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Modeling in the $ 
Frequency Domain 

^Chapter Learning Outcomes^ 
After completing this chapter, the student will be able to: 

• Find the Laplace transform of time functions and the inverse Laplace transform 
(Sections 2.1-2.2) 

• Find the transfer function from a differential equation and solve the differential 
equation using the transfer function (Section 2.3) 

• Find the transfer function for linear, time-invariant electrical networks (Section 2.4) 

• Find the transfer function for linear, time-invariant translational mechanical systems 
(Section 2.5) 

• Find the transfer function for linear, time-invariant rotational mechanical systems 
(Section 2.6) 

• Find the transfer functions for gear systems with no loss and for gear systems with 
loss (Section 2.7) 

• Find the transfer function for linear, time-invariant electromechanical systems 
(Section 2.8) 

• Produce analogous electrical and mechanical circuits (Section 2.9) 

• Linearize a nonlinear system in order to find the transfer function (Sections 2.10-
2.11) 

33 

2 



34 Chapter 2 Modeling in the Frequency Domain 

(case Study Learning Outcomes 3 
You will be able to demonstrate your knowledge of the chapter objectives with case 
studies as follows: 

• Given the antenna azimuth position control system shown on the front endpapers, 
you will be able to find the transfer function of each subsystem. 

• Given a model of a human leg or a nonlinear electrical circuit, you will be able to 
linearize the model and then find the transfer function. 

^ 2 . 1 Introduction 
In Chapter 1, we discussed the analysis and design sequence that included obtaining 
the system's schematic and demonstrated this step for a position control system. To 
obtain a schematic, the control systems engineer must often make many simplifying 
assumptions in order to keep the ensuing model manageable and still approximate 
physical reality. 

The next step is to develop mathematical models from schematics of physical 
systems. We will discuss two methods: (1) transfer functions in the frequency domain 
and (2) state equations in the time domain. These topics are covered in this chapter 
and in Chapter 3, respectively. As we proceed, we will notice that in every case the 
first step in developing a mathematical model is to apply the fundamental physical 
laws of science and engineering. For example, when we model electrical networks, 
Ohm's law and Kirchhoff's laws, which are basic laws of electric networks, will be 
applied initially. We will sum voltages in a loop or sum currents at a node. When we 
study mechanical systems, we will use Newton's laws as the fundamental guiding 
principles. Here we will sum forces or torques. From these equations we will obtain 
the relationship between the system's output and input. 

In Chapter 1 we saw that a differential equation can describe the relationship 
between the input and output of a system. The form of the differential equation and its 
coefficients are a formulation or description of the system. Although the differential 
equation relates the system to its input and output, it is not a satisfying representation 
from a system perspective. Looking at Eq. (1.2), a general, «th-order, linear, time-
invariant differential equation, we see that the system parameters, which are the 
coefficients, as well as the output, c(t), and the input, r(t), appear throughout the equation. 

We would prefer a mathematical representation such as that shown in 
Figure 2.1(a), where the input, output, and system are distinct and separate parts. 
Also, we would like to represent conveniently the interconnection of several sub­
systems. For example, we would like to represent cascaded interconnections, as shown 

Input 

r(t) 
System 

Output 

c{t) 

(a) 

FIGURE 2.1 a. Block diagram 
representation of a system; b. 
block diagram representation 
of an interconnection of 
subsystems 

Input 

m 
Subsystem Subsystem Subsystem 

Output 

(b) 

Note: The input, r(t), stands for reference input. 
The output, c(t), stands for controlled variable. 

c(t) 
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in Figure 2.1(b), where a mathematical function, called a transfer function, is inside 
each block, and block functions can easily be combined to yield Figure 2.1 (a) for 
ease of analysis and design. This convenience cannot be obtained with the 
differential equation. 

£ 2.2 Laplace Transform Review 
A system represented by a differential equation is difficult to model as a block 
diagram. Thus, we now lay the groundwork for the Laplace transform, with which we 
can represent the input, output, and system as separate entities. Further, their 
interrelationship will be simply algebraic. Let us first define the Laplace transform 
and then show how it simplifies the representation of physical systems (Nilsson, 1996). 

The Laplace transform is defined as 

/•00 

&[f(t)] = F(s) = f(t)e~sldt 
Jo-

(2.1) 

where s = a + jco, a complex variable. Thus, knowing/(f) and that the integral in Eq. (2.1) 
exists, we can find a function, F(s), that is called the Laplace transform of/(f).1 

The notation for the lower limit means that even if/(0 is discontinuous at t = 0, 
we can start the integration prior to the discontinuity as long as the integral 
converges. Thus, we can find the Laplace transform of impulse functions. This 
property has distinct advantages when applying the Laplace transform to the 
solution of differential equations where the initial conditions are discontinuous 
at t = 0. Using differential equations, we have to solve for the initial conditions after 
the discontinuity knowing the initial conditions before the discontinuity. Using the 
Laplace transform we need only know the initial conditions before the discontinuity. 
See Kailath (1980) for a more detailed discussion. 

The inverse Laplace transform, which allows us to find f(t) given F(s), is 

i pa+joo 

^ [ ^ ) 1 = 9 3 / F(sy'ds=f(t)u(t) (2.2) 

where 
u(t) = 1 t > 0 

= 0 t<0 

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is 
zero for t < 0. 

Using Eq. (2.1), it is possible to derive a table relating/(f) to F(s) for specific 
cases. Table 2.1 shows the results for a representative sample of functions. If we use 
the tables, we do not have to use Eq. (2.2), which requires complex integration, to 
find f(t) given F(s). 

'The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge if 
/o_ l /Wk-"1 ' dt < oc. Tf \f(t)\ < Meai',0 < t < oo, the integral will converge if oo > o\ > 0¾. We call 02 
the abscissa of convergence, and it is the smallest value of CT, where s = a + jco, for which the integral exists. 
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TABLE 2.1 Laplace transform table 

Item no. 

1. 

2. 

3. 

4-

5. 

6. 

7. 

M 
8(0 

u(t) 

tu(t) 

fuit) 

e~atu{t) 

sina)tu(t) 

cos a>tu(t) 

F(s) 

1 

1 
s 
1 
s2 

1 
s + a 

CO 

s2 + co2 

s 
s2 + co2 

In the following example we demonstrate the use of Eq. (2.1) to find the 
Laplace transform of a time function. 

Example 2.1 

Laplace Transform of a Time Function 

PROBLEM: Find the Laplace transform of/(f) = Ae~atu(t). 

SOLUTION: Since the time function does not contain an impulse function, we can 
replace the lower limit of Eq. (2.1) with 0. Hence, 

/>CO /"00 fX> 

F(s)= / f(t)e~stdt = / Ae~ate-St cit = A / e~{s+a)t dt 
Jo Jo Jo 

A 

s + a 
.e-{*+a)t 

A 

/=0 s + a 
(2.3) 

In addition to the Laplace transform table, Table 2.1, we can use Laplace 
transform theorems, listed in Table 2.2, to assist in transforming between f(t) and 
F(s). In the next example, we demonstrate the use of the Laplace transform 
theorems shown in Table 2.2 to find f(t) given F(s). 

Example 2.2 

Inverse Laplace Transform 

PROBLEM: Find the inverse Laplace transform of Fi{s) = l/(s + 3)2. 

SOLUTION: For this example we make use of the frequency shift theorem, Item 4 
of Table 2.2, and the Laplace transform of/(f) = tu(t), Item 3 of Table 2.1. If the 
inverse transform of F(s) = 1/s2 is tu(t), the inverse transform of F(s + a) = 
1/(5 + a)2 is e-altu(t). Hence, f^t) = e-3ttu(t). 
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TABLE 2.2 Laplace transform theorems 

Item no. Theorem Name 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

9. 

10. 

11. 

12. 

#[f(t)]=F(s) =J£f(t)er*dt 
<f[kfit)\ = kF(s) 

^[fi(t)+fi(t)]=F1(s)+F2{s) 
&[e~<*f{t)} 
X[f(t-T)] 

2 

<e 

/ (0 

fiat 

'df\ 
dt 

\d2f 
dt2 

'd"f 
dt" 

L 

+) 

)] 

f(r)dr] 

= Fis + a) 
= e-sTF(s) 

= ^(^) - / (0- ) 

= s2F(s) -^/(0-) - / ' (0-

= 5"f(5)- £V-*/*-1(0 
*=i 

= F(£) 
5 

= lim sFfrsO 
s-»0 

= lim sFis) 

Definition 
Linearity theorem 
Linearity theorem 
Frequency shift theorem 
Time shift theorem 

Scaling theorem 

Differentiation theorem 

Differentiation theorem 

Differentiation theorem 

Integration theorem 

Final value theorem1 

Initial value theorem2 

1 For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real 
parts, and no more than one can be at the origin. 
2For this theorem to be valid, fit) must be continuous or have a step discontinuity at t = 0 (that is, no 
impulses or their derivatives at t = 0). 

Partial-Fraction Expansion 
To find the inverse Laplace transform of a complicated function, we can convert the 
function to a sum of simpler terms for which we know the Laplace transform of each 
term. The result is called & partial-fraction expansion. If F\is) = Nis)/Dis), where 
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can 
be made. If the order of N(s) is greater than or equal to the order of D(s), then N(s) 
must be divided by D(s) successively until the result has a remainder whose 
numerator is of order less than its denominator. For example, if 

mm±gg£l M 
we must perform the indicated division until we obtain a remainder whose numera­
tor is of order less than its denominator. Hence, 

F i ( s ) = s + 1 + 
s2 + s + 5 

(2.5) 

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the 
differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain 

2 M) = d-f + sit) + ^ 
s2 + s + 5 

(2.6) 

Using partial-fraction expansion, we will be able to expand functions like F(s) = 
2/is2 +s + 5) into a sum of terms and then find the inverse Laplace transform for 
each term. We will now consider three cases and show for each case how an F(s) can be 
expanded into partial fractions. 
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Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example of an 
F(s) with real and distinct roots in the denominator is 

F® = (s + i, + 2) <2'7> 
The roots of the denominator are distinct, since each factor is raised only to unity 
power. We can write the partial-fraction expansion as a sum of terms where each 
factor of the original denominator forms the denominator of each term, and 
constants, called residues, form the numerators. Hence, 

f ( 5 ) = (ni)H2) = (^ij+(^) ( Z 8 ) 

To find Ku we first multiply Eq. (2.8) by (5 + 1), which isolates K\. Thus, 

2 =Kl+ttm (2.9) 
(5 + 2) ' (s + 2) 

Letting 5 approach - 1 eliminates the last term and yields K\ = 2. Similarly, K2 can be 
found by multiplying Eq. (2.8) by (s 4- 2) and then letting s approach -2; hence, K2 = -2. 

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence,/(f) is the sum 
of the inverse Laplace transform of each term, or 

f{t) = {2e-'-2e-2t)u{t) (2.10) 

In general, then, given an F(s) whose denominator has real and distinct roots, a 
partial-fraction expansion, 

D(s) (s+Pl)(s+p2)...(s + pm)---(s + pn) 

K] Kl + . . . + - i ^ + ' . . + *» (2.11) 
{s+pj (s+p2) (S+Pm) (S+Pn) 

can be made if the order of N(s) is less than the order of D(s). To evaluate each 
residue, Kj, we multiply Eq. (2.11) by the denominator of the corresponding partial 
fraction. Thus, if we want to find Km, we multiply Eq. (2.11) by (s +pm) and get 

(s+PJN(s) 
{s+pm)F{s) = 

[S +Pi){s+p2) • • • (* +Pm) • • • (* +Pn) 

If we let s approach —pm, all terms on the right-hand side of Eq. (2.12) go to zero 
except the term Km, leaving 

J^rfQm 
{s+Pl)(s+p2) • • -Is^rTd •••{s +p„) 

= Km (2.13) 
s^~P„ 

The following example demonstrates the use of the partial-fraction expansion 
to solve a differential equation. We will see that the Laplace transform reduces the 
task of finding the solution to simple algebra. 
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Example 2.3 

Laplace Transform Solution of a Differential Equation 

PROBLEM: Given the following differential equation, solve for y(t) if all initial 
conditions are zero. Use the Laplace transform. 

£+«j + *-»« (2.14) 

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using 
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(t) and 
dy(t)/dt given by y(0—) = 0 and y(0-) = 0, respectively. Hence, the Laplace 
transform of Eq. (2.14) is 

s2Y(s) + 12sY(s) + 32Y(s) = — 

Solving for the response, Y(s), yields 

32 
Y(s) = 

32 
s{s2 + 125 + 32) 5(5 + 4)(5 + 8) 

(2.15) 

(2.16) 

To solve for y(t), we notice that Eq. (2.16) does not match any of the terms in Table 
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match 
each of the resulting terms with F(s) in Table 2.1. Therefore, 

Y(s) = 

where, from Eq. (2.13), 

32 _ j ^ i 
5(5 + 4)(5 + 8) ~ T 

K, 
+ 

K3 

5 + 4) (5 + 8) 

#. = 

K2 = 

32 
[s + 4)(5 + 8) 

32 

= 1 

K3 = 

5(5 + 8) 

32 

s - 0 

= - 2 
s—»-4 

s(s + 4) 
= 1 

5 — 8 

Hence, 

y( , )=I 2— + ^ 
U 5 (̂  + 4)^(5 + 8) 

(2.17) 

(2.18a) 

(2.18b) 

(2.18c) 

(2.19) 

Since each of the three component parts of Eq. (2.19) is represented as an 
F(s) in Table 2.1, y(t) is the sum of the inverse Laplace transforms of each term. 
Hence, 

y{t) = (l-2e-4' + e-*!)u{t) (2.20) 
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MATLAB 

Students who are using MATLAB should now run ch2pl through ch2p8 
in Appendix B. This is your first MATLAB exercise. You will learn how 
to use MATLAB to (1) represent polynomials, {2) find roots of poly­
nomials, (3) multiply polynomials, and (4) find partial-fraction 
expansions. Finally, Example 2 .3 will be solved using MATLAB. 

HryltZl 
Use the following MATLAB 
and Control System Toolbox 
statement to form the linear, 
time-invariant (LTI) transfer 
function of Eq. (2.22). 

F=zpk([] ,[-1 - 2 -2 ] , 2) 

Trylt2.2 
Use the following MATLAB 
statements to help you get 
Eq. (2.26). 

numf=2; 
denf = poly([- l - 2 -2]); 
[k ,p , k] = r e s i d u e . . . 
(numf,denf) 

The u{i) in Eq. (2.20) shows that the response is zero until t = 0. Unless 
otherwise specified, all inputs to systems in the text will not start until t — 0. Thus, 
output responses will also be zero until t = 0. For convenience, we will leave off the 
u(t) notation from now on. Accordingly, we write the output response as 

y(0 = l -2«T* + <? , - 8 r (2.21) 

Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of 
an F(s) with real and repeated roots in the denominator is 

F(s) = 
(. + 1)(5 + 2)̂  

(2.22) 

The roots of (s + 2) in the denominator are repeated, since the factor is raised to an 
integer power higher than 1. In this case, the denominator root at - 2 is a multiple 
root of multiplicity 2. 

We can write the partial-fraction expansion as a sum of terms, where each 
factor of the denominator forms the denominator of each term. In addition, each 
multiple root generates additional terms consisting of denominator factors of 
reduced multiplicity. For example, if 

F(s) = 
Ki K2 Ks 

(5 + 1)(5 + 2)2 (5 + 1) (5 + 2)2 {s + 2) 
(2.23) 

then K\ = 2, which can be found as previously described. K2 can be isolated by 
multiplying Eq. (2.23) by {s + 2)2, yielding 

5 + 1 
= (5 + 2)' Ki 

1) 
K2 + (5 + 2)K3 (2.24) 

Letting 5 approach -2 , K2 = -2 . To find K3 we see that if we differentiate Eq. (2.24) 
with respect to s, 

- 2 
? ~~ / • , 1 \ 2 ^ 1 ^ ^ 3 

(5+ir (5+iy 
(2.25) 

K3 is isolated and can be found if we let 5 approach -2 . Hence, Kj, = —2. 
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(t) is the sum 

of the inverse Laplace transform of each term, or 

-2i 
f(t) = 2e~( - 2te~M - 2e , - 2 r (2.26) 

If the denominator root is of higher multiplicity than 2, successive differentiation 
would isolate each residue in the expansion of the multiple root. 



2.2 Laplace Transform Review 41 

In general, then, given an F(s) whose denominator has real and repeated roots, 
a partial-fraction expansion, 

F(S) = 
D(s) 

N(s) 

(s + p1)
r(s+p2)---(s+pn] 

K\ K2 

(s+pj + (s+Ply-1 + ' " 
Kr 

Pi) 

+ (s+p2) + ••• + (S+Pn) 
(2.27) 

can be made if the order of N(s) is less than the order of D(s) and the repeated roots 
are of multiplicity r at —p1. To find K\ through Kr for the roots of multiplicity greater 
than unity, first multiply Eq. (2.27) by (s +p{f getting F\{s), which is 

F1(s) = (S+pl)
rF(s) 

(S+Pl)
rN(S) 

(s + PiY(s+p2)---{s+pn) 

= Ki + (s +p1)K2 + {s +Pi)2K3 + ••• + (* +P1)
r~1Kr 

Kn(s+PiY • * r + l ( * + P l ) r 

(s+Pi) + (S+Pn) 
(2.28) 

Immediately, we can solve for K\ if we let s approach —pv We can solve for K2 if we 
differentiate Eq. (2.28) with respect to s and then let s approach —p^ Subsequent 
differentiation will allow us to find K3 through Kr. The general expression for K\ 
through Kr for the multiple roots is 

/-1 
Ki = 

1 <?-lFi{s) 
[/-1)1 ds1-1 /=1 ,2 , . ..,r; 0!=1 (2.29) 

5-+-/3, 

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example 
of F(s) with complex roots in the denominator is 

F(s) = 
s(s2 + 2s + 5) 

This function can be expanded in the following form: 

3 =Kt K2s + K2 

s(s2 + 2s + 5) s s2 + 2s + 5 

(2.30) 

(2.31) 

K\ is found in the usual way to be |. K2 and K$ can be found by first multiplying 
Eq. (2.31) by the lowest common denominator, 5(^+2^ + 5), and clearing the 
fractions. After simplification with Ki = I, we obtain 

3 (2^ + |y+(^3- f |V -3 (2.32) 

Trylt2.3 
Use the following MATLAB 
and Control System Toolbox 
statement to form the LTI 
transfer function of Eq. (2.30). 

