1 3 1 ) 

Expanding into partial fractions, we get 

, , 0.122 2.12 xlO"3 0.124 *,*~« 
^ = - + ̂ +100- , -+171 (4132) 

Transforming to the time domain yields 

co0(t) = 0.122 + (2.12 x 10-3)e-100' - 0 . 1 2 4 ^ 1 ^ (4.133) 

d. First convert the transfer function into the state-space representation. Using state space 
Eq. (4.130), we have 

co0(s) 20.83 
Vp(s) S2 + 101 .71J + 171 

(4.134) 

Cross-multiplying and taking the inverse Laplace transform with zero initial 
conditions, we have 

a>0 + 101.716)0 + 171co0 = 20.83vp (4.135) 

Defining the phase variables as 

xi = co0 (4.136a) 

x2 = co0 (4.136b) 

and using Eq. (4.135), the state equations are written as 

ki = x2 (4.137a) 

x2 = -171*i - 101.71¾ + 20.83vp (4.137b) 

where vp = 1, a unit step. Since x\ = co0 is the output, the output equation is 

y = Xl (4.138) 

Equations (4.137) and (4.138) can be programmed to obtain the step response 
using MATLAB or alternative methods described in Appendix H.l at 
www.wiley.com/college/nise. 

e. Students who are using MATLAB shouldnowrunch4p4 in Appendix B. 
This exercise uses MATLAB to plot the step response. 

CHALLENGE: You are now given a problem to test your knowledge of this chapter's 
objectives. Refer to the antenna azimuth position control system shown on the 

MATLAB 

http://www.wiley.com/college/nise
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State Space 

MATLAB 

front endpapers, Configuration 2. Assume an open-loop system (feedback path 
disconnected) and do the following: 

a. Predict the open-loop angular velocity response of the power amplifier, motor, 
and load to a step voltage at the input to the power amplifier. 

b. Find the damping ratio and natural frequency of the open-loop system. 
c. Derive the open-loop angular velocity response of the power amplifier, motor, 

and load to a step-voltage input using transfer functions. 
d. Obtain the open-loop state and output equations. 
e. Use MATLAB t o ob ta in a p l o t of the open-loop angular v e l o c i t y 

response to a s t e p - v o l t a g e i n p u t . 

Unmanned Free-Swimming Submersible Vehicle: 
Open-Loop Pitch Response 

An Unmanned Free-Swimming Submersible (UFSS) vehicle is shown in Figure 
4.33. The depth of the vehicle is controlled as follows. During forward motion, an 
elevator surface on the vehicle is deflected by a selected amount. This deflection 
causes the vehicle to rotate about the pitch axis. The pitch of the vehicle creates a 
vertical force that causes the vehicle to submerge or rise. The pitch control system 
for the vehicle is used here and in subsequent chapters as a case study to 
demonstrate the covered concepts. The block diagram for the pitch control system 
is shown in Figure 4.34 and on the back endpapers for future reference (Johnson, 
1980). In this case study, we investigate the time response of the vehicle dynamics 
that relate the pitch angle output to the elevator deflection input. 

PROBLEM: The transfer function relating pitch angle, 6(s), to elevator surface 
angle, Se(s), for the UFSS vehicle is 

e(s) -0.125(5 + 0.435) 
8e(s) (s + 1.23)(^2 + 0.2265 + 0.0169) 

(4.139) 

FIGURE 4.33 Unmanned Free-Swimming Submersible (UFSS) vehicle. 
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Pitch 
command 

0,<A> 

Pitch gain 

0— -*, --(¾ 

Commanded 
elevator Elevator Elevator 

deflection actuator deflection 

<5<-» 2 8.(s) 

Vehicle 
dynamics 

s+2 

-0.125(^+0.435) 
(A-+1.23)(i2+0.226j+0.0169) 

Pitch 

em 

Pitch rate 
sensor 

-K-,5 -* 

FIGURE 4.34 Pitch control loop for the UFSS vehicle 

a. Using only the second-order poles shown in the transfer function, predict 
percent overshoot, rise time, peak time, and settling time. 

b. Using Laplace transforms, find the analytical expression for the response of the 
pitch angle to a step input in elevator surface deflection. 

c. Evaluate the effect of the additional pole and zero on the validity of the second-
order approximation. 

d. Plot the step response of the vehicle dynamics and verify your conclusions found 
in (c). 

SOLUTION: 

a. Using the polynomial s2 + 0.226s + 0.0169, we find that <yj = 0.0169 and 

2^eon = 0.226. Thus, a>„ = 0.13 rad/s and % = 0.869. Hence, %OS = er&V1-* 
100 = 0.399%. FromFigure4.16,^„7V = 2.75, or 71, = 21.2 s. To findpeak time, we 
use Tp = n/cony/l - C2 = 48.9 s. Finally, settling time is Ts = 4/^con = 35.4 s. 

b. In order to display a positive final value in Part d. we find the response of the 
system to a negative unit step, compensating for the negative sign in the transfer 
function. Using partial-fraction expansion, the Laplace transform of the 
response, 9(s), is 

0.125(5 + 0.435) 
d(s) = 

s(s + 1.23)(^2 + 0.226s + 0.0169) 

= 2.616^ + 0.0645 \— 
s 5 + 1.23 

2.68(5 + 0.113) + 3.478^0.00413 

(5 + 0.113)2 + 0.00413 

Taking the inverse Laplace transform, 

0(0 = 2.616 + 0.0645<rL23/ 

- 6>-0113'(2.68 cos 0.0643f + 3.478 sin 0.06430 

= 2.616 + 0.0645e-! 23' - 4.39e-°113'cos(0.0643? + 52.38°] 

(4.140) 

(4.141) 

c. Looking at the relative amplitudes between the coefficient of the e~l23t term 
and the cosine term in Eq. (4.165), we see that there is pole-zero cancellation 
between the pole at -1.23 and the zero at -0.435. Further, the pole at -1.23 is 
more than five times farther from the jco axis than the second-order dominant 
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Time (seconds) 

FIGURE 4.35 Negative step response of pitch control for UFSS vehicle 

MATLAB 

Roll axis 

FIGURE 4.36 A ship at sea, showing roll axis 

poles at —0.113 + /0.0643. We conclude that the response will be close to that 
predicted. 

d. Plotting Eq. (4.141) or using a computer simulation, we obtain the step response 
shown in Figure 4.35. We indeed see a response close to that predicted. 

Students who are using MATLAB should now run ch4p5 in Appendix B. 
This exercise uses MATLAB to find £, con, Ts, Tpr and Tr and plot a step 
response. Table lookup is used to find Tr. The exercise applies the 
concepts to the problem above. 

CHALLENGE: You are now given a problem to test your 
knowledge of this chapter's objectives. This problem uses 
the same principles that were applied to the Unmanned 
Free-Swimming Submersible vehicle: Ships at sea undergo 
motion about their roll axis, as shown in Figure 4.36. Fins 
called stabilizers are used to reduce this rolling motion. The 
stabilizers can be positioned by a closed-loop roll control 
system that consists of components, such as fin actuators 
and sensors, as well as the ship's roll dynamics. 

Assume the roll dynamics, which relates the roll-angle 
output, 0(s), to a disturbance-torque input, TD(S), is 

2.25 

TD(s) (s2 + 0.5s + 2.25) 
(4.142) 

MATLAB 

Do the following: 

a. Find the natural frequency, damping ratio, peak time, settling time, rise time, 
and percent overshoot. 

b. Find the analytical expression for the output response to a unit step input in 
voltage. 

c. Use MATLAB to solve a and b and to plot the response found in b, 
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^Summary^ 
In this chapter, we took the system models developed in Chapters 2 and 3 and found 
the output response for a given input, usually a step. The step response yields a clear 
picture of the system's transient response. "We performed this analysis for two types 
of systems, first order and second order, which are representative of many physical 
systems. We then formalized our findings and arrived at numerical specifications 
describing the responses. 

For first-order systems having a single pole on the real axis, the specification of 
transient response that we derived was the time constant, which is the reciprocal of 
the real-axis pole location. This specification gives us an indication of the speed of 
the transient response. In particular, the time constant is the time for the step 
response to reach 63% of its final value. 

Second-order systems are more complex. Depending on the values of system 
components, a second-order system can exhibit four kinds of behavior: 

1. Overdamped 

2. Underdamped 

3. Undamped 

4. Critically damped 

We found that the poles of the input generate the forced response, whereas 
the system poles generate the transient response. If the system poles are real, the 
system exhibits overdamped behavior. These exponential responses have time 
constants equal to the reciprocals of the pole locations. Purely imaginary poles 
yield undamped sinusoidal oscillations whose radian frequency is equal to the 
magnitude of the imaginary pole. Systems with complex poles display under-
damped responses. The real part of the complex pole dictates the exponential 
decay envelope, and the imaginary part dictates the sinusoidal radian frequency. 
The exponential decay envelope has a time constant equal to the reciprocal of the 
real part of the pole, and the sinusoid has a radian frequency equal to the 
imaginary part of the pole. 

For all second-order cases, we developed specifications called the damping 
ratio, £, and natural frequency, con. The damping ratio gives us an idea about the 
nature of the transient response and how much overshoot and oscillation it under­
goes, regardless of time scaling. The natural frequency gives an indication of the 
speed of the response. 

We found that the value of £ determines the form of the second-order natural 
response: 

• If £ = 0, the response is undamped. 

• If f < 1, the response is underdamped. 

• If £ = 1, the response is critically damped. 

• If £ > 1, the response is overdamped. 

The natural frequency is the frequency of oscillation if all damping is removed. 
It acts as a scaling factor for the response, as can be seen from Eq. (4.28), in which the 
independent variable can be considered to be co„t. 
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For the underdamped case we defined several transient response specifica­
tions, including these: 

• Percent overshoot, %OS 

• Peak time, Tp 

• Settling time, Ts 

• Rise time, Tr 

The peak time is inversely proportional to the imaginary part of the complex pole. 
Thus, horizontal lines on the .s-plane are lines of constant peak time. Percent 
overshoot is a function of only the damping ratio. Consequently, radial lines are 
lines of constant percent overshoot. Finally, settling time is inversely proportional to 
the real part of the complex pole. Hence, vertical lines on the s-plane are lines of 
constant settling time. 

We found that peak time, percent overshoot, and settling time are related to 
pole location. Thus, we can design transient responses by relating a desired response 
to a pole location and then relating that pole location to a transfer function and the 
system's components. 

The effects of nonlinearities, such as saturation, dead zone, and backlash were 
explored using MATLAB's Simulink. 

In this chapter, we also evaluated the time response using the state-space 
approach. The response found in this way was separated into the zero-input response, 
and the zero-state response, whereas the frequency response method yielded a total 
response divided into natural response and forced response components. 

In the next chapter we will use the transient response specifications developed 
here to analyze and design systems that consist of the interconnection of multiple 
subsystems. We will see how to reduce these systems to a single transfer function in 
order to apply the concepts developed in Chapter 4. 

^ Review Questions ^ 
1. Name the performance specification for first-order systems. 

2. What does the performance specification for a first-order system tell us? 

3. In a system with an input and an output, what poles generate the steady-state 
response? 

4. In a system with an input and an output, what poles generate the transient 
response? 

5. The imaginary part of a pole generates what part of a response? 

6. The real part of a pole generates what part of a response? 

7. What is the difference between the natural frequency and the damped frequency 
of oscillation? 

8. If a pole is moved with a constant imaginary part, what will the responses have in 
common? 

9. If a pole is moved with a constant real part, what will the responses have in 
common? 

10. If a pole is moved along a radial line extending from the origin, what will the 
responses have in common? 



Problems 

11. List five specifications for a second-order underdamped system. 

12. For Question 11 how many specifications completely determine the response? 

13. What pole locations characterize (1) the underdamped system, (2) the over-
damped system, and (3) the critically damped system? 

14. Name two conditions under which the response generated by a pole can be 
neglected. 

15. How can you justify pole-zero cancellation? 

16. Does the solution of the state equation yield the output response of the system? 
Explain. 

17. What is the relationship between (si — A), which appeared during the Laplace 
transformation solution of the state equations, and the state-transition matrix, 
which appeared during the classical solution of the state equation? 

18. Name a major advantage of using time-domain techniques for the solution of the 
response. 

19. Name a major advantage of using frequency-domain techniques for the solution 
of the response. 

20. What three pieces of information must be given in order to solve for the output 
response of a system using state-space techniques? 

21. How can the poles of a system be found from the state equations? 

State Space 

State Space 

State Space 

State Space 

State Space 

Problems 

1, Derive the output responses for all parts of 
Figure 4.7. [Section: 4.4] 

2. Find the output response, c(t), for each 
of the systems shown in Figure P4.1. 
Also find the time constant, rise time, 
and settling time for each case. [Sections: 4.2, 4.3] 

WileyPLUS 

Control Solutions 

I 
5 

J —»-

5 
6+5 

(a) 

20 
i'+20 

C(s) 

Qs) 

f o r MATLAB 

FIGURE P4.1 

3. Plot the step responses 
Problem 2 using MATLAB. 

4. Find the capacitor voltage in the network shown in 
Figure P4.2 if the switch closes at t = 0. Assume zero 

initial conditions. Also find the time constant, rise 
time, and settling time for the capacitor voltage. 
[Sections: 4.2, 4.3] 

— w v — 
1.8 Q 

/ = 0 

5 V 
0.79 F 

MATLAB 

FIGURE P4.2 

5. Plot the step response for 
Problem 4 using MATLAB. From 
your plots, find the time con­
stant, rise time, and settling 
time . 

6. For the system shown in Figure P4.3, (a) find an 
equation that relates settling time of the velocity of 
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the mass to M; (b) find an equation that relates rise 
time of the velocity of the mass to M. [Sections: 4.2,4.3] 

tli) 

.v(f) 

M 

6 N-s/m 

FIGURE P4.3 

7. Plot the step response for MATLAB 

Problem 6 using MATLAB. From ( Q B 
your plots, find the time con­
stant, rise time, and settling 
time. Use M = 1 and M = 2. 

8. For each of the transfer functions shown below, find 
the locations of the poles and zeros, plot them on the 
.-plane, and then write an expression for the general 
form of the step response without solving for the 
inverse Laplace transform. State the nature of each 
response (overdamped, underdamped, and so on). 
[Sections: 4.3, 4.4] 

2 
u. 

h 

A 

e. 

F 

i yt) --

T{s)--

7/(.) = 

T(s)--

T(s)--

7Y.0 ; 

. + 2 

5 
(. + 3)(. + 6) 

10(. + 7) 
(. + 10)(. + 20) 

20 
.2 + 6. + 144 

. + 2 
~.2 + 9 

(. + 5) 

(. + 10)2 

9. Use MATLAB t o find t h e p o l e s of 
[ S e c t i o n : 4.2] 

s2 + 2 s + 2 

MATLAB 

T(s) = 
s4 + 6s3 + 4s2 + 7s + 2 

10. Find the transfer function and poles of the system 
represented in state space here: [Section: 4.10] 

x = 

y = 

- 3 
5 

2 8 - 3 

- 4 
2 
7 

r 0 
- 9 

x + 
"-41 
- 3 

4 
"(0 

x; x(0) = 

4 , MATLAB 

11. Repeat Problem 10 using 
MATLAB. [Section: 4.10] . 

12. Write the general form of the capacitor 
voltage for the electrical network shown 
in Figure P4.4. [Section: 4.4]. 

/?! = lOkXi 

-Wv-

WileyPLUS 

Control Solutions 

Ht) = u(t) © R2=\0kQ^> L = 200H C = 10 //F 

MATLAB 

FIGURE P4.4 

13. Use MATLAB to plot the capaci­
tor voltage in Problem 12 . 
[Section: 4.4]. 

14. Solve for x(t) in the system shown in Figure P4.5 if 
/(f) is a unit step. [Section: 4.4]. 

M=lkg 
Ks = 5 N/m 
/,.= 1 N-s/m 

f(t) = u(t)N 

X(l) 

M •fit) 

FIGURE P4.5 

15. The system shown in Figure P4.6 has a unit step 
input. Find the output response as a function of 
time. Assume the system is underdamped. Notice 
that the result will be Eq. (4.28). [Section: 4.6]. 