F = tf([3],[l 2 5 0]) 
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Balancing coefficients, (K2 + 3) = 0 and (£3+5) = 0. Hence K% = - | and K3 = 
-f. Thus, 

F(s) = 
3/5 3 5 + 2 

s(s2 +25 + 5) 5 5 52 + 2s + 5 
(2.33) 

The last term can be shown to be the sum of the Laplace transforms of an 
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in 
Table 2.2, we get 

A(s + a) 
<£\Ae-alcos cot] = 

(5 + a)2 + (o2 

Similarly, 

Se[Be'alsmcot} = Bay 
(s + af + a? 

Adding Eqs. (2.34) and (2.35), we get 

y[Ae-a'cos cot + Be~atsm cot] = 
A(s + a)+Bco 

(s + a)2 + (o2 

(2.34) 

(2.35) 

(2.36) 

Trylt 2.4 
Use the following MATLAB 
and Symbolic Math Toolbox 
statements to get Eq. (2.38) 
from Eq. (2.30). 

syms s 
f = i l a p l a c e . . . 

( 3 / ( s* ( s A 2+2*s + 5))); 
p r e t t y ( f ) 

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36) 
by completing the squares in the denominator and adjusting terms in the numerator 
without changing its value. Hence, 

F(s) = 
3/5 3(5 + 1) + (1/2)(2) 

• 5 (s + l)2 + 22 

Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find 

3 3 ( 1 
/(f) = - - - e " ' cos2f + -sin2/ 

(2.37) 

(2.38) 

In order to visualize the solution, an alternate form of f(t), obtained by 
trigonometric identities, is preferable. Using the amplitudes of the cos and sin 

terms, we factor out A/ 1 + (1/2) from the term in parentheses and obtain 

f(t) =l-yi2 + (V2)2e-< 
I 2 + (l/2); 

: COS 2f 
1/2 

12 + (1/2)' 
:sin2r (2.39) 

Letting 1/Jl2 + (l/2)z = cos0 and (1 /2 ) /A/1 + (1/2)* = sin0, 

or 

3 3 I 
f(t) = - - - y i 2 + ( l /2)V r (cos (j) cos It + i\xi<l>im2i) 

f(t) = 0.6 - 0.671e-'cos(2f - ¢) 

(2.40) 

(2.41) 
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where 0 = arctan 0.5 = 26.57°. Thus,/(f) is a constant plus an exponentially damped 
sinusoid. 

In general, then, given an F(s) whose denominator has complex or purely 
imaginary roots, a partial-fraction expansion, 

N(s) N{s) 
F(s) = D{s) (s + pt){s2 + as + b) • 

(K2s + K3] K, 
(s+Pl) ' (s2 + as + b) ' '" {2A2) 

can be made if the order of N(s) is less than the order of D(s) p1 is real, and (s2 + 
as + b) has complex or purely imaginary roots. The complex or imaginary roots are 
expanded with (Kis + K^) terms in the numerator rather than just simply K;, as in 
the case of real roots. The Kfs in Eq. (2.42) are found through balancing the 
coefficients of the equation after clearing fractions. After completing the squares on 
(s2 + as + b) and adjusting the numerator, {K2S + K^)/(s2 + as + b) can be put into 
the form shown on the right-hand side of Eq. (2.36). 

Finally, the case of purely imaginary roots arises if a — 0 in Eq. (2.42). The 
calculations are the same. 

Another method that follows the technique used for the partial-fraction 
expansion of F(s) with real roots in the denominator can be used for complex 
and imaginary roots. However, the residues of the complex and imaginary roots are 
themselves complex conjugates. Then, after taking the inverse Laplace transform, 
the resulting terms can be identified as 

and 

er + e 

e>" - e 
2} 

— cos 

= sin 

(2.43) 

(2.44) 

For example, the previous F(s) can also be expanded in partial fractions as 
3 3 m = s(s2+2s + 5) s(s + l+j2){s + \-j2) 

= — H 1 
s 5 + 1+/2 ^ + 1-/2 

Finding K2, 

Ko = 
s(s + l-j2) 

-2o(2 + /l) 

(2.45) 

(2.46) 
s-*-l-j2 

Similarly, £3 is found to be the complex conjugate of K2, and K\ is found as 
previously described. Hence, 

2 - / 1 
mJ4 -if^ 

from which 
5 20 V? + 1+/2 5 + 1-/2 

fit) = § - I (2 +jl)e-{l+i2)t + (2- }l)e-*-M 

(2.47) 

5 20^ 2/ 
(2.48) 

Trylt2.5 
Use the following MATLAB 
statements to help you get 
Eq. (2.47). 

numf = 3 
denf=[l 2 5 0] 
[k,p, k] = r e s i d u e . . . 

(numf,denf) 
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Using Eqs. (2.43) and (2.44), we get 

Symbolic Math 

f{t)=-^-~e-c(cos2t + -sm2t 

where $ = arctan0.5 = 26.57°. 

= 0.6 - 0.671e-'cos(2f - ¢) (2.49) 

Students who are performing the MATLAB exercises and want to 

explore the added capability of MATLAB's Symbolic Math Toolbox 

should now run ch2spl and ch2sp2 in Appendix F at www.wiley.com/ 

college/nise. You will learn how to construct symbolic objects and 

then find the inverse Laplace and Laplace transforms of frequency 

and time functions, respectively. The examples in Case 2 and Case 3 

in this section will be solved using the Symbolic Math Toolbox. 

Skill-Assessment Exercise 2.1 

PROBLEM: Find the Laplace transform of/(f) = te~5t. 

ANSWER: F{s) = l/(s + 5)2 

The complete solution is at www.wiley.com/college/nise. 

WileyPLUS 

Control Solutions 

Skill-Assessment Exercise 2.2 

PROBLEM: Find the inverse Laplace transform of F(s) = 10/[s{s + 2){s + 3)2] 

ANSWER: /( ,) = * _ Se~2t + j t e ^ + ^ < r * 

The complete solution is at www.wiley.com/college/nise. 

( 2.3 The Transfer Function 
In the previous section we defined the Laplace transform and its inverse. We presented 
the idea of the partial-fraction expansion and applied the concepts to the solution of 
differential equations. We are now ready to formulate the system representation 
shown in Figure 2.1 by establishing a viable definition for a function that algebraically 
relates a system's output to its input. This function will allow separation of the input, 
system, and output into three separate and distinct parts, unlike the differential 
equation. The function will also allow us to algebraically combine mathematical 
representations of subsystems to yield a total system representation. 

Let us begin by writing a general nth-order, linear, time-invariant differential 
equation, 

d"c(t) dn-lc{t) 
a„———l-%-i dtn dt"'1 

, . , dmr(t) _ dm-lr{t) 
+ aoc{t) = bm-1±

L+bm_1 
dt" dt m—\ 

• + b0r{t) 

(2.50) 

http://www.wiley.com/
http://www.wiley.com/college/nise
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where c(t) is the output, r(t) is the input, and the a,'s, b/s, and the form of the 
differential equation represent the system. Taking the Laplace transform of both sides, 

ans"C{s) + an-is'^Cis) H + a0C(s) + initial condition 
terms involving c(t) 

= bms"'R(s) + bm-ism-lR(s) + ••• + b0R(s) + initial condition 
terms involving r(t) (2-51) 

Equation (2.51) is a purely algebraic expression. If we assume that all initial 
conditions are zero, Eq. (2.51) reduces to 

(ans
n + fln-i^-1 + • • • + a0)C{s) = (bms"' + b^s™'1 + ••• + b0)R{s) (2.52) 

Now form the ratio of the output transform, C(s), divided by the input transform, R(s): 

C(s) = = (bmsm + Z^-is"'-1 4-«• + h) 

m (a„s" + an-is"-1 + • • • + a0) 
(2.53) 

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, the 
ratio of polynomials in s on the right. We call this ratio, G(s), the transfer function and 
evaluate it with zero initial conditions. 

The transfer function can be represented as a block diagram, as 
shown in Figure 2.2, with the input on the left, the output on the right, and — 
the system transfer function inside the block. Notice that the denomina-

(V+Vi*""1 + --- + *o) 
(0^+0^^ + ---+0(,) 

C(s) 

tor of the transfer function is identical to the characteristic polynomial of FIGURE 2.2 Block diagram of a transfer 
the differential equation. Also, we can find the output, C(s) by using function 

C{s) = R(s)G(s) (2.54) 

Let us apply the concept of a transfer function to an example and then use the result to 
find the response of the system. 

Example 2.4 

Transfer Function for a Differential Equation 

PROBLEM: Find the transfer function represented by 

dc(t) 
dt 

+ 2c(t)=r(t) (2.55) 

SOLUTION: Taking the Laplace transform of both sides, assuming zero initial 
conditions, we have 

sC(s) + 2C(s) = R(s) 

The transfer function, G(s), is 

G(s) = C{s)= 1 
Ms) s + 2 

(2.56) 

(2.57) 
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MATLAB 

Symbolic Malh 

Students who are using MATLAB should now run ch2p9 through ch2pl2 
in Appendix B. You will learn how to use MATLAB to create transfer 
functions with numerators and denominators in polynomial or fac­
tored form. You will also learn how to convert between polynomial 
and factored forms. Finally, you will learn how to use MATLAB to 
plot time functions. 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run ch2sp3 in Appendix F at www.wiley.com/college/ 
nise. You will learn how to use the Symbolic Math Toolbox to 
simplify the input of complicated transfer functions as well as 
improve readability. You will learn how to enter a symbolic trans­
fer function and convert it to a linear,time-invariant(LTI) 
object as presented in Appendix B, ch2p9. 

Trylt 2.6 

Use the following MATLAB 
and Symbolic Math Toolbox 
statements to help you get 
Eq. (2.60). 

syms s 
C = l / ( s * ( s + 2 » 
C = i l a p l a c e ( C ) 

Trylt 2.7 

Use the following MATLAB 
statements to plot Eq. (2.60) 
for f from 0 to 1 sat intervals of 
0.01s. 

t = 0 : 0 . 0 1 : 1 ; 
p l o t . . . 
( t , ( l / 2 - l / 2 * e x p ( - 2 * t ) ) ) 

Example 2.5 

System Response from the Transfer Function 

PROBLEM: Use the result of Example 2.4 to find the response, c(t) to an input, 
r{t) = u(t), a unit step, assuming zero initial conditions. 

SOLUTION: To solve the problem, we use Eq. (2.54), where G{s) = l/(s + 2) as 
found in Example 2.4. Since r(t) = «(r), R(s) = 1/s, from Table 2.1. Since the initial 
conditions are zero, 

C(s) = R(s)G{s) = 
1 

s(s + 2) 

1/2 1/2 

Expanding by partial fractions, we get 

C(s) = 

Finally, taking the inverse Laplace transform of each term yields 

(2.58) 

(2.59) 

(2.60) 

Skill-Assessment Exercise 2.3 

PROBLEM: Find the transfer function, G(s) = C(s)/R(s), corresponding to the 
dzc _ dc 
dt2 dt 

C(s) s2 +4s + 3 

. dc ndc ^dc c dr dr 
differential equation —-=- + 3 -pr + 7 — + 5c = -73 + 4 - + 3/-. n dt3 dt2 dt dt2 dt 

ANSWER: G(s) =• . . ., _ 
v ; R(s) s3 +3s2 + 7s + 5 

The complete solution is at www.wiley.com/college/nise. 

http://www.wiley.com/college/
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Skill-Assessment Exercise 2.4 

PROBLEM: Find the differential equation corresponding to the transfer function, 

G(s) = j — 
6s+ 2 

d2c dc 
ANSWER: ^ + 6 ^ 1C = 2Jt

+r 

The complete solution is at www.wiley.com/college/nise. 

Skill-Assessment Exercise 2.5 

PROBLEM: Find the ramp response for a system whose transfer function is 

G(s) = 
> + 4)(* + 8) 

ANSWER: c(t) = - e 
1 ' -4f , J_p-8r 

"32 32 16 

The complete solution is at www.wiley.com/college/nise. 

WileyPius 

Control Solutions 

In general, a physical system that can be represented by a linear, time-invariant 
differential equation can be modeled as a transfer function. The rest of this chapter will 
be devoted to the task of modeling individual subsystems. We will learn how to represent 
electrical networks, translational mechanical systems, rotational mechanical systems, 
and electromechanical systems as transfer functions. As the need arises, the reader can 
consult the Bibliography at the end of the chapter for discussions of other types of 
systems, such as pneumatic, hydraulic, and heat-transfer systems {Cannon, 1967). 

^ 2.4 Electrical Network Transfer Functions 
In this section, we formally apply the transfer function to the mathematical modeling 
of electric circuits including passive networks and operational amplifier circuits. 
Subsequent sections cover mechanical and electromechanical systems. 

Equivalent circuits for the electric networks that we work with first consist of 
three passive linear components: resistors, capacitors, and inductors." Table 2.3 
summarizes the components and the relationships between voltage and current and 
between voltage and charge under zero initial conditions. 

We now combine electrical components into circuits, decide on the input and 
output, and find the transfer function. Our guiding principles are Kirchhoff s laws. 
We sum voltages around loops or sum currents at nodes, depending on which 
technique involves the least effort in algebraic manipulation, and then equate the 
result to zero. From these relationships we can write the differential equations for 
the circuit. Then we can take the Laplace transforms of the differential equations 
and finally solve for the transfer function. 

2 Passive means that there is no internal source of energy. 

http://www.wiley.com/college/nise
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TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors 

Component Voltage-current 
Impedance Admittance 

Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =I(s)/V(s) 

Capacitor 

Resistor 

Inductor 

v(t) = Riit) 

di(t) 

i(t) = C dv(t) 
dt <t)=^q{t) 

i{t)=jv{t) v(t)=R 

di(t) 1 r1 

v{t) = LdT m~H v{x)dx v(0 = L 

dq{t) 
dt 

d2q(t) 
dt2 

1 

R 

Ls 

Cs 

H 
Li-

Note: The following set of symbols and units is used throughout this book: v(t) — V (volts), i(t) - A (amps), q{t) - Q (coulombs), C - F (farads), 
R-Cl (ohms), G - fi (mhos), L - H (henries). 

Simple Circuits via Mesh Analysis 
Transfer functions can be obtained using Kirchhoffs voltage law and summing 
voltages around loops or meshes.3 We call this method loop or mesh analysis and 
demonstrate it in the following example. 

Example 2.6 

Transfer Function—Single Loop via the Differential Equation 

r W ^ 

v(t) © 
i(t) 

vc-U) 

FIGURE 2.3 RLC network 

PROBLEM: Find the transfer function relating the capacitor voltage, Vc(s), to 
the input voltage, V(s) in Figure 2.3. 

SOLUTION: In any problem, the designer must first decide what the input and 
output should be. In this network, several variables could have been chosen to be 
the output—for example, the inductor voltage, the capacitor voltage, the resistor 
voltage, or the current. The problem statement, however, is clear in this case: We 
are to treat the capacitor voltage as the output and the applied voltage as the input. 

Summing the voltages around the loop, assuming zero initial conditions, 
yields the integro-differential equation for this network as 

L ^ + Ri(t)+y^i(T)dT = v(t) 

Changing variables from current to charge using i(t) — dq{t)/dt yields 

L 
d2q(t) 

dt2 A ^ + Jttt-KO 
From the voltage-charge relationship for a capacitor in Table 2.3, 

.7(f) = Cvc(t) 

Substituting Eq. (2.63) into Eq. (2.62) yields 

LC %^C*f> + vcW = , « 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

A particular loop that resembles the spaces in a screen or fence is called a mesh. 
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Taking the Laplace transform assuming zero initial conditions, rearranging terms, 
and simplifying yields V(x) 

(LCs2 + RCs + l)Vc{s) = V(s) (2.65) 

Solving for the transfer function, Vc(s)/V(s), we obtain 

VctA 
V(s) 

1/LC 

s2 + — s + 1 
(2.66) 

L LC 
as shown in Figure 2.4. 

J_ 
LC 

2 J , l 
LC 

VMS) 

FIGURE 2.4 Block diagram of 
series RLC electrical network 

Let us now develop a technique for simplifying the solution for future 
problems. First, take the Laplace transform of the equations in the voltage-current 
column of Table 2.3 assuming zero initial conditions. 

For the capacitor, 

v(s)=y{s) 

For the resistor, 

For the inductor, 

V{s) = RI(s) 

V(s) = Lsl(s) 

Now define the following transfer function: 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

Notice that this function is similar to the definition of resistance, that is, the ratio of 
voltage to current. But, unlike resistance, this function is applicable to capacitors and 
inductors and carries information on the dynamic behavior of the component, since it 
represents an equivalent differential equation. We call this particular transfer function 
impedance. The impedance for each of the electrical elements is shown in Table 2.3. 

Let us now demonstrate how the concept of impedance simplifies the solution 
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial 
conditions, is 

(LS + R + ±-)I(S) = V(S) (2.71) 

Notice that Eq. (2.71), which is in the form 

[Sum of impedances]/^) = [Sum of applied voltages] (2.72) 

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of 
Figure 2.5 could have been obtained immediately from the circuit of Figure 2.3 
simply by replacing each element with its impedance. We call this altered circuit 
the transformed circuit. Finally, notice that the transformed circuit leads imme­
diately to Eq. (2.71) if we add impedances in series as we add resistors in series. 
Thus, rather than writing the differential equation first and then taking the 

Ls 

K(.v)Q 
/(.v) 

j _ 
Cs 

Vc(s) 

FIGURE 2.5 
network 

Laplace-transformed 
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Laplace transform, we can draw the transformed circuit and obtain the Laplace 
transform of the differential equation simply by applying Kirchhoff's voltage law to 
the transformed circuit. We summarize the steps as follows: 

1. Redraw the original network showing all time variables, such as v(t), i(t), and 
vc(t), as Laplace transforms V(s), I(s), and Vc{s), respectively. 

2. Replace the component values with their impedance values. This replacement is 
similar to the case of dc circuits, where we represent resistors with their resistance 
values. 

We now redo Example 2.6 using the transform methods just described and bypass 
the writing of the differential equation. 

Example 2.7 

Transfer Function—Single Loop via Transform Methods 

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods 
without writing a differential equation. 

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as 
we would use resistor values in a purely resistive circuit, we obtain 

J* + * + gK(.v) Vis] 

Solving for I(s)/V(s), 

V(s) 
Ls + R + 

(2.73) 

(2.74) 

Cs 

But the voltage across the capacitor, VQ (S), is the product of the current and the 
impedance of the capacitor. Thus, 

Vc(s)=I(s)±-s (2.75) 

Solving Eq. (2.75) for I(s), substituting I(s) into Eq. (2.74), and simplifying yields 
the same result as Eq. (2.66). 

Simple Circuits via Nodal Analysis 
Transfer functions also can be obtained using Kirchhoff's current law and summing 
currents flowing from nodes. We call this method nodal analysis. We now demon­
strate this principle by redoing Example 2.6 using Kirchhoff's current law and the 
transform methods just described to bypass writing the differential equation. 

Example 2.8 

Transfer Function—Single Node via Transform Methods 

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a 
differential equation. 
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SOLUTION: The transfer function can be obtained by summing currents flowing out 
of the node whose voltage is Vc(s) in Figure 2.5. We assume that currents leaving the 
node are positive and currents entering the node are negative. The currents consist of 
the current through the capacitor and the current flowing through the series resistor 
and inductor. From Eq. (2.70), each I(s) = V(s)/Z(s). Hence, 

Vc(s) , Vc(s) - V{s) 
I/Cs R + Ls 

= 0 (2.76) 

where Vc{s)/{1/Cs) is the current flowing out of the node through the capacitor, 
and [Vc(s) - V(s)]/(R 4- Ls) is the current flowing out of the node through the 
series resistor and inductor. Solving Eq. (2.76) for the transfer function, Vc{s)/V(s), 
we arrive at the same result as Eq. (2.66). 

Simple Circuits via Voltage Division 
Example 2.6 can be solved directly by using voltage division on the transformed 
network. We now demonstrate this technique. 

Example 2.9 

Transfer Function—Single Loop via Voltage Division 

PROBLEM: Repeat Example 2.6 using voltage division and the transformed 
circuit. 

SOLUTION: The voltage across the capacitor is some proportion of the input 
voltage, namely the impedance of the capacitor divided by the sum of the 
impedances. Thus, 

I/O 
Vc(s) = 

Ls + R + 
Cs) 

V(s) (2.77) 

Solving for the transfer function, Vc {s)/V(s), yields the same result as Eq. (2.66). 
Review Examples 2.6 through 2.9. Which method do you think is easiest for 

this circuit? 

The previous example involves a simple, single-loop electrical network. Many 
electrical networks consist of multiple loops and nodes, and for these circuits we 
must write and solve simultaneous differential equations in order to find the transfer 
function, or solve for the output. 

Complex Circuits via Mesh Analysis 
To solve complex electrical networks—those with multiple loops and nodes—using 
mesh analysis, we can perform the following steps: 

1. Replace passive element values with their impedances. 

2. Replace all sources and time variables with their Laplace transform. 

3. Assume a transform current and a current direction in each mesh. 
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4. Write Kirchhoffs voltage law around each mesh. 

5. Solve the simultaneous equations for the output. 

6. Form the transfer function. 

Let us look at an example. 

FIGURE 2.6 a. Two-loop 
electrical network; 
b. transformed two-loop 
electrical network; 
c. block diagram 

Example 2.10 

Transfer Function—Multiple Loops 

PROBLEM: Given the network of Figure 2.6(a), find the transfer function, 
h(s)/V(s). 

SOLUTION: The first step in the solution is to convert the network into Laplace 
transforms for impedances and circuit variables, assuming zero initial conditions. 
The result is shown in Figure 2.6(b). The circuit with which we are dealing requires 
two simultaneous equations to solve for the transfer function. These equations can 
be found by summing voltages around each mesh through which the assumed 
currents, I\(s) and I2(s), flow. Around Mesh 1, where Ii(s) flows, 

Rih(s) + Lsh(s) - Lsl2{s) = V{s) 

Around Mesh 2, where /2(^) flows, 

Lsl2(s) + R2h(s) + £-/2(s) - Lsh (s) = 0 

(2.78) 

(2.79) 

iv £0 

V(.s) LCs2 

(/?,+ R2)LCs2+(RxR2C + L)s + /?, 

his) 

(c) 
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Combining terms, Eqs. (2.78) and (2.79) become simultaneous equations in I\ (s) 
and his): 

(Ri + Ls)h (s) - Lsl2(s) = V(s) (2.80a) 

- Lsh(s) + (LS + R2 + ^)I2{S)=0 (2.80b) 

We can use Cramer's rule (or any other method for solving simultaneous 
equations) to solve Eq. (2.80) for h(s).4 Hence, 

where 

h(s) = 

A = 

(Ri+Ls) 

-Ls 
A 

{Ri + Ls) 

-Ls ( 

V(s) 

0 LsV(s) 
A 

-Ls 

^ + * + s ) 

(2.8i; 

Forming the transfer function, G(s), yields 
I_2[sl_Ls__ LOt_ 
V(s) ~ A ~ {St + R2)LCs2 + {RiR2C + L)s + Rx 

G(s) = (2.82) 

as shown in Figure 2.6(c). 
We have succeeded in modeling a physical network as a transfer function: The 

network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c). 
Before leaving the example, we notice a pattern first illustrated by Eq. (2.72). The 
form that Eq. (2.80) take is 

Sum of 
impedances 

. around Mesh 1 

Sum of 
impedances 

common to the 
two meshes 

/ i ( * ) " 

/,(*) + 

Sum of 
impedances 

common to the 
two meshes 

Sum of 
impedances 

around Mesh 2 

h(s) = 

his) = 

' Sum of applied 
voltages around 

Meshl 

Sum of applied 
voltages around 

Mesh 2 

(2.83a) 

(2.83b) 

Recognizing the form will help us write such equations rapidly; for example, mechani­
cal equations of motion (covered in Sections 2.5 and 2.6) have the same form. 

Students who are performing the MATLAB exercises and want to explore 
the added capability of MATLAB's Symbolic Math Toolbox should now 
run ch2sp4 in Appendix F at www.wiley.com/college/nise, where 
Example 2.10 is solved. You will learn how to use the Symbolic 
Math Toolbox to solve simultaneous equations using Cramer's 
rule. Specifically, the Symbolic Math Toolbox will be used to solve 
for the transfer function in Eq. (2 .82) using Eq. (2.80). 

Symbolic Math 

4 See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer's rule. 

http://www.wiley.com/college/nise
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Complex Circuits via Nodal Analysis 
Often, the easiest way to find the transfer function is to use nodal analysis rather than 
mesh analysis. The number of simultaneous differential equations that must be 
written is equal to the number of nodes whose voltage is unknown. In the previous 
example we wrote simultaneous mesh equations using Kirchhoff's voltage law. For 
multiple nodes we use Kirchhoff's current law and sum currents flowing from each 
node. Again, as a convention, currents flowing from the node are assumed to be 
positive, and currents flowing into the node are assumed to be negative. 

Before progressing to an example, let us first define admittance, Y(s), as the 
reciprocal of impedance, or 

Y(s) = 
Z(s) V(s) 

(2.84) 

When writing nodal equations, it can be more convenient to represent circuit 
elements by their admittance. Admittances for the basic electrical components 
are shown in Table 2.3. Let us look at an example. 

Example 2.11 

Transfer Function—Multiple Nodes 

PROBLEM: Find the transfer function, Vc(s)/V(s), for the circuit in Figure 2.6(b). 
Use nodal analysis. 

SOLUTION: For this problem, we sum currents at the nodes rather than sum 
voltages around the meshes. From Figure 2.6(b) the sum of currents flowing from 
the nodes marked VL(S) and Vc(s) are, respectively, 

VL(S)-V(S) | VL(S) t VL(s)-Vc(s)_Q 

HI Ls R-, 

CsVc{s) +
 V^-V^=0 

Ri 

(2.85a) 

(2.85b) 

V(s) 
G[G2 

C s 

, G,G2L+C G2 

V(is) 

FIGURE 2.7 Block diagram of the network of 
Figure 2.6 

Rearranging and expressing the resistances as conductances,5 G\ = 1/Ri and 
G2 = I/R2, we obtain, 

O- G: \-^)vL(s) -G2Vc(s) = V(s)G1 (2.86a) 

(2.86b) 

(2.87) 

Ls, 

-G2VL(s) + (G2 + Cs)Vc(s) = 0 

Solving for the transfer function, Vc(s)/V(s), yields 

G1G2 
Vc(s) 
V(s) 

C 

(Gi + G2)s
2 + — s + — 

as shown in Figure 2.7. 

5 In general, admittance is complex. The real part is called conductance and the imaginary part is called 
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity 
results. The reciprocal of resistance is called conductance. 
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Another way to write node equations is to replace voltage sources by 
current sources. A voltage source presents a constant voltage to any load; 
conversely, a current source delivers a constant current to any load. Practically, 
a current source can be constructed from a voltage source by placing a large 
resistance in series with the voltage source. Thus, variations in the load do not 
appreciably change the current, because the current is determined approxi­
mately by the large series resistor and the voltage source. Theoretically, we rely 
on Norton's theorem, which states that a voltage source, V(s), in series with an 
impedance, Zs(s), can be replaced by a current source, I(s) — V(s)/Zs(s), in 
parallel with Zs(s). 

In order to handle multiple-node electrical networks, we can perform the 
following steps: 

1. Replace passive element values with their admittances. 
2. Replace all sources and time variables with their Laplace transform. 
3. Replace transformed voltage sources with transformed current sources. 
4. Write Kirchhoffs current law at each node. 
5. Solve the simultaneous equations for the output. 
6. Form the transfer function. 

Let us look at an example. 

Transfer Function—Multiple Nodes with Current Sources 

PROBLEM: For the network of Figure 2.6, find the transfer function, 
Vc(s)/V(s), using nodal analysis and a transformed circuit with current 
sources. 

SOLUTION: Convert all impedances to admittances and all voltage 
sources in series with an impedance to current sources in parallel with 
an admittance using Norton's theorem. 

Redrawing Figure 2.6(b) to reflect the changes, we obtain Fig­
ure 2.8, where Gi = l/R\, G2 = I/R2, and the node voltages—the 
voltages across the inductor and the capacitor—have been identified 
as VL(S) and Vc{s), respectively. Using the general relationship, 
I(s) = Y(s)V{s), and summing currents at the node VL{S), 

GIVL(S)+^VL(S) + G2[VL(s) - Vc{*)] = VWh 

Summing the currents at the node Vc{s) yields 

CsVc(s) + G2[Vc(s)-VL(s)}=0 

Combining terms, Eqs. (2.88) and (2.89) become simultaneous equations in Vc(s) 
and Vi (s), which are identical to Eq. (2.86) and lead to the same solution as Eq. (2.87). 

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its 
direct relationship to Figure 2.8, namely 

V(s)G 

FIGURE 2.8 Transformed network 
ready for nodal analysis 

(2.88) 

(2.89) 
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Sum of admittances 
connected to Node 1 

Sum of admittances 
common to the two 

nodes 

VL(S) ~ 

VL(s) + 

Sum of admittances 
common to the two 

nodes 

Sum of admittances 
connected to Node 2 

Vc(s) = 

Vc(s) = 

Sum of applied 
currents at Node 1 

(2.90a) 

Sum of applied 
currents at Node 2 

(2.90b) 

A Problem-Solving Technique 
In all of the previous examples, we have seen a repeating pattern in the equations 
that we can use to our advantage. If we recognize this pattern, we need not write the 
equations component by component; we can sum impedances around a mesh in the 
case of mesh equations or sum admittances at a node in the case of node equations. 
Let us now look at a three-loop electrical network and write the mesh equations by 
inspection to demonstrate the process. 

FIGURE 2.9 Three-loop 
electrical network 

Example 2.13 

Mesh Equations via Inspection 

PROBLEM: Write, but do not solve, the mesh equations for the network shown in 
Figure 2.9. 

SOLUTION: Each of the previous problems has illustrated that the mesh 
equations and nodal equations have a predictable form. We use that knowledge 
to solve this three-loop problem. The equation for Mesh 1 will have the following 
form: 
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Substituting the values from 
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Mesh 2 and 
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f Sum of applied 

voltages around 

Mesh 3 

91) through (2.93) 

+(25 + 2)h(s) - (2s + l)/2(s) - Us) = Vis) 

- ( 2 5 + l)/i(5) + (95 + 1)/2(5) - 45/3(5) = 0 

- his) - 45/2(5) + (45 + 1+1)/3(5) = 0 

which can be solved simultaneously for any desired transfer func 
example, /3(5)/1^(5). 

(2.91) 

= 

F Sum of appied 

voltages around 

. 

(2.92) 

(2.93) 

yields 

(2.94a) 

(2.94b) 

(2.94c) 

ion, for 

Mesh 2 

I tyl t 2.8 

Use the following MATLAB 
and Symbolic Math Toolbox 
statements to help you solve for 
the electrical currents in Eq. 
(2.94). 

syms s 11 12 13 V 
A=[(2*s + 2) - ( 2 * s + D . . . 

- 1 
- ( 2 * s + l ) (9*s + l ) . . . 
- 4 * s 
- 1 - 4 * s . . . 
(4*s + l + l / s ) ] ; 

B = [ I 1 ; I 2 ; I 3 ] ; 
C=[V;0;0] ; 
B = inv(A)*C; 
p r e t t y ( B ) 
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+ V\(t) 

+!•-.( n 

m m 

(0 
FIGURE 2.10 a. Operational amplifier; b. schematic for an inverting operational amplifier; 
c. inverting operational amplifier configured for transfer function realization. Typically, the 
amplifier gain, A, is omitted. 

Passive electrical circuits were the topic of discussion up to this point. We now 
discuss a class of active circuits that can be used to implement transfer functions. 
These are circuits built around an operational amplifier. 

Operational Amplifiers 
An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as 
a basic building block to implement transfer functions. It has the following 
characteristics: 

1. Differential input, V2(t) - v\(t) 

2. High input impedance, Z/ = oo (ideal) 

3. Low output impedance, Z0 = 0 (ideal) 

4. High constant gain amplification, A = oo (ideal) 

The output, v0(t), is given by 

v0(t)=A(v2(t)-Vl(t)) (2.95) 

Inverting Operational Amplifier 
If vi{t) is grounded, the amplifier is called an inverting operational amplifier, as 
shown in Figure 2.10(6). For the inverting operational amplifier, we have 

v0(t) = -Avi(t) (2.96) 

If two impedances are connected to the inverting operational amplifier as 
shown in Figure 2.10(c), we can derive an interesting result if the amplifier has the 
characteristics mentioned in the beginning of this subsection. If the input impedance 
to the amplifier is high, then by Kirchhoff's current law, Ia(s) = 0 and I] (s) — —h{s)-
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Also, since the gain A is large, v\(t) « 0 . Thus, I\(s) = Vj{s)/Z\{s), and -h(s) = 
—V0(s)/Z2{s). Equating the two currents, V0(s)/Z2{s) = —V,(s)/Zi (s), or the transfer 
function of the inverting operational amplifier configured as shown in Figure 2.10(c) is 

Vo(s) _ Z2(s) 
Vi(s) Zx{s) 

(2.97) 

Example 2.14 

Transfer Function—Inverting Operational Amplifier Circuit 

PROBLEM: Find the transfer function, V0(s)/Vi(s), for the circuit given in 
Figure 2.11. 

I';! t) 

5.6/iF 

R2= C2 = 
220 kQ 0.1 juF 

v,(0 

360 kfi 

r„(0 

FIGURE 2.11 Inverting operational 
amplifier circuit for Example 2.14 

SOLUTION: The transfer function of the operational amplifier circuit is given by 
Eq. (2.97). Since the admittances of parallel components add, Z\{s) is the recipro­
cal of the sum of the admittances, or 

r, is 1 1 360 x 103 

Zi W = r = i = ^ T T T T T (2-98) 
Cî  + 4- 5.6xlO-<W l-—5 

2¾ 360 x 103 

2.016s + 1 

For Z2(A") the impedances add, or 

1 107 

Z 2 (s) = R2+-— = 220 x 103 + — 
C2s s 

Substituting Eqs. (2.98) and (2.99) into Eq . (2.97) and simplifying, we get 

V0(s) _ g? + 45.955 + 22.55 

(2.99) 

(2.100) 

The resulting circuit is called a PID controller and can be used to improve the 
performance of a control system. We explore this possibility further in Chapter 9. 