R(s) 

s2+2 C,(o ,,s+ a>l 

C(.v) 

FIGURE P4.6 

16. Derive the relationship for damping ratio as a func­
tion of percent overshoot, Eq. (4.39). [Section: 4.6]. 

17. Calculate the exact response of each system of 
Problem 8 using Laplace transform techniques, 
and compare the results to those obtained in that 
problem. [Sections: 4.3, 4.4]. 

18. Find the damping ratio and natural frequency for 
each second-order system of Problem 8 and show 
that the value of the damping ratio conforms to the 
type of response (underdamped, overdamped, and 
so on) predicted in that problem. [Section: 4.5]. 

19. A system has a damping ratio of 0.5, a wileypms 
natural frequency of 100 rad/s, and a »Vi 1149 
dc gain of 1. Find the response of Contral solutions 
the system to a unit step input. [Section: 4.6]. 
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20. For each of the second-order systems that follow, 
find £, con, Ts, Tp, Tr, and %OS. [Section: 4.6]. 

T M 16 

a. T(s) = 

b. T(s) = 

c. 7(5) = 

s2 + 3s +16 
0.04 

52 + 0.025 + 0.04 
1.05 x 107 

MATLAB 

52 + 1.6x 1035 + 1.05x 107 

21. Repeat Problem 20 using MATLAB. 

Have the computer program esti­

mate the given specifications and plot the 

step responses. Estimate the rise time 

from the plots . [Section : 4 . 6]. 

22. Use MATLAB's LTI Viewer and ob- GuiTool 

tain settling time, peak, time, grjIJiT) 

rise time, andpercent overshoot 

for each of the systems in Problem 20. 

[Section: 4.6]. 

23. For each pair of second-order system specifications 
that follow, find the location of the second-order 
pair of poles. [Section: 4.6], 

a. %OS = 12%; Ts = 0.6 second 

b. %OS = 10%; Tp = 5 seconds 

c. Ts = l seconds; Tp = 3 seconds 

24. Find the transfer function of asecond-order 
system that yields a 12.3 % overshoot and a 
settling time of 1 second. [Section: 4.6] 

25. For the system shown in Figure P4.7, do the follow­
ing: [Section: 4.6] 

a. Find the transfer function G(s) = X(s)/F(s). 

b. Find £, con, %OS, Ts, Tp, and Tr. 

27. Derive the unit step response for each transfer 
function in Example 4.8. [Section: 4.7]. 

28. Find the percent overshoot, settling time, rise time, 
and peak time for 

14145 
T(S) = (^ + 0.842, + 2.829)(, + 5) [ S e C t i ° n : 4 7 ] 

29. For each of the unit step responses shown wiieyPLUs 
in Figure P4.9. find the transfer function ^Vj Jj-fl 
of the system. [Sections: 4.3, 4.6]. control solutions 

WileyPLUS 

Cliilii 
Control Solutions 

5 N-s/m 

FIGURE P4.7 

26. For the system shown in Figure P4.8, a step torque is 
applied at $i(t). Find 

a. The transfer function, G(s) = e2{s)/T(s). 

b. The percent overshoot, settling time, and peak 
time for 92(t). [Section: 4.6] 

Toy dt(t) e2«) 

1.07 kg-m -m2 

1.53 N-m-s/rad 

FIGURE P4.8 

1.92N-m/rad 

at 

1 

1 \ \ 1 
: : : 

0.05 0.1 0.15 
Time (seconds) 

(a) 

0.2 0.25 

20 

| 15 
c o a. 

2 IO 

5 

" " " - n * " 

2 3 
Time (seconds) 

(b) 

10 15 

Time (seconds) 

(c) 

FIGURE P4.9 
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30. For the following response functions, determine if 
pole-zero cancellation can be approximated. If it 
can, find percent overshoot, settling time, rise time, 
and peak time. [Section: 4.8]. 

(* + 3) 
a. C(s) = 

b. C{s) = 

c. C(s) = 

d. C{s) = 

5(5 + 2)(52+35 +10) 

(5 + 2.5) 
s(s + 2)(s2 +4s + 20) 

(5 + 2.1) 

5(5 + 2)(52 +s + 5) 

(5 + 2.01) 
s(s + 2)(52 + 55 + 20) 

31. Using MATLAB, plot the time re- MATLAB 

sponse of Problem 30a and from ^yj^) 
the plot determine percent overshoot, 
settling time, rise time, and peak time. 
[Section: 4 .8] 

32. Find peak time, settling time, and percent overshoot 
for only those responses below that can be approxi­
mated as second-order responses. [Section: 4.8]. 

a. c{t) = 0.003500 - 0.001524<r4' 

-0.001976e-3'cos(22.16f) 

-0.0005427e-3'sin(22.16r) 

b. c{t) = 0.05100 - 0.007353e-8' 

-0.007647e-6'cos(8f) 

-0.01309e"6rsin(8r) 

c. c{t) = 0.009804 - 0.0001857<r51f 

-0.009990e-2fcos(9.7960 

-0.001942e-2'sin(9.796r) 

d. c{t) = 0.007000 - 0.001667<r10' 

-0.008667e-2'cos(9.9510 

-0.0008040e-2fsin(9.951f) 

33. For each of the following transfer functions with 
zeros, find the component parts of the unit step 
response: (1) the derivative of the response without 
a zero and (2) the response without a zero, scaled to 
the negative of the zero value. Also, find and plot 
the total response. Describe any nonminimum-
phase behavior. [Section: 4.8]. 

a. G W = — 

b. G(s) = 

52 + 35 + 36 
5 - 2 

?2 + 35 + 36 

34. Use MATLAB's S i m u l i n k t o o b t a i n simulink 
t h e s t e p r e s p o n s e of a s y s t e m , 

1 
G{s) = 

s2 + 3s + U 
under the following conditions: 
[Section: 4.9] 

a. The system is linear and driven by an 
amplifier whose gain is 10. 

b. An amplifier whose gain is 10 drives the 
system. The amplifier saturates at 
±0.25 volts. Describe the effect of 
the saturation on the system's output. 

c. An amplifier whose gain is 10 drives the 
system. The amplifier saturates at 
±0.25 volts. The system drives a 1:1 
gear train that has backlash. The dead-
band width of the backlash is 0.02 rad. 
Describe the effect of saturation and 
backlash on the system's output. 

35. A system is represented by the state and 
output equations that follow. Without 
solving the state equation, find the poles 
of the system. [Section: 4.10] 

State Space 

X = 
- 2 - 1 
- 3 - 5 x + u{t) 

y = [ 3 2]x 

36. A system is represented by the state 
and output equations that follow. With­
out solving the state equation, find 
[Section: 4.10] 

a. the characteristic equation; 

b. the poles of the system 

WileyPLUS 

dJ2J 
Control Solutions 

State Space 

X = 

"0 2 3" 
0 6 5 

U 4 2J 
x + 

0" 
1 
lj 

lilt) 

y = [ l 2 0]x 

37. Given the following state-space re­
presentation of a system, find Y(s): 
[Section: 4.10] 

State Space 

X = 
1 2 

- 3 - 1 x + sin 3t 

v = [ l 2]x; x(0) = 

38. Given the following system represented 
in state space, solve for Y(s) using the 

State Space 
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Laplace transform method for solution of the state 
equation: [Section: 4.10] 

x = 

0 1 
- 2 - 4 

0 0 

ol 
1 

- 6 . 

x + 
[ol 
0 
1 

y = [ 0 0 l]x; x(0) = 

39. Solve the following state equation and 
output equation for y(t), where u(t) is 
the unit step. Use the Laplace trans­
form method. [Section: 4.10] 

State Space 

X = 

y=[ 

1-2 0] 

- 1 - 1 
x + 

0 l]x; x(0) = 

l l 
u 

1 

[3] 
0 

40. Solve for y(t) for the following system state space 
represented in state space, where u(t) is ^ ^ ^ V 
the unit step. Use the Laplace transform approach 
to solve the state equation. [Section: 4.10] 

x = 

- 3 

0 

0 

1 

- 6 

0 

01 

1 

- 5 . 

x + 
r°i 
i 

. 1 . 

u{t) 

y = [0 1 l ]x ;x (0) = 

41. Use MATLAB to plot the step re- MATLAB 

sponse of Problem 40 . [Section : 

4.10] 

42. Repeat Problem40 usingMATLAB's 
Symbolic Math Toolbox and Eq. 
(4.96). In addition, run your program 

with an initial condition, 

Symbolic Math 

x(0 = . [Sec t ion : 4.10] 

43. Using classical (not Laplace) methods WileyPLUS 
only, solve for the state-transition matrix. >Vi 114¾ 
the state vector, and the output of the Contfo1 solutions 

system represented 

x = 

x(0) 

here: [Section: 4.11] 

r o ii 
- 1 - 5 

rr 
0 

x;y = [l 2]x; 

State Space 

44. Using classical (not Laplace) methods state space 
only, solve for the state-transition ^E£9"J 
matrix, the state vector, and the output 
of the system represented here, where u(t) is the unit 
step: [Section: 4.11]. 

x = 
0 1 

-1 0 x + 

y = [ 3 4]x; x(0) = 

u(t) 

45. Solve for y(t) for the following system 
represented in state space, where u(t) is 
the unit step. Use the classical approach 
to solve the state equation. [Section: 4.11] 

State Space 

X = 

- 2 
0 
0 

1 
0 

-6 

0" 
1 

- 1 
x + 

r i i 
0 
0 

u(t) 

y = [1 0 0]x; x(0) = 

46. Repeat Problem 45 using MAT- SymbĉicAJath 

LAB's Symbolic Math Toolbox ^ E u W 

and Eq. (4.109) . In addition, run your 

program with an initial condition, 

x(0) = [Section : 4.111 

47. State Space Using methods described in Appendix 
H.l located at www.wiley.com/college/ 
nise simulate the following system and 
plot the step response. Verify the expected values of 
percent overshoot, peak time, and settling time. 

T(s) = 
s2 + 0.8s + 1 

http://www.wiley.com/college/
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48. Using methods described in Appendix 
H.l located at www.wiley.com/college/ 
nise, simulate the following system and 
plot the output, v(f), for a step input: 

State Space 

X = 

0 

10 
0 

1 
- 7 

0 

0 

1 
- 2 

x + 
"o" 
0 

1 

u(t) 

y(t)= [1 1 0]x; x(0) = 

- 1 

0 

0 

49. A human responds to a visual cue with a physical 
response, as shown in Figure P4.10. The transfer 
function that relates the output physical response, 
P(s), to the input visual command, V(s), is 

G(s) = 
P(s) (5 + 0.5) 

V{s) (s + 2)(s + 5) 

State Space 

(Stefani, 1973). Do the following: 

a. Evaluate the output response for a unit step 
input using the Laplace transform. 

b. Represent the transfer function in 
state space. 

c. Use MATLAB to simulate the MATLAB 

system and obtain a plot of ^1 ~) 
the step response. 

50. Industrial robots are used for myriad applications. 
Figure P4.ll shows a robot used to move 55-pound 
bags of salt pellets; a vacuum head lifts the bags 
before positioning. The robot can move as many as 
12 bags per minute (Schneider, 1992). Assume a 

FIGURE P4.11 Vacuum robot lifts two bags of salt. 

model for the open-loop swivel controller and 
plant of 

Ge{s) = 
K Q>o(s) 

Vj(s) (s + 10)(52 + 4* + 10) 

where a)0{s) is the Laplace transform of the robot's 
output swivel velocity and V,(s) is the voltage ap­
plied to the controller. 

a. Evaluate percent overshoot, settling time, peak 
time, and rise time of the response of the open-
loop swivel velocity to a step-voltage input. 
Justify all second-order assumptions. 

b. Represent the open-loop system in 
state space. 

State Space 

Step 1: Light source on Step 2: Recognize light source Step 3: Respond to light source 

FIGURE P4.10 Steps in determining the transfer function relating output physical response to the input visual command 

http://www.wiley.com/college/
P4.ll
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c. Use MATLAB or any other com- JJyJJL 
puter program to simulate the wiiUP 
system and compare your results to a. 

51. Anesthesia induces muscle relaxation (paralysis) 
and unconsciousness in the patient. Muscle relaxa­
tion can be monitored using electromyogram signals 
from nerves in the hand; unconsciousness can be 
monitored using the cardiovascular system's mean 
arterial pressure. The anesthetic drug is a mixture of 
isoflurane and atracurium. An approximate model 
relating muscle relaxation to the percent isoflurane 
in the mixture is 

P(s) _ 7.63 x 10"2 

U(s) ~ s2 + 1.15^ + 0.28 

where P(s) is muscle relaxation measured as a 
fraction of total paralysis (normalized to unity) 
and U(s) is the percent mixture of isoflurane (Link-
ens, 1992). [Section: 4.6] 

a. Find the damping ratio and the natural frequency 
of the paralysis transient response. 

b. Find the maximum possible percent paralysis if a 
2% mixture of isoflurane is used. 

c. Plot the step response of paralysis if a 1 % mix­
ture of isoflurane is used. 

d. What percent isoflurane would have to be used 
for 100% paralysis? 

52. To treat acute asthma, the drug theophylline is 
infused intravenously. The rate of change of the 
drug concentration in the blood is equal to the 
difference between the infused concentration and 
the eliminated concentration. The infused concen­
tration is i{t)/Vd, where i(t) is the rate of flow of the 
drug by weight and Vd is the apparent volume and 
depends on the patient. The eliminated concentra­
tion is given by k\Qc(t), where c(t) is the current 
concentration of the drug in the blood and k\o is the 
elimination rate constant. The theophylline concen­
tration in the blood is critical—if it is too low, the 
drug is ineffective; if too high, the drug is toxic 
(Jannett, 1992). You will help the doctor with 
your calculations. 

a. Derive an equation relating the desired blood 
concentration, Co, to the required infusion rate 
by weight of the drug, IR. 

b. Derive an equation that will tell how long the 
drug must be administered to reach the desired 

blood concentration. Use both rise time and 
settling time. 

c. Find the infusion rate of theophylline if VD = 
600 ml, kio = 0.07 h - 1 , and the required blood 
level of the drug is 12mcg/ml ("meg" means micro­
grams). See (Jannett, 1992); for a description of 
parameter values. 

d. Find the rise and settling times for the constants 
in c. 

Upper motor neuron disorder patients can benefit 
and regain useful function through the use of func­
tional neuroprostheses. The design requires a good 
understanding of muscle dynamics. In an experi­
ment to determine muscle responses, the identified 
transfer function was (Zhou, 1995) 

_ 2.5e-°0085(l + 0.172^)(1 +0.00¾) 

( l+0.07s)2( l + 0.05s)2 

Find the unit step response of this transfer function. 