Noninverting Operational Amplifier 
Another circuit that can be analyzed for its transfer function is the noninverting 
operational amplifier circuit shown in Figure 2.12. We now derive the transfer 
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Vis) 

A/W^ 
V,{s) 

Vjs) 

Z,(s) 

FIGURE 2.12 General 
noninverting operational 
amplifier circuit 

Chapter 2 Modeling in the Frequency Domain 

function. We see that 

V0(s)=A(Vi(s)-V1(S)) 

But, using voltage division, 

Z1(s) 
V1(s) = Vo(s) 

(2.101) 

(2.102) 
Z1{s) + Z2(s) 

Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain 

Vo(s) A 
KiW l+AZl(s)/(Z1(s) + Z2(s)) 

For large A, we disregard unity in the denominator and Eq. (2.103) becomes 

(2.103) 

V0{s) Z1(s)+Z2(s) 

Vi(s) Zi(s) 
(2.104) 

Let us now look at an example. 

'.(n 

^ 

Example 2.15 

Transfer Function—Noninverting Operational Amplifier Circuit 

PROBLEM: Find the transfer function, V0(s)/Vi(s), for the circuit given in 
Figure 2.13. 

v,(0 

R2 

'•„(') 

1 
FIGURE 2.13 Noninverting 
operational amplifier circuit for 
Example 2.15 

SOLUTION: We find each of the impedance functions, Z\ (s) and Z2 (s), and then 
substitute them into Eq. (2.104). Thus, 

1 

and 

Zi(s)=Ri + 

Z2(s) = 

C\s 

R2{l/C2s) 

R2 + {l/C2s) 

Substituting Eqs. (2.105) and (2.106) into Eq. (2.104) yields 

V0(s) CtCiKzRts2 + (C2R2 + CiR2 + C i % > + 1 
Vi(s) C2CxR2R^2 + (C2R2 + CiRija + 1 

(2.105) 

(2.106) 

(2.107) 

Skill-Assessment Exercise 2.6 

PROBLEM: Find the transfer function, G(s) = VL(s)/V(s), for the circuit given in 
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show 
that the two methods yield the same result. 
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1H 
1Q 

A/W A/W-

1-(/) © 1 H 1 H 

+ 

FIGURE 2.14 Electric circuit for Skill-
Assessment Exercise 2.6 

ANSWER: VL(s)/V(s) = {s2+2s + \)/{s2 + 55 + 2) 

The complete solution is at www.wiley.com/college/nise. 

Skill-Assessment Exercise 2.7 

PROBLEM: If Z\{s) is the impedance of a 10 \XF capacitor and Z%{s) is the 
impedance of a 100 kfl resistor, find the transfer function, G(s) = V0(s)/Vj(s), 
if these components are used with (a) an inverting operational amplifier and (b) a 
noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively. 

ANSWER: G(s) = —s for an inverting operational amplifier; G(s) 
noninverting operational amplifier. 

The complete solution is at www.wiley.com/college/nise. 

• s + l for a 

WileyPLUS 

Control Solutions 

In this section, we found transfer functions for multiple-loop and multiple-node 
electrical networks, as well as operational amplifier circuits. We developed mesh and 
nodal equations, noted their form, and wrote them by inspection. In the next section 
we begin our work with mechanical systems. We will see that many of the concepts 
applied to electrical networks can also be applied to mechanical systems via analo­
gies—from basic concepts to writing the describing equations by inspection. This 
revelation will give you the confidence to move beyond this textbook and study 
systems not covered here, such as hydraulic or pneumatic systems. 

( 

2.5 Translational Mechanical System 
Transfer Functions 

We have shown that electrical networks can be modeled by a transfer function, G(s), 
that algebraically relates the Laplace transform of the output to the Laplace transform 
of the input. Now we will do the same for mechanical systems. In this section we 
concentrate on translational mechanical systems. In the next section we extend the 
concepts to rotational mechanical systems. Notice that the end product, shown in 
Figure 2.2, will be mathematically indistinguishable from an electrical network. 
Hence, an electrical network can be interfaced to a mechanical system by cascading 
their transfer functions, provided that one system is not loaded by the other.6 

6 The concept of loading is explained further in Chapter 5. 

http://www.wiley.com/college/nise
http://www.wiley.com/college/nise
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TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships 
for springs, viscous dampers, and mass 

Impedence 
Component Force-velocity Force-displacement ZM(S) = F(s)/X(s) 

Spring 
—I—•*• v(/) 

• _ : 

K 

f{t)=Kf0v(x)dT f[t)=Kx{t) K 

Viscous damper 
*• xit) 

^m m=fxt) msaf*iF & 

Mass 

•*- -v(0 A . M //2, 

M -+• fit) 

m=Md-f / w = * ^ 

Note: The following set of symbols and units is used throughout this book: /(/) = N (newtons), 
x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), fv = N-s/m(newton-seconds/ 
meter), M = kg (kilograms = newton-seconds2/meter). 

Mechanical systems parallel electrical networks to such an extent that there are 
analogies between electrical and mechanical components and variables. Mechanical 
systems, like electrical networks, have three passive, linear components. Two of 
them, the spring and the mass, are energy-storage elements; one of them, the viscous 
damper, dissipates energy. The two energy-storage elements are analogous to the 
two electrical energy-storage elements, the inductor and capacitor. The energy 
dissipator is analogous to electrical resistance. Let us take a look at these mechanical 
elements, which are shown in Table 2.4. In the table, K,fv, and M are called spring 
constant, coefficient of viscous friction, and mass, respectively. 

We now create analogies between electrical and mechanical systems by 
comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4 
to the voltage-current column of Table 2.3, we see that mechanical force is analogous 
to electrical voltage and mechanical velocity is analogous to electrical current. 
Comparing the force-displacement column of Table 2.4 with the voltage-charge 
column of Table 2.3 leads to the analogy between the mechanical displacement and 
electrical charge. We also see that the spring is analogous to the capacitor, the 
viscous damper is analogous to the resistor, and the mass is analogous to the 
inductor. Thus, summing forces written in terms of velocity is analogous to summing 
voltages written in terms of current, and the resulting mechanical differential 
equations are analogous to mesh equations. If the forces are written in terms of 
displacement, the resulting mechanical equations resemble, but are not analogous 
to, the mesh equations. We, however, will use this model for mechanical systems so 
that we can write equations directly in terms of displacement. 

Another analogy can be drawn by comparing the force-velocity column of 
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the 
analogy is between force and current and between velocity and voltage. Also, the 
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spring is analogous to the inductor, the viscous damper is analogous to the resistor, 
and the mass is analogous to the capacitor. Thus, summing forces written in terms of 
velocity is analogous to summing currents written in terms of voltage and the 
resulting mechanical differential equations are analogous to nodal equations. We 
will discuss these analogies in more detail in Section 2.9. 

We are now ready to find transfer functions for translational mechanical 
systems. Our first example, shown in Figure 2.15(a), is similar to the simple RLC 
network of Example 2.6 (see Figure 2.3). The mechanical system requires just one 
differential equation, called the equation of motion, to describe it. We will begin by 
assuming a positive direction of motion, for example, to the right. This assumed 
positive direction of motion is similar to assuming a current direction in an electrical 
loop. Using our assumed direction of positive motion, we first draw a free-body 
diagram, placing on the body all forces that act on the body either in the direction of 
motion or opposite to it. Next we use Newton's law to form a differential equation of 
motion by summing the forces and setting the sum equal to zero. Finally, assuming 
zero initial conditions, we take the Laplace transform of the differential equation, 
separate the variables, and arrive at the transfer function. An example follows. 

Example 2.16 

Transfer Function—One Equation of Motion 

^m^ 
.1-(/) 

M J\D 
F{s) 1 

Ms2+fvs + K 
X(.v) 

(a) 

PROBLEM: Find the transfer function, X(s)/F{s), for the system of Figure 2.15(a). 

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure 
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is 
traveling toward the right. Thus, only the applied force points to the right; all other 
forces impede the motion and act to oppose it. Hence, the spring, viscous damper, 
and the force due to acceleration point to the left. 

We now write the differential equation of motion using Newton's law to sum 
to zero all of the forces shown on the mass in Figure 2.16(a): 

„AM + / *W 

/v 

M 

(it2 

Kx(t) 

d.x 

dt 
Kx(t)=f(t) 

dt 

dt2 

M 

— x(t) 

•M 

KX(s) 

fcX(s) 

Ms2X(s) 

(2.108) 

-X(s) 

M m 

FIGURE 2.15 a. Mass, spring, 
and damper system; b. block 
diagram 

FIGURE 2.16 a. Free-body 
diagram of mass, spring, and 
damper system; b. trans­
formed free-body diagram 
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Taking the Laplace transform, assuming zero initial conditions, 

Ms2X{s) + fvsX{s) + KX(s) = F(s) 
or 

{Ms2+fvs + K)X(s) = F(s) 

Solving for the transfer function yields 

c(-) x{s) x 

^{S) F(s) MSi+fvs + K 

which is represented in Figure 2.15(6). 

(2.109) 

(2.110) 

(2.111) 

Now can we parallel our work with electrical networks by circumventing the 
writing of differential equations and by defining impedances for mechanical 
components? If so, we can apply to mechanical systems the problem-solving 
techniques learned in the previous section. Taking the Laplace transform of the 
force-displacement column in Table 2.4, we obtain for the spring, 

F(s) = KX{s) 

for the viscous damper, 

and for the mass, 

F(s)=fvsX(s) 

F(s) = Ms2X{s) 

If we define impedance for mechanical components as 

ZM(s) = m 
X(s) 

(2.112) 

(2.113) 

(2.114) 

(2.115) 

and apply the definition to Eqs. (2.112) through (2.114), we arrive at the impedances 
of each component as summarized in Table 2.4 (Raven, 1995)? 

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the 
format 

F(s) = ZM(s)X(s) (2.116) 

we obtain Figure 2.16(6), from which we could have obtained Eq. (2.109) immedi­
ately without writing the differential equation. From now on we use this approach. 

7 Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of 
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by 
defining mechanical impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient 
definition for writing the equations of motion in terms of displacement, rather than velocity. The 
alternative, however, is available. 
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Finally, notice that Eq. (2,110) is of the form 

[Sum of impedances]^.?) = [Sum of applied forces] (2.117) 

which is similar, but not analogous, to a mesh equation (see footnote 7). 
Many mechanical systems are similar to multiple-loop and multiple-node 

electrical networks, where more than one simultaneous differential equation is 
required to describe the system. In mechanical systems, the number of equations of 
motion required is equal to the number of linearly independent motions. Linear 
independence implies that a point of motion in a system can still move if all other 
points of motion are held still. Another name for the number of linearly independent 
motions is the number of degrees of freedom. This discussion is not meant to imply 
that these motions are not coupled to one another; in general, they are. For example, 
in a two-loop electrical network, each loop current depends on the other loop 
current, but if we open-circuit just one of the loops, the other current can still exist if 
there is a voltage source in that loop. Similarly, in a mechanical system with two 
degrees of freedom, one point of motion can be held still while the other point of 
motion moves under the influence of an applied force. 

In order to work such a problem, we draw the free-body diagram for each point 
of motion and then use superposition. For each free-body diagram we begin by holding 
all other points of motion still and finding the forces acting on the body due only to its 
own motion. Then we hold the body still and activate the other points of motion one at 
a time, placing on the original body the forces created by the adjacent motion. 

Using Newton's law, we sum the forces on each body and set the sum to zero. 
The result is a system of simultaneous equations of motion. As Laplace transforms, 
these equations are then solved for the output variable of interest in terms of the 
input variable from which the transfer function is evaluated. Example 2.17 demon­
strates this problem-solving technique. 

Example 2.17 

Transfer Function—Two Degrees of Freedom 

PROBLEM: Find the transfer function, X2(s)/F(s), for the system of Figure 2.17(a). 

xiU) Vi(/) 

K1H 
rl-r'-r-Tj.LU^T'T-Err 

F(s) <&/*%£ X,(.v) 

m 

FIGURE 2.17 a .Two-
degrees-of-freedom 
translational 
mechanical system;8 

b . block diagram 

Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, fv\ 
and fa are not Coulomb friction, but arise because of a viscous interface. 

Virtual Experiment 2.1 
Automobile Suspension 
Put theory into practice 
exploring the dynamics of 
another two degree of free­
dom system—an automobile 
suspension system driving 
over a bumpy road demon­
strated with the Quanser 
Active Suspension System 
modeled in Lab VIEW. 

Virtual experiments are found 
on WileyPLUS. 
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SOLUTION: The system has two degrees of freedom, since each mass can be moved 
in the horizontal direction while the other is held still. Thus, two simultaneous 
equations of motion will be required to describe the system. The two equations 
come from free-body diagrams of each mass. Superposition is used to draw the free-
body diagrams. For example, the forces on Mi are due to (1) its own motion and 
(2) the motion of Mi transmitted to M\ through the system. We will consider these 
two sources separately. 

If we hold Mi still and move M\ to the right, we see the forces shown in 
Figure 2.18(A). If we hold M\ still and move Mi to the right, we see the forces shown 
in Figure 2.18(6). The total force on M\ is the superposition, or sum, of the forces 
just discussed. This result is shown in Figure 2.18(c). For Mi, we proceed in a similar 
fashion: First we move Mi to the right while holding M\ still; then we move M\ to 
the right and hold Mi still. For each case we evaluate the forces on Mi, The results 
appear in Figure 2.19. 

K,X,(s) 

M{s
2Xi(s) 

Mi AT2W M, 
K2X2(s) 

FIGURE 2.18 a. Forces on 
Mi due only to motion of M\; 
b. forces on M\ due only to 
motion of Mi', c. all forces 
on Mi 

(A-, + tf2)X,(5) 

(fv+fv}sXAs) 

F(s) 

M]S
2X\(s) 

Mi 
K2X2(s) 

(c) 

FIGURE 2.19 a. Forces on 
M2 due only to motion of M2\ 
b. forces on Mi due only to 
motion of Mi; c. all forces 
onM2 

K2X2{s) +— 

fV2sX2(s) +-

fVisX2(s) +-

M2s
2X2(s) +— 

M2 — K3X2(s) 

(a) 

(K2 +KT,)X2(S) * 

<fv2+J 

A i2s
2X 

2® +— 

&>••+— 

M2 

K2Xi(s) — * 

f^xm -+ 

-+ KzW 

M2 

(b) 

(c) 

The Laplace transform of the equations of motion can now be written from 
Figures 2.18(c) and 2.19(c) as 

[MlS
2(fVi + fVi)s + (K{ + K2)]X, (s) - (fV3s + K2)Xi{s) = F(s) (2.118a) 

~{fV}s + K2)X1{s) + [M2s
2 + (fV2 + & > + (K2 + K3)]X2(s) = 0 (2.118b) 
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From this, the transfer function, X2{s)/F(s), is 

^ = ^ = ^ *«* 

as shown in Figure 2.17(6) where 

A = 
[M,s2 + (f„ + / „ > + (K, + K2)} -{fVis + K2) 

-ifV3s + K2) [M2s
2 + (fV2 + /v,> + (K2 + Ks)] 

67 

Notice again, in Eq. (2.118), that the form of the equations is similar to 
electrical mesh equations: 

Sum of 
impedances 
connected 

to the motion 
atxi 

Sum of 
impedances 

between 
x\ and x2 

XAs) -

Xi(s) + 

Sum of 
impedances 

between 

Xj andx? 

Sum of 
impedances 
connected 

to the motion 

at x2 

Xo(s) = 

X2(s) = 

Sum of 
applied forces 

at X] 

Sum of 
applied forces 

at x2 

(2.120a) 

(2.120b) 

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept 
to write the equations of motion of a three-degrees-of-freedom mechanical network 
by inspection, without drawing the free-body diagram. 

Example 2.18 

Equations of Motion by Inspection 

PROBLEM: Write, but do not solve, the equations of motion for the mechanical 
network of Figure 2.20. 

4-

^ ^ K X K P -

v,(/) 

M3 

/W, 

!1 

: __:._!_ i_i_i_L 

A/2 

fj 

+*x2M 

IV) 
FIGURE 2.20 Three-
degrees-of-freedom 
translational mechanical 
system 
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SOLUTION: The system has three degrees of freedom, since each of the three 
masses can be moved independently while the others are held still. The form of the 
equations will be similar to electrical mesh equations. For Mi, 

Sum of 
impedances 
connected 

to the motion 
at*i 

Xi(s) -

Sum of 
impedances 

between 
xi and x2 

Sum of 
impedances 

between 
x\ and.*3 

Similarly, for Mi and M3, respectively, 

X2(s) 

X3(s) = 
Sum of 

applied forces 
atJti 

Sum of 
impedances 

between 
xi and X2 

Xi(s) + 

Sum of 
impedances 

between 
xi and*3 

*ito -

Sum of 
impedances 
connected 

to the motion 
at x2 

Sum of 
impedances 

between 
x2 and x3 

Sum of 
impedances 

between 
x2 and x3 

X2(s) 

Xi(a) = 
Sum of 

applied forces 
atx2 

X2(s) 

+ 

Sum of 1 
impedances 
connected 

to the motion 
atx3 

X3(s) = 
f Sum of 
applied forces 

at X3 

(2.121) 

(2.122) 

(2.123) 

Mi has two springs, two viscous dampers, and mass associated with its motion. 
There is one spring between Mi and M2 and one viscous damper between Mi and 
M3. Thus, using Eq. (2.121), 

[MlS
2 + (fn +fVi)s + (Ki + K2)]Xi(s) - K2X2(s) -fVisX3(s) = 0 (2.124) 

Similarly, using Eq. (2.122) for M2, 

-KiXiW + [M2s
2 + (fV2 +fV4)s + K2]X2(s) -fV4sX3(s) = F(s) (2.125) 
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and using Eq. (2.123) for M3, 

\M3s
2 + {fv%+fJs}X3(s)^Q (2.126) 

Equations (2.124) through (2.126) are the equations of motion. We can solve them 
for any displacement, X\(s), ^2(5), or .^3(5), or transfer function. 