When electrodes are attached to the mastoid bones 
(right behind the ears) and current pulses are ap­
plied, a person will sway forward and backward. It 
has been found that the transfer function from the 
current to the subject's angle (in degrees) with 
respect to the vertical is given by (Nashner, 1974) 

B(s) _ 5.8(0.35+ l ) e - ° b 

I(s) ~ (s + l)(s2/1.22 + O.fo/1.2 + 1) 

a. Determine whether a dominant pole approxima­
tion can be applied to this transfer function. 

b. Find the body sway caused by a 250 |xA pulse of 
150 msec duration. 

55. A MOEMS (optical MEMS) is a MEMS (Micro 
Electromechanical Systems) with an optical fiber 
channel that takes light generated from a laser 
diode. It also has a photodetector that measures 
light intensity variations and outputs voltage varia­
tions proportional to small mechanical device de­
flections. Additionally, a voltage input is capable of 
deflecting the device. The apparatus can be used as 
an optical switch or as a variable optical attenuator, 
and it does not exceed 2000 [xm in any dimension. 
Figure P4.12 shows input-output signal pairs used to 
identify the parameters of the system. Assume a 
second-order transfer function and find the system's 
transfer function (Borovic, 2005), 

53. 

54. 

55. 
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Open-Loop Responses 

E 
c 
x 2 

-2 

Open-Loop Response 
(simulated, d = 0.8) 

Open-Loop Response 
(experimental) 

500 t[us] 

FIGURE P4.12 

1000 1500 

56. The response of the deflection of a fluid-filled cathe­
ter to changes in pressure can be modeled using a 
second-order model. Knowledge of the parameters 
of the model is important because in cardiovascular 
applications the undamped natural frequency should 
be close to five times the heart rate. However, due to 
sterility and other considerations, measurement of 
the parameters is difficult. A method to obtain trans­
fer functions using measurements of the amplitudes 
of two consecutive peaks of the response and their 
timing has been developed (Glantz, 1979). Assume 
that Figure P4.13 is obtained from catheter measure­
ments. Using the information shown and assuming a 
second-order model excited by a unit step input, find 
the corresponding transfer function. 

57. Several factors affect the workings of the kidneys. 
For example, Figure P4.14 shows how a step change 
in arterial flow pressure affects renal blood flow in 
rats. In the "hot tail" part of the experiment, pe­
ripheral thermal receptor stimulation is achieved by 
inserting the rat's tail in heated water. Variations 
between different test subjects are indicated by the 
vertical lines. It has been argued that the "control" 
and "hot tail" responses are identical except for 
their steady-state values (DiBona, 2005). 

1 2 3 
Time (sec) 

FIGURE P4.14 

1.6 

1.4 

1.2 

3 
'& 0.8 

I 
0.6 

0.4 • 

0.2 -

Step Response 

System: T ' 
Time (sec): 0.0505) 
Ampliiude: LIS i 

i System: T 
J Time (sec): 0.0674 f 
I Ampliiude: 0.923 

0.05 0.15 
Time (sec) 

FIGURE P4.13 
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a. Using Figure P4.14, obtain the normalized 
(cfina| = 1) transfer functions for both responses. 

b. Use MATLAB to prove or dis- MATLAB 

prove the assertion about ^ ^ Q ) 
the "control" and "hot 
tail" responses. 

58. The transfer function of a nano-positioning device 
capable of translating biological samples within a 
few |xm uses a piezoelectric actuator and a linear 
variable differential transformer (LDVT) as a 
displacement sensor. The transfer function from 
input to displacement has been found to be 
(Salapaka, 2002) 

Infusion Pump Human Response 

G(s) = 
9.7 x 1 0 V - 144005 + 106.6 x 106) 

(s2 + 38005 + 23.86 x 106){s2 + 2405 + 2324.8 x 103 

Use a dominant-pole argument to find an 
equivalent transfer function with the MATLAB 

same numerator but only three poles. ^ j ^ J ^ ) 
Use MATLAB t o find t h e a c t u a l 
s i z e and a p p r o x i m a t e s y s t e m u n i t s t e p 
r e s p o n s e s , p l o t t i n g them on t h e same 
g r a p h . Explain the differences between both 
responses given that both pairs of poles are so far 
apart. 

59. At some point in their lives most people will suffer 
from at least one onset of low back pain. This 
disorder can trigger excruciating pain and tempo­
rary disability, but its causes are hard to diagnose. 
It is well known that low back pain alters motor 
trunk patterns; thus it is of interest to study the 
causes for these alterations and their extent. Due 
to the different possible causes of this type of pain, 
a "control" group of people is hard to obtain for 
laboratory studies. However, pain can be stimu­
lated in healthy people and muscle movement 
ranges can be compared. Controlled back pain 
can be induced by injecting saline solution directly 
into related muscles or ligaments. The transfer 
function from infusion rate to pain response was 
obtained experimentally by injecting a 5% saline 
solution at six different infusion rates over a period 
of 12 minutes. Subjects verbally rated their pain 
every 15 seconds on a scale from 0 to 10, with 0 
indicating no pain and 10 unbearable pain. Several 
trials were averaged and the data was fitted to the 
following transfer function: 

G(s) = 
9.72 x 10~8(5 + 0.0001) 

[s + 0.009)2 (s2 + 0.018^ + 0.0001) 

Constant 
infusion 

rate M{s) G(s) Constant 
back pain 

FIGURE P4.15 

For experimentation it is desired to build an auto­
matic dispensing system to make the pain level 
constant as shown in Figure P4.15. It follows that 
ideally the injection system transfer function has 
to be 

M{s) = 
1 

G(s) 

to obtain an overall transfer function M(s)G(s) RS 1. 
However, for implementation purposes M(s) must 
have at least one more pole than zeros (Zedka, 
1999). Find a suitable transfer function, M(s) by 
inverting G(s) and adding poles that are far from 
the imaginary axis. 

60. An artificial heart works in closed loop by varying 
its pumping rate according to changes in signals 
from the recipient's nervous system. For feedback 
compensation design it is important to know the 
heart's open-loop transfer function. To identify this 
transfer function, an artificial heart is implanted in a 
calf while the main parts of the original heart are left 
in place. Then the atrial pumping rate in the original 
heart is measured while step input changes are 
effected on the artificial heart. It has been found 
that, in general, the obtained response closely 
resembles that of a second-order system. In one 
such experiment it was found that the step response 
has a %OS = 30% and a time of first peak Tp = 
127 sec (Nakamura, 2002). Find the corresponding 
transfer function. 

61. An observed transfer function from voltage poten­
tial to force in skeletal muscles is given by (lonescu, 
2005) 

T(s) = 
450 

> + 5)(5+ 20) 

a. Obtain the system's impulse response. 

b. Integrate the impulse response to find the step 
response. 

c. Verify the result in Part b by obtaining the step 
response using Laplace transform techniques. 

62. In typical conventional aircraft, longitudinal flight 
model linearization results in transfer functions with 
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two pairs of complex conjugate poles. Consequently, 
the natural response for these airplanes has two 
modes in their natural response. The "short period" 
mode is relatively well-damped and has a high-
frequency oscillation. The "plugoid mode" is lightly 
damped and its oscillation frequency is relatively 
low. For example, in a specific aircraft the transfer 
function from wing elevator deflection to nose angle 
(angle of attack) is (McRuer, 1973) 

26.12(^ + 0.0098)(5 + 1.371; 

(52 + 8.99 x 10-¾ + 3.97 x 10-3)(^2 + 4.215 + 18.23) 

a. Find which of the poles correspond to the short 
period mode and which to the phugoid mode. 

b. Peform a "phugoid approximation" (dominant-
pole approximation), retaining the two poles and 
the zero closest to the; co-axis. 

c. Use MATLAB to compare the step MATLAB 

responses of the original 
transfer function and the 
approximation. 

MATLAB 63. A crosslapper is a machine that 
takes as an input a light fiber 
fabric and produces a heavier 
fabric by laying the original fabric in 
layers rotated by 90 degrees. A feedback 
system is required in order to maintain 
consistent product width and thickness 
by controlling its carriage velocity. 
The transfer function from servomotor 
torque, Tm(s), to carriage velocity, 
Y(s), was developed for such a machine 
(Kuo, 2008) . Assume that the transfer 
function is : 

c(s) = 
Y(s) 

3334 + 202s3 + 10061s2 + 24332s+170704 
s1 + 8s6 + 464s5+2411s" + 52899s3 + 16782 9s2 + 913599s + 1076555 

a. Use MATLAB to find the partial fraction 
residues and poles of G(s). 

b. Find an approximation to G{s) by ne­
glecting the second-order terms found 
in a. 

c. Use MATLAB to plot on one graph the step 
response of the transfer function 

given above and the approximation 
found in b. Explain the differences 
between the two plots . 

64. Although the use of fractional MATLAB 

calculus in control systems is 
not new, in the last decade there 
is increased interest in its use for sev­
eral reasons. The most relevant are that 
fractional calculus differential equa­
tions may model certain systems with 
higher accuracy than integer diffe­
rential equations, and that fractional 
calculus compensators might exhibit ad­
vantageous properties for control system 
design. An example of a transfer function 
obtained through fractional calculus is: 

G( s) = s2.5 + 4si.7 + 3so.5 + 5 

This function can be approximated with 
an integer rational transfer function 
(integer powers of s) using Oustaloup's 
method (Xue, 2005). We ask you now to do a 
little research and consult the afore­
mentioned reference to find and run an 
M-file that will calculate the integer 
rational transfer function approxima­
tion to G(s) and plot its step response . 

65. Mathematical modeling and control of pH pro­
cesses are quite challenging since the processes are 
highly nonlinear, due to the logarithmic relation­
ship between the concentration of hydrogen ions 
[H+] and pH level. The transfer function from 

Ya(s) 
input pH to output pH is 

14.49e-4-9 

G„(s) = 
X„(s) 

.Ga(s) is a model for the anaerobic 
1478.265 + 1 
process in a wastewater treatment system in which 
methane bacteria need the pH to be maintained in its 
optimal range from 6.8 to 7.2 {Jiayu, 2009). Similarly, 
(Elarafi, 2008) used empirical techniques to model a 
pH neutralization plant as a second-order system 
with a pure delay, yielding the following transfer 
function relating output pH to input pH: 

GP(s) = 
YP(s) 

XP(s) 

1.716 x ICrV 3 0 5 

s2 + 6.989 x K r t + 1.185 x 10- 6 

a. Find analytical expressions for the unit-
step responses ya(t) and yp{t) for the two 
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processes, Ga(s) and Gp(s). 
(Hint: Use the time shift theorem in Table 2.2). 

b. Use Simulink to plot ya(t) and ^™^< 
yp{t) on a single graph. ^ » 1 ^ ^ 

66. Using wind tunnel tests, insect flight dynamics can 
be studied in a very similar fashion to that of man-
made aircraft. Linearized longitudinal flight equa­
tions for a bumblebee have been found in the 
unforced case to be 

-8.792 x 10"3 0.56 x 1(T3 -1.0 x 10-3 -13.79 x 10" 

-0.347 x 10-3 -11.7 x 10-3 -0.347 x 10-3 0 

0.261 -20.8 x 10-3 -96.6 x 10"3 0 

0 0 1 0 

where u — forward velocity; vv = vertical velocity, 
q = angular pitch rate at center of mass, and 9 = 
pitch angle between the flight direction and the 
horizontal (Sun, 2005). 
a. Use MATLAB to obta in the s y s - MATLAB 

tern's e i g e n v a l u e s . ^ j l Q P 

b. Write the general form of the state-transition 
matrix. How many constants would have to be 
found? 

b. Using the A, B, and C matrices of Part a, obtain 

the converter's transfer function 

State Space 67. A dc-dc converter is a device that takes as 
an input an unregulated dc voltage and 
provides a regulated dc voltage as its 
output. The output voltage may be lower (buck con­
verter), higher (boost converter), or the same as the 
input voltage. Switching dc-dc converters have a semi­
conductor active switch (BJT or FET) that is closed 
periodically with a duty cycle d in a pulse width 
modulated (FWM) manner. For a boost converter, 
averaging techniques can be used to arrive at the 
following state equations (Van Dijk, 1995): 

L^± = -(l-d)uc + Es at 

C — = ( 1 - < * K - -

where L and C are respectively the values of internal 
inductance and capacitance; &, is the current through 
the internal inductor; R is the resistive load connected 
to the converter; Es is the dc input voltage; and the 
capacitor voltage, uc, is the converter's output. 

a. Write the converter's equations in the form 
x = Ax + Bu 
y =Cx 

assuming d is a constant. 

EM 
State Space 

.6] 

Xi 

X2 

Xl 

.X1. 
+ 

1 
0 

68. An IPMC (ionic polymer-metal com­
posite) is a Nafion sheet plated with 
gold on both sides. An IPMC bends when an electric 
field is applied across its thickness. IPMCs have 
been used as robotic actuators in several applica­
tions and as active catheters in biomedical app­
lications. With the aim of improving actuator 
settling times, a state-space model has been devel­
oped for a 20 mm x 10 mm x 0.2 mm polymer sam­
ple (Mallavarapu, 2001): 

xi -8.34 -2.26 

x2 1 0 

y = [12.54 2.26] 

where u is the applied input voltage and v is the 
deflection at one of the material's tips when the 
sample is tested in a cantilever arrangement. 
a. Find the state-transition matrix for the system. 
b. From Eq. (4.109) in the text, it follows that if a 

system has zero initial conditions the system 
output for any input can be directly calculated 
from the state-space representation and the 
state-transition matrix using 

y{t) = Cx(t) = J C<P(t - r) Bu(t)dr 

Use this equation to find the zero initial condition 
unit step response of the IPMC material sample. 

c. Use MATLAB to verify that your MATLAB 

step response calculation in ^Ei9P 
Part b is correct. 

DESIGN PROBLEMS 
69. Find an equation that relates 2% settling W'leyPLUs 

time to the value of fv for the transla- C H B I 
tional mechanical system shown in control solutions 
Figure P4.16. Neglect the mass of all components. 
[Section: 4.6] 

fv 

/ (0-

2N/m 

FIGURE PA. 16 
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70. Consider the translational mechanical system shown 
in Figure P4.17. A 1-pound force,/(/), is applied at 
t = 0. If fv = 1, find K and M such that the response 
is characterized by a 4-second settling time and a 
1-second peak time. Also, what is the resulting 
percent overshoot? [Section: 4.6] 

7(/) 

1 kg-m2 

M, 1 kg-m2 

1 N-m/rad 
yMKM 

I N-m-s/rad 

I 
/;• 

1 

-/WWV-

-kn/ 

M -

FIGURE P4.20 

fit) 

K 

FIGURE P4.17 

71. Given the translational mechanical system of 
Figure P4.17, where K = 1 and /(r) is a unit step, 
find the values of M and fv to yield a response with 
17% overshoot and a settling time of 10 seconds. 
[Section: 4.6] 

72. Find J and K in the rotational system shown in 
Figure P4.18 to yield a 30% overshoot and a sett­
ling time of 3 seconds for a step input in torque. 
[Section: 4.6] 

75. Find M and K, shown in the system of Figure P4.21, 
to yield x(t) with 10% overshoot and 15 seconds 
settling time for a step input in motor torque, Tm(t). 
[Section: 4.6] 