Skill-Assessment Exercise 2.8 

PROBLEM: Find the transfer function, G(s) = X2{s)/F(s), for the translational 
mechanical system shown in Figure 2.21. 

/V|=lN-s/m 

fU) 1 

fv = I N-s/m 

.V|( / ) vM/> 

M, = 1 kg 

K= 1 N/m 

fVi= 1 N-s/m 
— M2= 1 kg 

/ v = 1 N-s/m 

ANSWER: : G(*) = 
35 + 1 

5(53+752+ 5^ + 1) 

The complete solution is at www.wiley.com/college/nise. 

FIGURE 2.21 Translational 
mechanical system for Skill-
Assessment Exercise 2.8 

( 

2.6 Rotational Mechanical System 
Transfer Functions 

Having covered electrical and translational mechanical systems, we now move on 
to consider rotational mechanical systems. Rotational mechanical systems are 
handled the same way as translational mechanical systems, except that torque 
replaces force and angular displacement replaces translational displacement. The 
mechanical components for rotational systems are the same as those for transla­
tional systems, except that the components undergo rotation instead of translation. 
Table 2.5 shows the components along with the relationships between torque and 
angular velocity, as well as angular displacement. Notice that the symbols for the 

http://www.wiley.com/college/nise
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TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational 
relationships for springs, viscous dampers, and inertia 

Component 
Torque-angular 

velocity 
Torque-angular 

displacement 
Impedence 

ZM(s) = T(s)/0(s) 

Til) 6U) 

•—' K 
Viscous -/•(/) e{t) 
damper r^. 

T(t) = K Jlco(r)dr 

T{t) = Dco{t) 

77»=/ 
dcojt) 

dt 

no = mt) 

T(t)=D 
d0(() 

dt 

7(0=/ 
d29(t) 

dt2 

Ds 

Js2 

Note: The following set of symbols and units is used throughout this book: T(t) - N-m (newton-meters), 
9(t) — rad(radians), to(t) - rad/s(radians/second), K — N-m/rad(newton- meters/radian), D — N-m-s/rad 
(newton- meters-seconds/radian). J - kg-m2(kilograms-meters2 - newton-meters-seconds2/radian). 

components look the same as translational symbols, but they are undergoing 
rotation and not translation. 

Also notice that the term associated with the mass is replaced by inertia. The 
values of K, D, and J are called spring constant, coefficient of viscous friction, and 
moment of inertia, respectively. The impedances of the mechanical components are 
also summarized in the last column of Table 2.5. The values can be found by taking 
the Laplace transform, assuming zero initial conditions, of the torque-angular 
displacement column of Table 2.5. 

The concept of degrees of freedom carries over to rotational systems, except 
that we test a point of motion by rotating it while holding still all other points of 
motion. The number of points of motion that can be rotated while all others are 
held still equals the number of equations of motion required to describe the 
system. 

Writing the equations of motion for rotational systems is similar to writing 
them for translational systems; the only difference is that the free-body diagram 
consists of torques rather than forces. We obtain these torques using superposition. 
First, we rotate a body while holding all other points still and place on its free-body 
diagram all torques due to the body's own motion. Then, holding the body still, we 
rotate adjacent points of motion one at a time and add the torques due to the 
adjacent motion to the free-body diagram. The process is repeated for each point of 
motion. For each free-body diagram, these torques are summed and set equal to zero 
to form the equations of motion. 

Two examples will demonstrate the solution of rotational systems. The first one 
uses free-body diagrams; the second uses the concept of impedances to write the 
equations of motion by inspection. 
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Example 2.19 

Transfer Function—Two Equations of Motion 

PROBLEM: Find the transfer function, 62(s)/T(s), for the rotational system shown 
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing 
torsion. A torque is applied at the left, and the displacement is measured at the 
right. 

7(/) 0,(r) 02{i) 

l~7~7 2ZZJ 
Bearing ft Bearing 

D] Torsion D2 

(a) 

T(s) 

(c) 

d,(s) 
FIGURE 2.22 a. Physical 
system; b. schematic; 
c. block diagram 

SOLUTION: First, obtain the schematic from the physical system. Even though 
torsion occurs throughout the rod in Figure 2.22(a),9 we approximate the system 
by assuming that the torsion acts like a spring concentrated at one particular point 
in the rod, with an inertia J\ to the left and an inertia J2 to the right.10 We also 
assume that the damping inside the flexible shaft is negligible. The schematic is 
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can 
be rotated while the other is held still. Hence, it will take two simultaneous 
equations to solve the system. 

Next, draw a free-body diagram of J\, using superposition. Figure 2.23(a) 
shows the torques on J\ if/2 is held still and J\ rotated. Figure 2.23(b) shows the 
torques on / i if J\ is held still and / 2 rotated. Finally, the sum of Figures 2.23(a) and 
2.23(6) is shown in Figure 2.23(c), the final free-body diagram for J\. The same 
process is repeated in Figure 2.24 for /2-

0\(s) Direction 

\ ^ uplift) 
*»iM 

0\(s) Direction 

( © 
Kd2{s) 

0\(s) Direction 

f®> 
mm 
K02(s) 

(a) (b) (0 

FIGURE 2.23 a. Torques on 
/1 due only to the motion of J1; 
b. torques on /1 due only to the 
motion of/2'. c. final free-body 
diagram for J\ 

9 In this case the parameter is referred to as a distributed parameter. 
10 The parameter is now referred to as a lumped parameter. 
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FIGURE 2.24 a.Torqueson 
J2 due only to the motion of 
J2\ b. torques on J2 due only 
to the motion of /1; c. final 
free-body diagram for J 2 

Ttylt 2.9 
Use the following MATLAB 
and Symbolic Math Toolbox 
statements to help you get 
Eq. (2.128). 

syras s J l Dl K T J2 D2 . . . 
t h e t a l t h e t a 2 

A=[(Jl*sA2+Dl*s+K) -K 
-K (J2*sA2+D2*s+K)]; 

B = [ t h e t a l 
t h e t a 2 ] ; 

C=[T 
0]; 

B=inv(A)*C; 
the ta2=B(2) ; 
' t h e t a2 ' 
p r e t t y ( t h e t a 2 ) 

#2(.?) Direction 

Ks)}D2s02(s) 

K62{s) 

<92(.v) Direction 

/^,(.5) 

(.?) Direction 
fCOx{s) 

~^J2s
1e2{S) 

1 }D2s02(s) 

K02{s) 

(a) (b) (0 

Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the 
equations of motion, 

{JlS
2 +D1s+K)01(s) - Ke2(s) = T(s) 

-K0! (s) + {J2s
2 + D2s + K)92{s) = 0 

from which the required transfer function is found to be 

0i(s) 
T(s)~ 

as shown in Figure 2.22(c), where 

{JlS
2 + DlS + K) 

K 
A" 

A = 
K 

-K 

(J2s
2 + D2s + K) 

Notice that Eq. (2.127) have that now well-known form 

Sum of r , , Sum of „ . Sum of impedances . t . . 
between °2{s) = appH^Jtequcs 
6i and 62 

impedances 
connected 

to the motion 
s) -

at 0X 

Sum of 
impedances 

between 
61 and 02 

0i{s) + 

Sum of 
impedances 
connected 

to the motion 
at6>2 

0i(s) = 
Sum of 

applied torques 
at <92 

(2.127a) 

(2.127b) 

(2.128) 

(2.129a) 

(2.129b) 

FIGURE 2.25 Three-degrees-
of-freedom rotational 
system 

Example 2.20 

Equations of Motion By Inspection 

PROBLEM: Write, but do not solve, the Laplace transform of the equations of 
motion for the system shown in Figure 2.25. 
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SOLUTION: The equations will take on the following form, similar to electrical 
mesh equations: 

Sum of 

impedances 

connected 

to the motion 

atBi 

0!(S) -

Sum of 

impedances 

between 

0i and 92 

e2(s) 

(2.130a) 

Sum of 

impedances 
between 

0i and 03 

e3(s) = 
Sum of 

applied torques 

at 0i 

Sum of 

impedances 

between 

0i and 02 

0l(5) 

Sum of 

impedances 

connected 

to the motion 

at 02 

lis) 

(2.130b) 

Sum of 
impedances 

between 

02 and 03 

03(5) = 

Sum of 

applied torques 

at 02 

Sum of 
impedances 

between 

01 and 03 

Bits) -

Hence, 

Sum of 
impedances 

between 
02 and 03 

his) 

+ 

Sum of 
impedances 

connected 

to the motion 
at 03 

03(s) = 

Sum of 

applied torques 
at 03 

(2.130c) 

{J^+DiS + K)9i(s) 

-^01(5)+(/252 

-001 (5) 

-Kd2(s) 

D2s + K)02(s) 

-003(5) = T(S) 

-D2503(5) = 0 

-D2sd2(s) +(/352 + D3s + D2s)03(s) = 0 

(2.131a, b,c) 
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Skill-Assessment Exercise 2.9 

PROBLEM: Find the transfer function, G(s) =62(s)/T(s), for the rotational 
mechanical system shown in Figure 2.26. 

FIGURE 2.26 Rotational 
mechanical system for Skill-
Assessment Exercise 2.9 

7( r) 1 N-m/rad 

I kg-m2 

I N-m-s/rad 

02U) 
r* I N-m/rad 

v 
1 N-m-s/rad 

ANSWER: G{s) = 
1 

2s2 + s + 1 

The complete solution is at www.wiley.com/college/nise. 

^ 2.7 Transfer Functions for Systems with Gears 

7'i(f) 

Input 
drive gear, 

Gear 1 Output 
driven gear, 

Gear 2 

FIGURE 2.27 A gear system 

Now that we are able to find the transfer function for rotational systems, we 
realize that these systems, especially those driven by motors, are rarely seen 
without associated gear trains driving the load. This section covers this 
important topic. 

Gears provide mechanical advantage to rotational systems. Anyone who has 
ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to 
provide more torque and less speed. On the straightaway, you shift to obtain more 
speed and less torque. Thus, gears allow you to match the drive system and the 
load—a trade-off between speed and torque. 

For many applications, gears exhibit backlash, which occurs because of the 
loose fit between two meshed gears. The drive gear rotates through a small angle 
before making contact with the meshed gear. The result is that the angular rotation 
of the output gear does not occur until a small angular rotation of the input gear has 
occurred. In this section, we idealize the behavior of gears and assume that there is 
no backlash. 

The linearized interaction between two gears is depicted in Figure 2.27. An 
input gear with radius t\ and N\ teeth is rotated through angle 9\ (t) due to a 
torque, T\(t). An output gear with radius ro and N2 teeth responds by rotating 
through angle 02(f) and delivering a torque, 7^(0- Let us now find the relation­
ship between the rotation of Gear 1, 9\(t), and Gear 2, 62(1). 

From Figure 2.27, as the gears turn, the distance traveled along each gear's 
circumference is the same. Thus, 

ri0i = r2r?2 (2.132) 
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or 

r_1 = N1 

n N2 

(2.133) 

since the ratio of the number of teeth along the circumference is in the same 
proportion as the ratio of the radii. We conclude that the ratio of the angular 
displacement of the gears is inversely proportional to the ratio of the number of 
teeth. 

What is the relationship between the input torque, T\, and the delivered 
torque, T2

r>- If we assume the gears are lossless, that is they do not absorb or store 
energy, the energy into Gear 1 equals the energy out of Gear 2.11 Since the 
translational energy of force times displacement becomes the rotational energy 
of torque times angular displacement, 

TiOi = T202 (2.134) 

Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133), we get 

Thus, the torques are directly proportional to the ratio of the number 
of teeth. All results are summarized in Figure 2.28. 

Let us see what happens to mechanical impedances that are 
driven by gears. Figure 2.29(a) shows gears driving a rotational inertia, 
spring, and viscous damper. For clarity, the gears are shown by an end-
on view. We want to represent Figure 2.29(a) as an equivalent system at 
6\ without the gears. In other words, can the mechanical impedances be 
reflected from the output to the input, thereby eliminating the gears? 

0. 
N2 

e2 n T2 

(a) (b) 
FIGURE 2.28 Transfer functions for a. angular 
displacement in lossless gears and b. torque in 
lossless gears 

7'|C) 0,(r) 
I AT, 

2(0 

N2 

2*1(0 0,(/) 

"t 
(O 

7-,(0 
/V_2 

N, (9-,(/) 

m 
Dti 

TO Y c 

N-, 

FIGURE 2.29 a. Rotational 
system driven by gears; 
b. equivalent system at the 
output after reflection of input 
torque; c. equivalent system at 
the input after reflection of 
impedances 

This is equivalent to saying that the gears have negligible inertia and damping. 
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From Figure 2.28(b), T\ can be reflected to the output by multiplying by N2/N\. 
The result is shown in Figure 2.29(b), from which we write the equation of motion as 

(2.136) 

Now convert 02(s) into an equivalent 9\ (s), so that Eq. (2.136) will look as if it were 
written at the input. Using Figure 2.28(a) to obtain 62(s) in terms of 9i(s), we get 

(Js^ + Ds + ^ 0 ^ ) = 1^)^ 

After simplification, 

©' • •©HS : 0i(*) = r i M 

(2.137) 

(2.138) 

which suggests the equivalent system at the input and without gears shown in 
Figure 2.29(c). Thus, the load can be thought of as having been reflected from the 
output to the input. 

Generalizing the results, we can make the following statement: Rotational 
mechanical impedances can be reflected through gear trains by multiplying the 
mechanical impedance by the ratio 

/ Number of teeth of \ 
gear on destination shaft | 

Number of teeth of J 
\ gear on source shaft / 

where the impedance to be reflected is attached to the source shaft and is being 
reflected to the destination shaft. The next example demonstrates the application of 
the concept of reflected impedances as we find the transfer function of a rotational 
mechanical system with gears. 

7",<n 0,(» 

Example 2.21 

Transfer Function—System with Lossless Gears 

PROBLEM: Find the transfer function, e2(s)/Ti (s), for the system of Figure 2.30(A). 

fMSGDfc TMltx)Hn '<-u\N[ 
N-y 

" .333 
K2 

h J7KXr 
A „ — K-) 

7'i(.v) N2IN{ 

J^2 + DgS + Ke 

e,(s) 

(N2 

(a) (b) (c) 

FIGURE 2.30 a. Rotational mechanical system with gears; b. system after reflection of torques and impedances to the output 
shaft; c block diagram 
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SOLUTION: It may be tempting at this point to search for two simultaneous 
equations corresponding to each inertia. The inertias, however, do not undergo 
linearly independent motion, since they are tied together by the gears. Thus, there 
is only one degree of freedom and hence one equation of motion. 

Let us first reflect the impedances {J\ and D\) and torque (T\) on the input 
shaft to the output as shown in Figure 2.30(6), where the impedances are reflected 
by (N2/N\)2 and the torque is reflected by (N2/N\). The equation of motion can 
now be written as 

{Jes
z + Des + Ke)92(s) = r i ( j ) -rf- (2.139) 

where 

Je=Ji(^A +h\ De = D,(jA +D2; Ke=K2 

Solving for 62{s)/T\{s), the transfer function is found to be 

62(s) N2/Ni 
G(s) = 

Ti(s) Jes
2 + Des + Ke 

(2.140) 

as shown in Figure 2.30(c). 

In order to eliminate gears with large radii, a gear train is used 
to implement large gear ratios by cascading smaller gear ratios. A 
schematic diagram of a gear train is shown in Figure 2.31. Next to 
each rotation, the angular displacement relative to 0\ has been 
calculated. From Figure 2.31, 

= N1N3N5 
4 N2N4N6

 l (2.141) 

AS 

^ = — 01 

N3 

HA 

/V, A'1 /V, 

N5 Ns NtNzN5 

For gear trains, we conclude that the equivalent gear ratio is the 
product of the individual gear ratios. We now apply this result to solve figuRE 2 31 Gear train 
for the transfer function of a system that does not have lossless gears. 

Example 2.22 

Transfer Function—Gears with Loss 

PROBLEM: Find the transfer function, 0i(s)/7/i(s),for the system of Figure 232(a). 
7"|</> gj j f l 

Mi 

JhDi 

I 
N2 

p a , 1$ 

m 
h 

N3 

h 

n J " ^:) Js , 

\N2J \N2Nt 

w * & 
7"i(.s» 

(a) m 

J^ + DfS 

(c) 

»,(.«) 

FIGURE 2.32 
a. System using a gear 
train; b. equivalent 
system at the input; 
c. block diagram 
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SOLUTION: This system, which uses a gear train, does not have lossless gears. All of 
the gears have inertia, and for some shafts there is viscous friction. To solve the 
problem, we want to reflect all of the impedances to the input shaft, d\. The 
gear ratio is not the same for all impedances. For example, D2 is reflected 
only through one gear ratio as D2(Ni/N2)

2, whereas /4 plus /5 is reflected through 
two gear ratios as (/4 + /5)((^3/^4)(^1/^2)]2 . The result of reflecting all imped­
ances to #1 is shown in Figure 2.32(6), from which the equation of motion is 

( / ^ + /),5)01(5) = ^ ( 5 ) 

where 

and 

/ e = / 1 + ( /2+/3) 
Ni 
N2 

+ (/4+/5^ 

D'-D'+D{wS 
From Eq. (2.142), the transfer function is 

0i (5) 
0(9) = 

Ti{s) Jes
2 + Des 

as shown in Figure 2.32(c). 