Tjfl 

7(/) 
i "h 

K 

FIGURE P4.18 

73. Given the system shown in Figure P4.19, find the 
damping, D, to yield a 30% overshoot in output 
angular displacement for a step input in torque. 
[Section: 4.6] 

/W-

For the motor: 

Ja = 1 kg-m2 

Da = 1 N-m-s/rad 
Ra=\Q 
Kb = 1 V-s/rad 
Kt = 1 N-m/A 

FIGURE P4.21 

7(/) 6,(/) 

kg-m: 
/V, = 25 

iV-> = 5 N 3 =10 

N 5 4 N-m/rad f 4 Mir 
FIGURE P4.19 

74. For the system shown in Figure P4.20, 
find N1/N2 so that the settling time 
for a step torque input is 16 seconds. 
[Section: 4.6] 

76. If Vj(t) is a step voltage in the network shown in 
Figure P4.22, find the value of the resistor such that a 
20% overshoot in voltage will be seen across the 
capacitor if C = 10~6 F and L = 1H. [Section: 4.6] 

Vi(t) 

FIGURE P4.22 

77. If Vj-(f) is a step voltage in the network 
shown in Figure P4.22, find the values 
of R and C to yield a 20% overshoot 
and a 1 ms settling time for vc(r) if 
Z, = 1H. [Section: 4.6] 

wiieyptus 78. Given the circuit of Figure P4.22, where C = 10fiF, 
>ViJ4-< find R and L to yield 15% overshoot with a settling 

control solutions time of 7 ms for the capacitor voltage. The input, 
v(r), is a unit step. [Section: 4.6] 

WileyPLUS 

dJJJ 
Control Solutions 
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79. For the circuit shown in Figure P4.23, find the 
values of R2 and C to yield 8% overshoot with 
a settling time of 1 ms for the voltage across 
the capacitor, with v,-(r) as a step input. [Section: 4.6] 

hydraulic pump is 

!•;(/) 

FIGURE P4.23 

80. Hydraulic pumps are used as inputs to statespace 
hydraulic circuits to supply pressure, just S ^ B 
as voltage sources supply potential to electric circuits. 
Applications for hydraulic circuits can be found in 
the robotics and aircraft industries, where hydraulic 
actuators are used to move component parts. Figure 
P4.24 shows the internal parts of the pump. A barrel 
containing equally spaced pistons rotates about the 
j'-axis. A swashplate, set at an angle, causes the 
slippers at the ends of the pistons to move the pistons 
in and out. When the pistons are moving across the 
intake port, they are extending, and when they are 
moving across the discharge port, they are retracting 
and pushing fluid from the port. The large and small 
actuators at the top and bottom, respectively, control 
the angle of the swashplate, a. The swashplate angle 
affects the piston stroke length. Thus, by controlling 
the swashplate angle, the pump discharge flow rate 
can be regulated. Assume the state equation for the 

x = 
(3.45 - 14000^) -0.255 x 10 

0.499 x 1011 - 3 . 

-3.45 + 14000£, 

- 9 1 

-0.499 x 10 11 «o, 

where x = a 

Pd 

and Pd is the pump discharge pressure (Manr-
ing, 1996). Find the value of controller flow 
gain, Kc, so that the damping ratio of the system's 
poles is 0.9. 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 
81. High-speed rail pantograph. Problem 67c in Chap­

ter 2 asked you to find G(s) = (Yi,(s) -
Yeai{s))/FUp{s) (O'Connor, 1997). 

a. Use the dominant poles from this transfer func­
tion and estimate percent overshoot, damping 
ratio, natural frequency, settling time, peak time, 
and rise time. 

b. Determine if the second-order approximation is 
valid. 

MATLAB c. Obtain the step response of 
G(s) and. compare the results 
to Part a. 

82. Control of HIV/AIDS. In Chapter 3, state Space 
Problem 31, we developed a linearized 

Portplate 

Large actuator - 7 \ a | 

Discharge port 

Slipper 

SPrin8 N Small actuator 

FIGURE PA.24 Pump diagram (Reprinted with permission of ASME.) 
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state-space model of HIV infection. The model 
assumed that two different drugs were used to 
combat the spread of the HIV virus. Since this 
book focuses on single-input, single-output systems, 
only one of the two drugs will be considered. We will 
assume that only RTIs are used as an input. Thus, in 
the equations of Chapter 3, Problem 31, «2 = 0 
(Craig, 2004). 
a. Show that when using only RTIs in the linear­

ized system of Problem 31 and substituting the 
typical parameter values given in the table of 
Problem 31c, the resulting state-space represen­
tation for the system is given by 

r ^ i r 
V 

= 

[" — 0.04167 c 
0.0217 -0.24 

0 100 

X 

r T i 
V 
V 

+ 

y=[0 0 1] 

r 5.2i 

-5.2 

0 . 

r T 1 

r 
\ ; 

-0.00581 

0.0058 

-2.4 

«i 

b. Obtain the transfer function from RTI efficiency 
Y(s) to virus count; namely find • , , .. 
Ui{s) 

c. Assuming RTIs are 100% effective, what will be 
the steady-state change of virus count in a given 
infected patient? Express your answer in virus 
copies per ml of plasma. Approximately how 
much time will the medicine take to reach its 
maximum possible effectiveness? 

83. Hybrid vehicle. Assume that the car motive dynam­
ics for a hybrid electric vehicle (HEV) can be 
described by the transfer function 

AVjs) _ 1 
A^e(s)~ 190&s+ 10 

where AVis the change of velocity in m/sec and AFe 

is the change in excess motive force in N necessary 
to propel the vehicle. 
a. Find an analytical expression for Av<̂  for a step 

change in excess motive force AFe = 2650 N. 
b. Simulate the system using MATLAB 

MATLAB. Plot the expression 
found in Part a together with 
your simulated plot. 

Cyber Exploration Laboratory 

Experiment 4.1 

Objective To evaluate the effect of pole and zero location upon the time 
response of first- and second-order systems. 

Minimum Required Software Packages MATLAB, Simulink, and the 
Control System Toolbox 

Prelab 

1. Given the transfer function G(s) = , evaluate settling time and rise time for 
s + a 

the following values of a: 1, 2, 3, 4. Also, plot the poles. 
2. Given the transfer function G(s) = -a r: 

w s2 + as + b 
a. Evaluate percent overshoot, settling time, peak time, and rise time for the 

following values: a = 4, b = 25. Also, plot the poles. 
b. Calculate the values of a and b so that the imaginary part of the poles remains 

the same but the real part is increased two times over that of Prelab 2a, and 
repeat Prelab 2a. 
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c. Calculate the values of a and b so that the imaginary part of the poles remains 
the same but the real part is decreased \ time over that of Prelab 2a, and repeat 
Prelab 2a. 

3. a. For the system of Prelab 2a, calculate the values of a and b so that the real part 
of the poles remains the same but the imaginary part is increased two times 
over that of Prelab 2a, and repeat Prelab 2a. 

b. For the system of Prelab 2a, calculate the values of a and b so that the real part 
of the poles remains the same but the imaginary part is increased four times 
over that of Prelab 2a, and repeat Prelab 2a. 

4. a. For the system of Prelab 2a, calculate the values of a and b so that the damping 
ratio remains the same but the natural frequency is increased two times over 
that of Prelab 2a, and repeat Prelab 2a. 

b. For the system of Prelab 2a, calculate the values of a and b so that the damping 
ratio remains the same but the natural frequency is increased four times over 
that of Prelab 2a, and repeat Prelab 2a. 

5. Briefly describe the effects on the time response as the poles are changed in each 
of Prelab 2, 3, and 4. 

Lab 

1. Using Simulink, set up the systems of Prelab 1 and plot the step response of 
each of the four transfer functions on a single graph by using the Simulink LTI 
Viewer. Also, record the values of settling time and rise time for each step 
response. 

2. Using Simulink, set up the systems of Prelab 2. Using the Simulink LTI Viewer, 
plot the step response of each of the three transfer functions on a single graph. 
Also, record the values of percent overshoot, settling time, peak time, and rise 
time for each step response. 

3. Using Simulink, set up the systems of Prelab 2a and Prelab 3. Using the Simulink 
LTI Viewer, plot the step response of each of the three transfer functions on a 
single graph. Also, record the values of percent overshoot, settling time, peak 
time, and rise time for each step response. 

4. Using Simulink, set up the systems of Prelab 2a and Prelab 4. Using the Simulink 
LTI Viewer, plot the step response of each of the three transfer functions on a 
single graph. Also, record the values of percent overshoot, settling time, peak 
time, and rise time for each step response. 

Postlab 

1. For the first-order systems, make a table of calculated and experimental values of 
settling time, rise time, and pole location. 

2. For the second-order systems of Prelab 2, make a table of calculated and experimental 
values of percent overshoot, settling time, peak time, rise time, and pole location. 

3. For the second-order systems of Prelab 2a and Prelab 3, make a table of 
calculated and experimental values of percent overshoot, settling time, peak 
time, rise time, and pole location. 

4. For the second-order systems of Prelab 2a and Prelab 4, make a table of 
calculated and experimental values of percent overshoot, settling time, peak 
time, rise time, and pole location. 
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5. Discuss the effects of pole location upon the time response for both first- and 
second-order systems. Discuss any discrepancies between your calculated and 
experimental values. 

Experiment 4.2 

Object ive To evaluate the effect of additional poles and zeros upon the time 
response of second-order systems. 

Minimum Required Software Packages MATLAB, Simulink, and the 
Control System Toolbox 

Prelab 
25 

1. a. Given the transfer function G(s) = -= - - , evaluate the percent over-w s2 + As + 25 F 

shoot, settling time, peak time, and rise time. Also, plot the poles. 

b. Add a pole at -200 to the system of Prelab la. Estimate whether the transient 
response in Prelab la will be appreciably affected. 

c. Repeat Prelab lb with the pole successively placed at —20, — 10, and - 2 . 

2. A zero is added to the system of Prelab la at —200 and then moved to 
-50 , — 20, — 10, - 5, and - 2 . List the values of zero location in the order 
of the greatest to the least effect upon the pure second-order transient 
response. 

3. Given the transfer function G(s) = ^ / ^ ^ ^ , let a = 3 and b = 3.01, 
v (s + b)(s2 + 4s + 25) 

3.1, 3.3, 3.5, and 4.0. Which values of b will have minimal effect upon the pure 
second-order transient response? 

. ^ . , r c • y-./ x (25006/a)(s + a) 
4. Given the transfer function Gis) = -—V . — j - ' „ . , let a = 30 and 

{s + b){s2 -f 40s + 2500) 
b = 30.01, 30.1, 30.5, 31, 35, and 40. Which values of b will have minimal effect 
upon the pure second-order transient response? 

Lab 

1. Using Simulink, add a pole to the second-order system of Prelab la and plot the 
step responses of the system when the higher-order pole is nonexistent, at 
-200, - 20, - 10, and - 2 . Make your plots on a single graph, using the Simulink 
LTI Viewer. Normalize all plots to a steady-state value of unity. Record percent 
overshoot, settling time, peak time, and rise time for each response. 

2. Using Simulink, add a zero to the second-order system of Prelab 1 a and plot the step 
responses of the system when the zero is nonexistent, at —200, - 50, 
-20 , - 10, - 5, and - 2 . Make your plots on a single graph, using the Simulink 
LTI Viewer. Normalize all plots to a steady-state value of unity. Record percent 
overshoot, settling time, peak time, and rise time for each response. 

3. Using Simulink and the transfer function of Prelab 3 with a = 3, plot the 
step responses of the system when the value of b is 3, 3.01, 3.1, 3.3, 3.5, 
and 4.0. Make your plots on a single graph using the Simulink LTI Viewer. 
Record percent overshoot, settling time, peak time, and rise time for each 
response. 
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4. Using Simulink and the transfer function of Prelab 4 with a = 30, plot the 
step responses of the system when the value of b is 30, 30.01, 30.1, 30.5, 31, 35, 
and 40. Make your plots on a single graph, using the Simulink LTI Viewer. 
Record percent overshoot, settling time, peak time, and rise time for each 
response. 

Postlab 

1. Discuss the effect upon the transient response of the proximity of a higher-order 
pole to the dominant second-order pole pair. 

2. Discuss the effect upon the transient response of the proximity of a zero to the 
dominant second-order pole pair. Explore the relationship between the length of 
the vector from the zero to the dominant pole and the zero's effect upon the pure 
second-order step response. 

3. Discuss the effect of pole-zero cancellation upon the transient response of a 
dominant second-order pole pair. Allude to how close the canceling pole and zero 
should be and the relationships of (1) the distance between them and (2) the 
distance between the zero and the dominant second-order poles. 

Experiment 4.3 

Objective To use Lab VIEW Control Design and Simulation Module for time 
performance analysis of systems. 

Minimum Required Software Packages Lab VIEW with the Control De­
sign and Simulation Module 

Prelab One of the experimental direct drive robotic arms built at the MTT 
Artificial Intelligence Laboratory and the CMU Robotics Institute can be repre­
sented as a feedback control system with a desired angular position input for the 
robot's joint position and an angular position output representing the actual robot's 
joint position. 

The forward path consists of three transfer functions in cascade; (1) a compensa­
tor, Gc(s), to improve performance; (2) a power amplifier of gain, Ka = l; and (3) the 
transfer function of the motor and load, G(s) — 2292/s(s + 75.6). Assume a unity-
feedback system. Initially the system will be controlled with Gc(s) = 0.6234, which is 
called a proportional controller (McKerrow, 1991). 

1. Obtain the closed-loop system transfer function and use MATLAB to make a plot 
of the resulting unit step response. 

2. Repeat with Gc(s) = 3.05 + 0.045, which is called a PD controller. 
3. Compare both responses and draw conclusions regarding their time domain 

specifications. 

Lab Create a LabVIEW VI that uses a simulation loop to implement both 
controllers given in the Prelab. Plot the responses on the same graph for comparison 
purposes. 

Postlab Compare the responses obtained using your LabVIEW VI with those 
obtained in the Prelab. 
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Experiment 4.4 

Objective To use the LabVIEW Control Design and Simulation Module to 
evaluate the effect of pole location upon the time response of second-order systems. 

Minimum Required Software Packages LabVIEW with the Control 
Design and Simulation Module. 

Prelab Solve the Cyber Exploration Laboratory Experiment 4.1 Prelab, Part 2. 

Lab Build a LabVIEW VI to implement the functions studied in the Prelab of 
Cyber Exploration Laboratory 4.1, Part 2. 

Specifically for Prelab Part a, your front panel will have the coefficients 
of the second-order transfer function as inputs. The front panel will also have 
the following indicators: (1) the transfer function; (2) the state-space repre­
sentation; (3) the pole locations; (4) the step response graph; (5) the time response 
of the two states on the same graph; (6) the time response parametric data 
including rise time, peak time, settling time, percent overshoot, peak value; 
and final value. 

For Prelab, Part b, your front panel will also have the following indicators: 
(1) the step response graph, and (2) the parametric data listed above for Prelab, Part 
a, but specific to Part b. 

For Prelab, Part c, your front panel will also have the following indicators: 
(1) the step response graph, and (2) the parametric data listed above for Prelab, Part 
a, but specific to Part c. 

Run the VI to obtain the data from the indicators. 

Postlab Use your results to discuss the effect of pole location upon the step 
response. 
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