(2.142) 

\N2N4) 

(2.143) 

Skill-Assessment Exercise 2.10 

PROBLEM: Find the transfer function, G(s) = 02(s)/T(s), for the rotational 
mechanical system with gears shown in Figure 2.33. 

1 N-m-s/rad 

] kg-m2 

N2 = 5Q 'TOP-
4 N-m/rad 

FIGURE 2.33 Rotational mechanical system with gears for Skill-Assessment 
Exercise 2.10 

1/2 
ANSWER: G(s) = 

52 + 5 + 1 

The complete solution is at www.wiley.com/college/nise. 
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I 2.8 Electromechanical System 
Transfer Functions 

In the last section we talked about rotational systems with gears, which completed 
our discussion of purely mechanical systems. Now, we move to systems that are 
hybrids of electrical and mechanical variables, the electromechanical systems. We 
have seen one application of an electromechanical system in Chapter 1, the antenna 
azimuth position control system. Other applications for systems with electrome­
chanical components are robot controls, sun and star trackers, and computer tape 
and disk-drive position controls. An example of a control system that uses electro­
mechanical components is shown in Figure 2.34. 

A motor is an electromechanical component that yields a displacement output 
for a voltage input, that is, a mechanical output generated by an electrical input. 
We will derive the transfer function for one particular kind of electromechanical 
system, the armature-controlled dc servomotor (Mablekos, 1980). The motor's 
schematic is shown in Figure 2.35(a), and the transfer function we will derive 
appears in Figure 2.35(b). 

< • — — * 

FIGURE 2.34 NASA flight 
simulator robot arm with 
electromechanical control 
system components. 

-1-

I) 

-

R/i La 

V V V u u u u + 

Armature^ v.rf\ ( 
circuit J ' \ 

( Fixed 
Xgf field 

lv Rotor 

\ \ 0,,,(/) 

Etlm 
G(s) 

0,,,( .s) 

(a) 

FIGURE 2.35 D C motor: a. schematic;1 2 b . block diagram 

(*) 

;See Appendix I at www.wiley.com/college/nise for a derivation of this schematic and its parameters. 
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In Figure 2.35(a) a magnetic field is developed by stationary permanent 
magnets or a stationary electromagnet called the fixed field. A rotating circuit 
called the armature, through which current ia(t) flows, passes through this magnetic 
field at right angles and feels a force, F = Blia(t), where B is the magnetic field 
strength and /is the length of the conductor. The resulting torque turns the rotor, the 
rotating member of the motor. 

There is another phenomenon that occurs in the motor: A conductor moving at 
right angles to a magnetic field generates a voltage at the terminals of the conductor 
equal to e = Blv, where e is the voltage and v is the velocity of the conductor normal 
to the magnetic field. Since the current-carrying armature is rotating in a magnetic 
field, its voltage is proportional to speed. Thus, 

vb(t)=Kb 
dem(t) 

dt 
(2.144) 

We call vb(t) the back electromotive force (back emf); Kb is a constant of 
proportionality called the back emf constant; and d6m(t)/dt = com(t) is the angular 
velocity of the motor. Taking the Laplace transform, we get 

Vb{s)=KbsOm{s) (2.145) 

The relationship between the armature current, ia(t), the applied armature 
voltage, ea(t), and the back emf, vb(t), is found by writing a loop equation around the 
Laplace transformed armature circuit (see Figure 3.5(a)): 

RJa{s) + Lasla(s) + Vb(s) - Ea(s) (2.146) 

The torque developed by the motor is proportional to the armature current; thus, 

Tm(s) = KtIa(s) (2.147) 

where Tm is the torque developed by the motor, and Kt is a constant of proportion­
ality, called the motor torque constant, which depends on the motor and magnetic 
field characteristics. In a consistent set of units, the value of Kt is equal to the value of 
Kb. Rearranging Eq. (2.147) yields 

Ia{s) = — Tm(s) (2.148) 

To find the transfer function of the motor, we first substitute Eqs. (2.145) and 
(2.148) into (2.146), yielding 

(Ra + Las)Tm{s) 
Kt 

Kbs6m(s) = Ea(s) (2.149) 

'/',„<') 0,,,(') 

^PCV \ U_ 
Jm ) — 

Dm S 

FIGURE 2.36 Typical equivalent 
mechanical loading on a motor 

Now we must find Tm(s) in terms of 0m{s) if we are to separate the input and 
output variables and obtain the transfer function, 6m(s)/Ea(s). 

Figure 2.36 shows a typical equivalent mechanical loading on a motor. 
Jm is the equivalent inertia at the armature and includes both the armature 
inertia and, as we will see later, the load inertia reflected to the armature. 
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Dm is the equivalent viscous damping at the armature and includes both the 
armature viscous damping and, as we will see later, the load viscous damping 
reflected to the armature. From Figure 2.36, 

Tm(s) = (Jm!? + Dms)em{s) 

Substituting Eq. (2.150) into Eq. (2.149) yields 

(Ra + Las)(Jms2 + Dms)9m{s) 
Kt 

+ KbsOm{s) = E„(s) 

(2.150) 

(2.151) 

If we assume that the armature inductance, La, is small compared to the armature 
resistance, Ra, which is usual for a dc motor, Eq. (2.151) becomes 

Ra (Jms + Dm) + Kb s6m{s) = Ea{s) (2.152) 

After simplification, the desired transfer function, dm(s)/Ea(s), is found to be 

em{s) 

Ea(s) m 

Kt/{RaJm) 
. 1 / r , i KtKb 

s + — (Dm+——) 
(2.153) 13 

Even though the form of Eq. (2.153) is relatively simple, namely 

.w K 
Ea(s) sis 

(2.154) 

Motor 

JmDn 

the reader may be concerned about how to evaluate the constants. 
Let us first discuss the mechanical constants, Jm and Dm. Consider 

Figure 2.37, which shows a motor with inertia Ja and damping Da at the 
armature driving a load consisting of inertia JL and damping Di. 
Assuming that all inertia and damping values shown are known, JL 
and Di can be reflected back to the armature as some equivalent inertia 
and damping to be added to Ja and Da, respectively. Thus, the equiv- FIGURE 2.37 DC motor driving a rotational 
alent inertia, Jm, and equivalent damping, Dm, at the armature are mechanical load 

m 
DL 

T. 

= 

Jm=Ja+JL[^2; Dm^Da + DL(^2 (2.155) 14 

Now that we have evaluated the mechanical constants, Jm and Dm, what about 
the electrical constants in the transfer function of Eq. (2.153)? We will show that 
these constants can be obtained through a dynamometer test of the motor, where a 
dynamometer measures the torque and speed of a motor under the condition of a 

13 The units for the electrical constants are K, = N-m-A (newton-meters/ampere), and Kb = V-s/rad 
(volt-seconds/radian). 
14 If the values of the mechanical constants are not known, motor constants can be determined through 
laboratory testing using transient response or frequency response data. The concept of transient response 
is covered in Chapter 4; frequency response is covered in Chapter 10. 
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constant applied voltage. Let us first develop the relationships that dictate the use of 
a dynamometer. 

Substituting Eqs. (2.145) and (2.148) into Eq. (2.146), with La = 0, yields 

Ra 
K, 

Tm{s) + Kbs0m{s)=Ea{s) (2.156) 

Taking the inverse Laplace transform, we get 

D 

-£Tm{t)+Kba>m{t) = eatt) (2.157) 

where the inverse Laplace transform of s9m(s) is d0m(t)/dt or, alternately, com{t). 
If a dc voltage, ea, is applied, the motor will turn at a constant angular velocity, 

com, with a constant torque, Tm. Hence, dropping the functional relationship based 
on time from Eq. (2.157), the following relationship exists when the motor is 
operating at steady state with a dc voltage input: 

R 

Kt 
rTm + Kb(Om = £a (2.158) 

Solving for Tm yields 

Tm = 
KbKt 

Ra 
0),, 

R~a 

(2.159) 

*-®m 
^no-load 

Speed 

FIGURE 2.38 Torque-speed curves with 
an armature voltage, ea, as a parameter 

Equation (2.159) is a straight line, Tm vs. a>m, and is shown in 
Figure 2.38. This plot is called the torque-speed curve. The torque axis 
intercept occurs when the angular velocity reaches zero. That value of 
torque is called the stall torque, Tsta\h Thus, 

K, 
1 stall = yr £a 

K„ 
(2.160) 

The angular velocity occurring when the torque is zero is called the no-
load speed, Wno-ioad- Thus, 

^no-load — 
Kb 

(2.i6i; 

The electrical constants of the motor's transfer function can now be found 
from Eqs. (2.160) and (2.161) as 

(2.162) Kt rslaii 
Ra ea 

K 6a 

^no-load 
(2.163) 

The electrical constants, Kt/Ra and Kb, can be found from a dynamometer test of the 
motor, which would yield Tstaii and <wno-ioad for a given ea. 
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Example 2.23 

Transfer Function—DC Motor and Load 

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (b), 
find the transfer function, 0L(s)/Ea(s). 

SOLUTION: Begin by finding the mechanical constants, Jm and Dm, in Eq. (2.153). 
From Eq. (2.155), the total inertia at the armature of the motor is 

/„,=/»WgY = 5 + 700(1)2 = 12 

and the total damping at the armature of the motor is 

D, ^ ¾ ¾ ) = 2 + 800 ( 1 ) =10 

(2.164) 

(2.165) 

Now we will find the electrical constants, Kt/Ra and Kb. From the torque-
speed curve of Figure 2.39(6), 

(2.166) 

(2.167) 

(2.168) 

Fixed 
field 

^stali = 500 

^no-load = 50 

ea = 100 

/ f l=5kg-m2 

Z)a = 2N-ms/rad 

Virtual Experiment 2.2 
Open-Loop 
Servo Motor 

Put theory into practice explor­
ing the dynamics of the Quanser 
Rotary Servo System modeled 
in Lab VIEW. It is particularly 
important to know how a servo 
motor behaves when using them 
in high-precision applications 
such as hard disk drives. 

Virtual experiments are found 
on WileyPLUS. 

(a) 
0/,= 800 N-ms/rad 

E. Is) 0.0417 
s(s + 1.667) 

6, is) 

(c) 

FIGURE 2.39 a. DC motor and load; b. torque-speed curve; c. block diagram 

Hence the electrical constants are 

K, = rstal] = 500 
R„ en 100 

(2.169) 
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and 

K, e" 10° " n-m ^b — c n — * (/.1/UJ 
^no-load ->V 

Substituting Eqs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield 

M*) 5/12 0.417 

* » , { , + l [ 1 0 + <5)<2)]} ^ + 1 - 6 6 7 ) U - ' ] 

In order to find BL(s)/Ea(s), we use the gear ratio, N\/Ni = 1/10, and find 

fcM 0.0417 
£fl(s) 5(5 + 1.667) l " ] 

as shown in Figure 2.39(c). 

WileyPLUS 

Control Solutions 

FIGURE 2.40 Electro­
mechanical system for 
Skill-Assessment Exercise 
2.11 

Skill-Assessment Exercise 2.11 
^ ^ ^ ^ ^ k t 

PROBLEM: Find the transfer function, G(s) = 6L{S)/E0{S), for the motor and load 
shown in Figure 2.40. The torque-speed curve is given by Tm — —8(om + 200 when 
the input voltage is 100 volts. 

<>„(/) Motor 
#, = 20 

, , , , #2=100 
Ja = 1 kg-m2 

D0=5N-m-s/rad 

ANSWER: G{s) = 

#4=100 

1/20 

#3 = 25 

- f - ) JL = 400 kg-m2 

£),̂  = 800 N-m-s/rad 

5[s +(15/2)] 

The complete solution is at www.wiley.com/college/nise. 

( 2.9 Electric Circuit Analogs 
In this section, we show the commonality of systems from the various disciplines 
by demonstrating that the mechanical systems with which we worked can be 
represented by equivalent electric circuits. We have pointed out the similarity 
between the equations resulting from Kirchhoff s laws for electrical systems and 
the equations of motion of mechanical systems. We now show this commonality 
even more convincingly by producing electric circuit equivalents for mechanical 
systems. The variables of the electric circuits behave exactly as the analogous 

http://www.wiley.com/college/nise
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variables of the mechanical systems. In fact, converting mechanical systems to 
electrical networks before writing the describing equations is a problem-solving 
approach that you may want to pursue. 

An electric circuit that is analogous to a system from another discipline is 
called an electric circuit analog. Analogs can be obtained by comparing the 
describing equations, such as the equations of motion of a mechanical system, 
with either electrical mesh or nodal equations. When compared with mesh 
equations, the resulting electrical circuit is called a series analog. When com­
pared with nodal equations, the resulting electrical circuit is called a parallel 
analog. 

Series Analog 
Consider the translational mechanical system shown in Figure 2.41(A), whose 
equation of motion is 

{Ms2 + fvs + K)X{s) = F(s) (2.173) 

Kirchhoff's mesh equation for the simple series RLC network shown in 
Figure 2.41(6) is 

(LS + R+±-]I(S)=E(S) (2.174) 

As we previously pointed out, Eq. (2.173) is not directly analogous to 
Eq. (2.174) because displacement and current are not analogous. We can create 
a direct analogy by operating on Eq. (2.173) to convert displacement to velocity by 
dividing and multiplying the left-hand side by s, yielding 

Ml±Ll±lsX{s)=fMs+fv + ̂ ]V{s] /:;,; (2.175) 

Comparing Eqs. 2.174 and 2.175, we recognize the sum of impedances and 
draw the circuit shown in Figure 2.41(c). The conversions are summarized in 
Figure 2.41(d). 

When we have more than one degree of freedom, the impedances 
associated with a motion appear as series electrical elements in a mesh, but 

TORT 

(a) 

Ml) 

M ./!') 

^WJ^NV 
c(D(Z © 

MM 

m 

m(z © 
r</) 

A" 

mass = M 

viscous damper =/,. 

spring = K 

applied force = fit) 

velocity = v(r) 

inductor = M henries 

resistor = fv ohms 

capacitor = - farads 

voltage source = fit) 

mesh current = v(f) 

(rf) 

FIGURE 2.41 Development 
of series analog: a. mechanical 
system; b. desired 
electrical representation; 
c. series analog; d. parameters 
for series analog 
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the impedances between adjacent motions are drawn as series electrical 
impedances between the two corresponding meshes. We demonstrate with 
an example. 

Example 2.24 

Converting a Mechanical System to a Series Analog 

PROBLEM: Draw a series analog for the mechanical system of Figure 2.17(a). 

SOLUTION: Equations (2.118) are analogous to electrical mesh equations after 
conversion to velocity. Thus, 

FIGURE 2.42 Series analog of 
mechanical system of 
Figure 2.17(a) 

Mis + (fVl+fJ + [Ki+K2] Ki\ 1 ;VI \f^+-f)V^=F^ (2.176a) 

( / * + V J K l ( v ! ~ M2s + (fV7+U + 
(K2 + K3] 

V2{s) = 0 (2.176b) 

Coefficients represent sums of electrical impedance. Mechanical impedances 
associated with Mi form the first mesh, where impedances between the two masses 
are common to the two loops. Impedances associated with A/2 form the second 
mesh. The result is shown in Figure 2.42, where vi (t) and V2{t) are the velocities of 
M\ and M%, respectively. 

/V/, K f 

. / ( ' > ! © 
( / ) - * • 

/v , 

K2 Ht) 

Parallel Analog 
A system can also be converted to an equivalent parallel analog. Consider the 
translational mechanical system shown in Figure 2.43(a), whose equation of motion 
is given by Eq. (2.175). Kirchhoffs nodal equation for the simple parallel RLC 
network shown in Figure 2.43(b) is 

Cs+R~+h]hs 'is] (2.177) 

Comparing Eqs. (2.175) and (2.177), we identify the sum of admittances and draw the 
circuit shown in Figure 2.43(c). The conversions are summarized in Figure 2.43(^). 
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PkwH 
\ii) 

M 

eU) 

AD hD 6 R^> L 

r(/) 

/">© M 

(c) 

mass = M 

viscous damper =fv 

spring = K 

applied force = AD 

velocity = v(f) 

*- capacitor 

P- resistor 

+- inductor 

*- current source 

*- node voltage 

m 

= M farads 

= -7 ohms 
/v 

= - henries 
K 

=AD 

= m 

FIGURE 2.43 Development of 
parallel analog: a. mechanical 
system; b. desired electrical 
representation; c parallel 
analog; d. parameters for 
parallel analog 

When we have more than one degree of freedom, the components associated 
with a motion appear as parallel electrical elements connected to a node, but the 
components of adjacent motions are drawn as parallel electrical elements between 
two corresponding nodes. We demonstrate with an example. 

Example 2.25 

Converting a Mechanical System to a Parallel Analog 

PROBLEM: Draw a parallel analog for the mechanical system of Figure 2.17(a). 

SOLUTION: Equation (2.176) is also analogous to electrical node equations. Coeffi­
cients represent sums of electrical admittances. Admittances associated with M\ form 
the elements connected to the first node, where mechanical admittances between the 
two masses are common to the two nodes. Mechanical admittances associated with Mi 
form the elements connected to the second node. The result is shown in Figure 2.44, 
where V\{t) and vi{t) are the velocities of M\ and M2, respectively. 

FIGURE 2.44 Parallel 
analog of mechanical system 
of Figure 2.17(a) 

Skill-Assessment Exercise 2.12 

PROBLEM: Draw a series and parallel analog for the rotational mechanical system 
of Figure 2.22. 

ANSWER: The complete solution is at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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(^2.10 Nonlinearities 

m 

O l 

2 3 4 0 1 2 3 4 

Input Input 

(a) (b) 

FIGURE 2.45 a. Linear system; b. nonlinear system 

The models thus far are developed from systems that can be described approxi­
mately by linear, time-invariant differential equations. An assumption of linearity 
was implicit in the development of these models. In this section, we formally define 
the terms linear and nonlinear and show how to distinguish between the two. In 
Section 2.11, we show how to approximate a nonlinear system as a linear system so 
that we can use the modeling techniques previously covered in this chapter (Hsu, 
1968). 

A linear system possesses two properties: superposition and homogeneity. The 
property of superposition means that the output response of a system to the sum of 
inputs is the sum of the responses to the individual inputs. Thus, if an input of r\ (t) 
yields an output of t\ (t) and an input of rz(t) yields an output of C2(r), then an input of 
f\{t) 4- /"2(f) yields an output of C\(t) + C2(t). The property of homogeneity describes 
the response of the system to a multiplication of the input by a scalar. Specifically, in 
a linear system, the property of homogeneity is demonstrated if for an input of r\ (i) 
that yields an output of c\(t), an input of Ar\(t) yields an output of Ac\(t); that is, 
multiplication of an input by a scalar yields a response that is multiplied by the same 
scalar. 

We can visualize linearity as shown in Figure 2.45. Figure 
2.45(a) is a linear system where the output is always \ the 
input, oif(x) = 0.5A:, regardless of the value of X, Thus each of 
the two properties of linear systems applies. For example, an 
input of 1 yields an output of \ and an input of 2 yields an 
output of 1. Using superposition, an input that is the sum of the 
original inputs, or 3, should yield an output that is the sum of 
the individual outputs, or 1.5. From Figure 2.45(A), an input of 
3 does indeed yield an output of 1.5. 

To test the property of homogeneity, assume an input 
of 2, which yields an output of 1. Multiplying this input by 
2 should yield an output of twice as much, or 2. From 

Figure 2.45(a), an input of 4 does indeed yield an output of 2. The reader can 
verify that the properties of linearity certainly do not apply to the relationship 
shown in Figure 2.45(5). 

Figure 2.46 shows some examples of physical nonlinearities. An electronic 
amplifier is linear over a specific range but exhibits the nonlinearity called saturation 
at high input voltages. A motor that does not respond at very low input voltages due 
to frictional forces exhibits a nonlinearity called dead zone. Gears that do not fit 
tightly exhibit a nonlinearity called backlash: The input moves over a small range 

FIGURE 2.46 Some physical 
nonlinearities 

Amplifier saturation Motor dead zone Backlash in gears 

Input Input Input 
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without the output responding. The reader should verify that the curves shown in 
Figure 2.46 do not fit the definitions of linearity over their entire range. Another 
example of a nonlinear subsystem is a phase detector, used in a phase-locked loop in 
an FM radio receiver, whose output response is the sine of the input. 

A designer can often make a linear approximation to a nonlinear system. 
Linear approximations simplify the analysis and design of a system and are used as 
long as the results yield a good approximation to reality. For example, a linear 
relationship can be established at a point on the nonlinear curve if the range of input 
values about that point is small and the origin is translated to that point. Electronic 
amplifiers are an example of physical devices that perform linear amplification with 
small excursions about a point. 

f 2.11 Linearization 
The electrical and mechanical systems covered thus far were assumed to be 
linear. However, if any nonlinear components are present, we must linearize 
the system before we can find the transfer function. In the last section, we 
defined and discussed nonlinearities; in this section, we show how to obtain 
linear approximations to nonlinear systems in order to obtain transfer 
functions. 

The first step is to recognize the nonlinear component and write the 
nonlinear differential equation. When we linearize a nonlinear differential 
equation, we linearize it for small-signal inputs about the steady-state solution 
when the small-signal input is equal to zero. This steady-state solution is called 
equilibrium and is selected as the second step in the linearization process. For 
example, when a pendulum is at rest, it is at equilibrium. The angular 
displacement is described by a nonlinear differential equation, but it can be 
expressed with a linear differential equation for small excursions about this 
equilibrium point. 

Next we linearize the nonlinear differential equation, and then we take the 
Laplace transform of the linearized differential equation, assuming zero initial 
conditions. Finally, we separate input and output variables and form the transfer 
function. Let us first see how to linearize a function; later, we will apply the method 
to the linearization of a differential equation. 

If we assume a nonlinear system operating at point A, [XQ, f{xo)] in 
Figure 2.47, small changes in the input can be related to changes in the 
output about the point by way of the slope of the curve at the point A. 
Thus, if the slope of the curve at point A is ma, then small excursions of 
the input about point A, Sx, yield small changes in the output, 8f(x), «/(*) 
related by the slope at point A. Thus, § 

m 

from which 

and 

[/(*) -/(*o)] ~ ma(x-x0] 

8f(x) sa ma8x 

f(x) ?» f(x0) + ma{x - XQ) M f(x0) + ma8x 

(2.178) 

(2.179) 

(2.180) 

<v 

A 

X) 

y 

{ ^ 1 , ,V> fixQ) 

0 x0 x 

Input 

FIGURE 2.47 Linearization about 

points 
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This relationship is shown graphically in Figure 2.47, where a new set of axes, 8X 

and 8f(x), is created at the point A, and f(x) is approximately equal to /(x0), the 
ordinate of the new origin, plus small excursions, ma8x, away from point A. Let us 
look at an example. 

FIGURE 2.48 Linearization 
of 5 cos x about x — n/2 

Example 2.26 

Linearizing a Function 

PROBLEM: Linearize f(x) = 5 cos x about x = n/2. 

SOLUTION: We first find that the derivative of f(x) is df/dx = (-5sinx). At 
x = 7r/2, the derivative is —5. Also f(xo) = f(n/2) — 5COS(TT/2) = 0. Thus, from 
Eq. (2.180), the system can be represented as/(x) = -5 <5xfor small excursions of x 
about 7r/2. The process is shown graphically in Figure 2.48, where the cosine curve 
does indeed look like a straight line of slope -5 near JT/2. 

The previous discussion can be formalized using the Taylor series expansion, 
which expresses the value of a function in terms of the value of that function at a 
particular point, the excursion away from that point, and derivatives evaluated at 
that point. The Taylor series is shown in Eq. (2.181). 

m=/M dx 
X=XQ 

{X ~ XQ) 

1! 
if 
dx2 

(x-x0y 
2! + (2.181) 

For small excursions of x from xo, we can neglect higher-order terms. The resulting 
approximation yields a straight-line relationship between the change in f(x) and the 
excursions away from XQ. Neglecting the higher-order terms in Eq. (2.181), we get 

/ W - / ( , 0 ) - | (2.182) 
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or 

*/(*) m\r_r8x (2.183) 

which is a linear relationship between 8f(x) and 8x for small excursions away from XQ. 
It is interesting to note that Eqs. (2.182) and (2.183) are identical to Eqs. (2.178) and 
(2.179), which we derived intuitively. The following examples illustrate linearization. 
The first example demonstrates linearization of a differential equation, and the 
second example applies linearization to finding a transfer function. 

Example 2.27 

Linearizing a Differential Equation 

PROBLEM: Linearize Eq. (2.184) for small excursions about x = n/A. 

(2.184) d x _ dx 
- p r + 2 — + COSX = 0 
dt2 dt SOLUTION: The presence of the term cos x makes this equation nonlinear. Since 

we want to linearize the equation about x = n/A, we let x = 8x + n/A, where 8x is 
the small excursion about izjA, and substitute x into Eq. (2.184): 

But 

and 

d2(8x + 7P) d(8x + ^) _. 

dt2 dt V 4/ 

d2{Sx^) d28x 
dt2 dt2 

d{8x + li) _d8x 
dt dt 

= 0 (2.185) 

(2.186) 

(2.187) 

Finally, the term cos (Sx + (n/4)) can be linearized with the truncated Taylor series. 
Substituting f(x) = cos(Sx + (TT/4)), f(xo) =/ (TT/4) = cos(7r/4), and (x - xo) — 8x 
into Eq. (2.182) yields 

cos ( ^ + 1 ) - c o s ( | ) = dcosx 
dx 

Solving Eq. (2.188) for cos {8x + (TT/4)), we get 

8x = -sm(-)8x 

V2 y/2 

(2.188) 

cos (to + 1 ) = c o s Q - sinQ&c = ~ - ^f8x (2.189) 

Substituting Eqs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following 
linearized differential equation: 

d28x ^d8x \/2~ V2 

-W + 2-df-T8x--Y 
(2.190) 

This equation can now be solved for 8x, from which we can obtain x = 8x + (TT/4). 
Even though the nonlinear Eq. (2.184) is homogeneous, the linearized Eq. (2.190) 

is not homogeneous. Eq. (2.190) has a forcing function on its right-hand side. This 
additional term can be thought of as an input to a system represented by Eq. (2.184). 
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Another observation about Eq. (2.190) is the negative sign on the left-hand 
side. The study of differential equations tells us that since the roots of the 
characteristic equation are positive, the homogeneous solution grows without 
bound instead of diminishing to zero. Thus, this system linearized around x = 
7r/4 is not stable. 

FIGURE 2.49 Nonlinear 
electrical network 

Example 2.28 

Transfer Function—Nonlinear Electrical Network 

PROBLEM: Find the transfer function, VL(s)/V(s), for the electrical network 
shown in Figure 2.49, which contains a nonlinear resistor whose voltage-
current relationship is defined by ir = 2e01vv, where ir and vr are the resistor 
current and voltage, respectively. Also, v(r) in Figure 2.49 is a small-signal 
source. 

SOLUTION: We will use Kirchhoff's voltage law to sum the voltages in the 
loop to obtain the nonlinear differential equation, but first we must solve for 
the voltage across the nonlinear resistor. Taking the natural log of the 
resistor's current-voltage relationship, we get vr = 10 ln|i r . Applying Kirchh­
off's voltage law around the loop, where ir = i, yields 

L $ + 101ni / -20 = v(f) 
at 2 

(2.191) 

Next, letus evaluate the equilibrium solution. First, set the small-signal 
source, v(r), equal to zero. Now evaluate the steady-state current. With v(t) = 0, 
the circuit consists of a 20 V battery in series with the inductor and nonlinear 
resistor. In the steady state, the voltage across the inductor will be zero, since 
vL(t) = Ldi/dt and di/dt is zero in the steady state, given a constant battery 
source. Hence, the resistor voltage, vr, is 20 V. Using the characteristics of the 
resistor, ir = 2e0AVr, we find that ir = i — 14.78 amps. This current, io, is the 
equilibrium value of the network current. Hence i = io + Si. Substituting this 
current into Eq. (2.191) yields 

Ldik + Si) + m l { h + si)_20 = v{t) 
dt I 

Using Eq. (2.182) to linearize In\{i§ 4- Si), we get 

1 1 d(\nhi) 
I 

Si — — Si 

or 
Ii4 (¾ + Si) =ln£ + i&' 

Z Z lQ 

Substituting into Eq. (2.192), the linearized equation becomes 

dt \ 2 IQ J 

(2.192) 

(2.193) 

(2.194) 

(2.195) 
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Letting L = 1 and z"o = 14.78, the final linearized differential 

^ + 0.6775/ = v(r) 
at 

equation is 

Taking the Laplace transform with zero initial conditions and solving for 
get 

« ^ 

But the voltage across the inductor about the equilibrium point is 

T d ,. „,v r dSi 

Taking the Laplace transform, 

VL(s) = Ls8i(s) =s8i(s) 

Substituting Eq. (2.197) into Eq. (2.199) yields 

"*«-V$W7 
from which the final transfer function is 

VL(s) s 
V{s) s + 0.677 

for small excursions about i = 14.78 or, equivalently, about v (t) = 0. 

(2.196) 

8i(s), we 

(2.197) 

(2.198) 

(2.199) 

(2.200) 

(2.201) 

Skill-Assessment Exercise 2.13 

PROBLEM: Find the linearized transfer function, G(s) = V(s)/I(s), for the elec­
trical network shown in Figure 2.50. The network contains a nonlinear resistor 
whose voltage-current relationship is defined by ir = e\ The current source, i(t), is 
a small-signal generator. 

ANSWER: G(s) = 
1 

5 + 2 

The complete solution is at www.wiley.com/college/nise. 
•it) 

2 A® /(/)0 Nonlinear 
resistor 

IF 

WileyPLUS 

Control Solutions 

FIGURE 2.50 Nonlinear 
electric circuit for Skill-
Assessment Exercise 2.13 

http://www.wiley.com/college/nise
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Case Studies 

Antenna Control: Transfer Functions 

This chapter showed that physical systems can be modeled mathematically with 
transfer functions. Typically, systems are composed of subsystems of different 
types, such as electrical, mechanical, and electromechanical. 

The first case study uses our ongoing example of the antenna azimuth position 
control system to show how to represent each subsystem as a transfer function. 

PROBLEM: Find the transfer function for each subsystem of the antenna 
azimuth position control system schematic shown on the front endpapers. Use 
Configuration 1. 

SOLUTION: First, we identify the individual subsystems for which we must find 
transfer functions; they are summarized in Table 2.6. We proceed to find the 
transfer function for each subsystem. 

TABLE 2.6 Subsystems of the antenna azimuth position control system 

Subsystem 

Input potentiometer 

Preamp 

Power amp 

Motor 

Output potentiometer 

Input 

Angular rotation from user, #,(*) 

Voltage from potentiometers, 
ve(t) = v,{t) - v0{t) 

Voltage from preamp, vp{t) 

Voltage from power amp, ea(t) 

Angular rotation from load, 0Q(() 

Output 

Voltage to preamp, Vj(t) 

Voltage to power amp, vp(t) 

Voltage to motor, e(l(t) 

Angular rotation to load, 
0o(t) 

Voltage to preamp, VQ(0 

Input Potentiometer; Output Potentiometer 
Since the input and output potentiometers are configured in the same way, their 
transfer functions will be the same. We neglect the dynamics for the potentiometers 
and simply find the relationship between the output voltage and the input angular 
displacement. In the center position the output voltage is zero. Five turns toward 
either the positive 10 volts or the negative 10 volts yields a voltage change of 10 
volts. Thus, the transfer function, V,-(s)/0,;(s), for the potentiometers is found by 
dividing the voltage change by the angular displacement: 

Vt(s) 

m 
10 

lOJr 
(2.202) 

Preamplifier; Power Amplifier 
The transfer functions of the amplifiers are given in the problem statement. Two 
phenomena are neglected. First, we assume that saturation is never reached. 
Second, the dynamics of the preamplifier are neglected, since its speed of response 
is typically much greater than that of the power amplifier. The transfer functions of 
both amplifiers are given in the problem statement and are the ratio of the Laplace 
transforms of the output voltage divided by the input voltage. Hence, for the 
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preamplifier, 

and for the power amplifier, 

Ea(s) 
VP(s) 

I) 

100 
5 + 100 

(2.203) 

(2.204) 

Motor and Load 
The motor and its load are next. The transfer function relating the armature displace­
ment to the armature voltage is given in Eq. (2.153). The equivalent inertia, /,„, is 

J - ^ + ' r f J g ) = 0.02 + 1 ^ = 0.03 (2.205) 

where JL = lis the load inertia at 9$. The equivalent viscous damping, Dm, at the 
armature is 

D » B f l " + 1 > i ( p ) = 0.01 + 1 ^ = 0.02 (2.206) 

where DL is the load viscous damping at 9Q. From the problem statement, Kt = 0.5 
N-m/A, Kb = 0.5 V-s/rad, and the armature resistance Ra = 8 ohms. These quantit­
ies along with Jm and Dm are substituted into Eq. (2.153), yielding the transfer 
function of the motor from the armature voltage to the armature displacement, or 

9m{s) _ Kt/{RaJm) 2.083 
Ea(s) _L * (n ±K*Kb 

s + — [Dm + 

5(5 + 1.71) 
T l J? 

To complete the transfer function of the motor, we multiply by the gear ratio to 
arrive at the transfer function relating load displacement to armature voltage: 

Oo(s) 6m(s) 0-2083 

EW) = 0AEM-4^vn) (2-208) 

The results are summarized in the block diagram and table of block diagram 
parameters (Configuration 1) shown on the front endpapers. 

CHALLENGE: We now give you a problem to test your knowledge of this chapter's 
objectives; Referring to the antenna azimuth position control system schematic 
shown on the front endpapers, evaluate the transfer function of each subsystem. 
Use Configuration 2. Record your results in the table of block diagram parameters 
shown on the front endpapers for use in subsequent chapters' case study challenges. 

Transfer Function of a Human Leg 

In this case study we find the transfer function of a biological system. The system is 
a human leg, which pivots from the hip joint. In this problem, the component of 
weight is nonlinear, so the system requires linearization before the evaluation of 
the transfer function. 
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Hip joint 

FIGURE 2.51 Cylinder model of a 
human leg. 

MDTt 

Tntt) 

PROBLEM: The transfer function of a human leg relates the output angular 
rotat ion about the hip joint to the input torque supplied by the leg muscle. A 
simplified model for the leg is shown in Figure 2.51. The model assumes an 
applied muscular torque, Tm(t), viscous damping, D, at the hip joint, and 
inertia, J, around the hip joint.1 5 Also, a component of the weight of the leg, 
Mg, where M is the mass of the leg and g is the acceleration due to gravity, 
creates a nonlinear torque. If we assume that the leg is of uniform density, 
the weight can be applied at L/2, where L is the length of the leg (Milsum, 
1966). D o the following: 

a. Evaluate the nonlinear torque. 

b. Find the transfer function, 9(s)/Tm(s), for small angles of rotation, 
where 9{s) is the angular rotation of the leg about the hip joint. 

SOLUTION: First, calculate the torque due to the weight. The total weight of 
the leg is Mg acting vertically. The component of the weight in the direction 
of rotation is Mg sin 9. This force is applied at a distance L / 2 from the hip 
joint. Hence the torque in the direction of rotation, Tw(t), is Mg(L/2) sin 9. 
Next, draw a free-body diagram of the leg, showing the applied torque, 
Tm{t), the torque due to the weight, Tw(t), and the opposing torques due to 
inertia and viscous damping (see Figure 2.52). 

Summing torques, we get 

Tw(t) J 
&9_ 

dt2 

d9 I 
D-^ + Mg-sm9 = Tm(t) (2.209) 

FIGURE 2.52 Free-body diagram of We linearize the system about the equilibrium point, 9 = 0, the vertical 
leg model position of the leg. Using Eq. (2.182), we get 

s i n # - s i n 0 = (cos0)<5# (2.210) 

from which, sin 9 = 89. Also, J d29/dt2 = J d289/dt2 and D d9/dt = D d89/dt. 
Hence Eq. (2.209) becomes 

rd
289 nd89 mr L _, , , 

(2.211) 

Notice that the to rque due to the weight approximates a spring torque on the leg. 
Taking the Laplace transform with zero initial conditions yields 

Js2 + Ds + Mg^\89{s) = Tm(s) (2.212) 

from which the transfer function is 

89(s) 1/7 

Tm(s) 92 +%S + MgL 
2/ 

(2.213) 

15 For emphasis, J is not around the center of mass, as we previously assumed for inertia in mechanical 
rotation. 
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for small excursions about the equilibrium point, 9 = 0. 

CHALLENGE: We now introduce a case study challenge to test your 
knowledge of this chapter's objectives. Although the physical 
system is different from a human leg, the problem demonstrates 
the same principles: linearization followed by transfer function 
evaluation. 

Given the nonlinear electrical network shown in Figure 2.53, find 
the transfer function relating the output nonlinear resistor voltage, 
Vr(s), to the input source voltage, V(s). 

vrO = 2/:(/) 

FIGURE2.53 Nonlinear electric circuit 

^ Summary ^ 
In this chapter, we discussed how to find a mathematical model, called a transfer 
function, for linear, time-invariant electrical, mechanical, and electromechanical 
systems. The transfer function is defined as G(s) = C(s)/R(s), or the ratio of the 
Laplace transform of the output to the Laplace transform of the input. This relation­
ship is algebraic and also adapts itself to modeling interconnected subsystems. 

We realize that the physical world consists of more systems than we illustrated 
in this chapter. For example, we could apply transfer function modeling to hydraulic, 
pneumatic, heat, and even economic systems. Of course, we must assume these 
systems to be linear, or make linear approximations, in order to use this modeling 
technique. 

Now that we have our transfer function, we can evaluate its response to a 
specified input. System response will be covered in Chapter 4. For those pursuing the 
state-space approach, we continue our discussion of modeling in Chapter 3, where 
we use the time domain rather than the frequency domain. 

( Review Questions ^ 
1. What mathematical model permits easy interconnection of physical systems? 
2. To what classification of systems can the transfer function be best applied? 
3. What transformation turns the solution of differential equations into algebraic 

manipulations? 
4. Define the transfer function. 
5. What assumption is made concerning initial conditions when dealing with 

transfer functions? 
6. What do we call the mechanical equations written in order to evaluate the 

transfer function? 
7. If we understand the form the mechanical equations take, what step do we avoid 

in evaluating the transfer function? 
8. Why do transfer functions for mechanical networks look identical to transfer 

functions for electrical networks? 
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9. What function do gears perform? 

10. What are the component parts of the mechanical constants of a motor's 
transfer function? 

11. The motor's transfer function relates armature displacement to armature 
voltage. How can the transfer function that relates load displacement and 
armature voltage be determined? 

12. Summarize the steps taken to linearize a nonlinear system. 

WileyPLUS 

CEEJ 
Control Solutions 

Problems 
1. Derive the Laplace transform for the following time 

functions: [Section: 2.2] 

a. u{t) 

b. tu{t) 

c sin cot u(t) 

d. cos cot u(t) 

2. Using the Laplace transform pairs 
of Table 2.1 and the Laplace trans­
form theorems of Table 2.2, derive 
the Laplace transforms for the fol­
lowing time functions: [Section: 2.2] 

a. e~alsin cot u(t) 

b. e~atcos cot u(t) 

c. t3u{t) 

3. Repeat Problem 18 in Chapter 1, using Laplace 
transforms. Assume that the forcing functions are 
zero prior to t = 0 - . [Section: 2.2] 

4. Repeat Problem 19 in Chapter 1, using Laplace 
transforms. Use the following initial conditions 
for each part as follows: (a) x(0) = 4, x'(0) — - 4 ; 
(b)x(0) = 4, x'(0) = l;(c)x(0) = 2, x'{0) = 3, where 

dx 
x'(0) = -r- (0). Assume that the forcing functions are 

zero prior to t = 0 - . [Section: 2.2] 

5. Use MATLAB and the Symbolic Math 
Toolbox to find the Laplace 
transform of the following 
time functions: [Section :2.2] 

a. f ( t ) = 8 t 2 c o s ( 3 t + 45°) 

Symbolic Math 

b. f(t) = 3te-2tsin(4t + 60°) 

6. Use MATLAB and the Symbolic Math 
Toolbox to find the inverse 

Laplace transform of the following 
frequency functions: [ Section: 2.2] 

(s2 + 3s+10)(s+5) 
a. G(s) = 

b. G(s) = 

> + 3)(s + 4)(s2 -f-2s+100) 

ŝ  + 4s2 + 2s+6 
> + 8)(s2 + 8s + 3)(s2 + 5s + 1] 

A system is described by the following differential 
equation: 

^ + 3 ^ + 5 ^ 
dt3^dt2^dt 

d3x , d2x , dx 
dt3 dt2 dt 

8x 

Find the expression for the transfer function of the 
system, Y(s)/X(s). [Section: 2.3] 

For each of the following transfer functions, write 
the corresponding differential equation. [Section: 
2.3] 

X(s) 7 
a. 

b. 

c. 

F(s) 5 2 + 55+ 10 

X(s) _ 15 

F(s)~ 

X(s) 
(s 10)(5+ n ; 

5 + 3 

F(s) 53 + 1152 + 12s + 18 

Write the differential equation for the system shown 
in Figure P2.1. [Section: 2.3] 

R(s) 

s6+ 7s5+ 3s4 + 2s3 + s2 + 5 

C(s) 

FIGURE P2.1 

symbolic Math 10. Write the differential equation that 
is mathematically equivalent to the 

WileyPLUS 

Control Solutions 
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block diagram shown in Figure P2.2. Assume that 16. Find the transfer function, G(s) — V0(s)/Vi(s), for 
r{t) — 3f3. [Section: 2.3] each network shown in Figure P2.3. [Section: 2.4] 

R(s) 54 + 3s3+2,s2 + s + l 

s5 + 4s4 + 3s3 + 2s2 + 3s + 2 
as) i n i n IH 

FIGURE P2.2 

11. A system is described by the following differential 
equation: [Section 2.3] 

d2x ^dx „ 
- y + 2 — + 3 ^ = 1 
dt2 dt 

with the initial conditions x(0) — 1, i(0) = —1. 
Show a block diagram of the system, giving its 
transfer function and all pertinent inputs and out­
puts. (Hint: the initial conditions will show up as 
added inputs to an effective system with zero initial 
conditions.) 

12. Use MATLAB t o g e n e r a t e t h e t r a n s f e r MATLAB 
f u n c t i o n : [Sec t ion : 2 . 3 ] 

G(s) = 
5 ( s + 1 5 ) ( s + 2 6 ) ( s + 72) 

s(s + 5 5 ) ( s 2 + 5 s + 3 0 ) ( s + 5 6 ) ( s 2 + 21 s + 52) 

in the following ways : 

a. the ratio of factors; 

b. the ratio of polynomials. 

13. Repeat Problem 12 for the following MATLAB 

transfer function: [Section :2.3] 

G(s) = 
s4 + 25s3 + 2052 + 15s + 42 

s5 + 13s4 + 9s3 + 37s2 + 35s + 50 

14. Use MATLAB to generate the partial-
fraction expansion of the following 
function: [Section:2.3] 

F s) = 
104(s + 5)(s+70; 

s(s+45)(s + 55)(s2 + 7s + 110)(s2 + 6s + 95) 

15. Use MATLAB and the Symbolic Math Symbolic Math 
Toolbox to input and form LTI ob- ^ E u 9 
jects in polynomial and factored form 
for the following frequency functions: 
[Section:2.3] 

45(s2 + 37s + 74)(s3 + 28s2 + 32s + 16) 
>+39)(s + 47)(s2+2s+100)(s3 + 27s2 + 18s+15) 

56(s + 14)(s3 + 4 9s2 + 62s + 53) 
> 3 +81s 2 + 76s+65)(s2 + 88s + 33)(s2 + 56s + 77) 

a. G(s) = 

b. G{s) = 

«•/(/) ( i i H g i f l > v f l ( / ) v i ( / ) f + ) i n > IF^ZVOU) 

(a) m 
FIGURE P2.3 

17. Find the transfer function, G{s) = VL(s)/V(s), 
for each network shown in Figure P2.4. [Section: 2.4] 

2H 2 Q I F 

rAAAHf 

•to m 20 
20 

2H 

*>© 
2P_. 

2 Q 

>'/.(') 1 F ^ b 2 H § | VLU) 

(a) m 
FIGURE P2.4 

18. Find the transfer function, G(s) = V0{s)/ 
Vi(s), for each network shown in 
Figure P2.5. Solve the problem using 
mesh analysis. [Section: 2.4] 

WileyPLUS 

Control Solutions 

+ v„(0-

2H 

(1)(+) IQ. 

3H 

i F " 

1H 

vHt)(l) l H l ;±TlF l F - - v , , ( / ) 

(a) (b) 

FIGURE P2.5 

19. Repeat Problem 18 using nodal equations. [Section: 
2.4] 

20. a. Write, but do not solve, the mesh and nodal 
equations for the network of Figure P2.6. [Sec­
tion: 2.4] 

b. Use MATLAB, the Symbolic Math Symbolic Math 
Toolbox, and the equations found ̂ E u V 
inpartatosolveforthetransfer 
function, G{s) = V0(s)/V(s). Use both the 
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mesh and noda l e q u a t i o n s and show 
t h a t e i t h e r s e t y i e l d s t h e same t r a n s f e r 
f u n c t i o n . [ S e c t i o n : 2.4] 

110 kQ 4/iF 

v,(0 
i n 
9* !',(/) 
If 

2 Q 4 Q 6H 

AAA—rAAA/W 

rt-)© 

2 Q 

4 H 

1-,,(/) 

8 f i > v„(/) 

400 kQ 

4/iF 

(a) 

HOkQ 

FIGURE P2.6 

21. Find the transfer function, G(s) = V0(s)/Vi(s), for 
each operational amplifier circuit shown in Figure 
P2.7. [Section: 2.4] 

100 kQ 

VjU) 

It 
600 kQ 4/iF 

v,(0 
,.(0 

400 kQ 

500 kQ 2/dP 

2/iF 

v,(0 

4//F 

>'.,<0 

"600kQ 

(6) 

FIGURE P2.8 

(a) 

100 kQ 

rWY 
r;(/) 

AAAHC-
100kQ 2/iF 

100 kQ 2/lF 

23. Find the transfer function, G(s) =X\(s)/F(s), for 
the translational mechanical system shown in Figure 
P2.9. [Section: 2.5] 

i _ .-. (i\ 

5N/m 1 
r7 

4 N-s/m 
1 | 
| 1 

i* 
5 kg 

|C 

vjt) 

FIGURE P 2 . 9 

24. Find the transfer function, G(s) = X2(s)/F{s), for 
the translational mechanical network shown in 
Figure P2.10. [Section: 2.5] 

(b) 

FIGURE P2.7 

22. Find the transfer function, G(s) = V0(s)/Vi(s), for 
each operational amplifier circuit shown in Figure 
P2.8. [Section: 2.4] 

Frictionless" 

FIGURE P2.10 
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25. Find the transfer function, G(s) = wileyPius 
X2(s)/F(s). for the translational d J J > 
mechanical system shown in Figure control solutions 
P2.ll . (Hint: place a zero mass at 
x2(t).) [Section: 2.5] 

A, (/) -A,(/) 

m — -nm^ 

\Mi) 

Mt = 8 kg 

Frictionless 

10 kg -

2 N/m 5 N-s/m 

FIGURE P2.11 

2 N-s/m — 

fit) 
1 N/m 

4 N-s/m 
M2=3kg 

N Frictionless 

I — 0 K K K P -
16 N-s/m 15 N/m 

.Frictionless 

orcrr.,-'"." _3 
(6) 

FIGURE P2.14 

26. For the system of Figure P2.12 find the transfer 29. Write, but do not solve, the equations of motion for 
function, G(s) = Xi{s)/F(s). [Section: 2.5] the translational mechanical system shown in Figure 

P2.15. [Section: 2.5] 

AT, = 4 N/m 

/ v . = 3N-s/m 

-v,(/) 

if, = 1 kg 

K2=5N/m 

/V o = 3 N-s/m 

-*~AS( / ) 

M2 = 2kg 

'-fit) 

/v3 = 2 N-s/mF: 

I/ . 
FIGURE P2.12 

27. Find the transfer function, G{s) =X${s)/F(s), for 
the translational mechanical system shown in Figure 
P2.13. [Section: 2.5] 

K\ - 5 N/m 

/ v , = 2 N-s/m 

AT2 = 4 N/m 

/v2 = 2 N-s/m 

Hn 

W3 = 5kg 

w,=4k g —^JQ^p— /kr2 = 5 kg 
8¾ = 4 N/m 

/^. = 3 N-s/m 

2 N-s/m 

6 N/m 

^vOTP 4 ks -

MO 
2 N-s/m 4 kg 

\Mi) 

6 N/m 

-7(0 

^ 

4 kg 

2 N-s/m 

Frictionless 
-A"|(0 

FIGURE P2.15 

-./(') 

v2C) 

30. For each of the rotational mechanical systems 
shown in Figure P2.16, write, but do not solve, the 
equations of motion. [Section: 2.6] 

Frictionless' 

FIGURE P2.13 

28. Find the transfer function, Xs(s)/F(s), for each 
system shown in Figure P2.14. [Section: 2.5] 

/v , = 4 N-s/m 

fit) *-
/ v 2 = 4 N-s/m 

E TT^ff 

-A I i t ) 

M\ = 4 kg 

0ff lN-m-s/rad ™ * < ' > 
: N-m-s/rad A i -p - A A 

v 9 N-m/rad 

(a) 
7(/) ~ °2 

3 N-m/rad 

D, 
-x2U) 

K\ 

AT=5N/m |/v3 = 4N-s/m 
FIGURE P2.16 

-M2 = 4kg 

(«) 

f =4N / 31. For the rotational mechanical system wileypws 
/ 4 s " shown in Figure P2.17, find the transfer C B S 
! function ¢7(5)=02(5-)/7(51) [Section: control solutions 

2.6] 

P2.ll
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7(/) 

1 kg-m2 ) -

d 

1 N-m/rad 6M/) 

n 
1 N-m-s/rad 

1 N-m-s/rad 

V 1 N-m-s/rad 

35. Find the transfer function, G(s) = 94(s)/T(s), for 
the rotational system shown in Figure P2.21. 
[Section: 2.7] 

7(/) B\{t) 

FIGURE P2.17 

32. For the rotational mechanical system with gears 
shown in Figure P2.18, find the transfer function, 
G(s) = 0^(s)/T(s). The gears have inertia and bear­
ing friction as shown. [Section: 2.7] 

7(/) 

W> = 110 

W, =26 /V4=120 

B2(t) 01,(1) 

26 N-m-s/rad 

/V3 = 23 

2 N-m/rad 

FIGURE P2.21 

p I 
^2 

J2,D2 

/V, 

^ i 

/V4 

FIGURE P2 

A/3 

l 
.18 

36. For the rotational system shown in Figure P2.22, 
find the transfer function, G(s) — 0L(S)/T(S). [Sec­
tion: 2.7] 

2 N-m-s/rad 3 N-m/rad 
^2=33 U ] lkg-m2 ) [ T n$W ^ = 5 0 

17-(/) i 
— U | = l l N4=10\-

J5^5 

lit) 

0.04 N-m-s/rad 

33. For the rotational system shown in Figure P2.19, find 
the transfer function, G{s) = e2{s)/T{s). [Section: 2.7] 

r rw i i 
FIGURE P2.22 

7(/) 

-p()/L = 2kg-n4| D( a , N.m.s/rad 
M) 
r-j—f)j2=lkg-m2 /V2=12 

D2 = 2 N-m-s/rad 

M = 4 

/V4= I6 

D3 = 32 N-m-s/rad 

FIGURE P2.19 

K = 64 N-m/rad n 

( • / •^ lekg-m^j-^ro^--

37. For the rotational system shown in wileyPLUS 
Figure P2.23, write the equations of ^ j^9 
motion from which the transfer func- control solutions 
tion, G(s) = 6i(s)/T(s), can be found. 
[Section: 2.7] 

34. Find the transfer function, G(s) = 02(s)/T(s), for 
the rotational mechanical system shown in Figure 
P2.20. [Section: 2.7] 

7(/) 0,(/) 

/V, = 25 

1000 N-m-s/rad ^ 

200 kg-m2 

3 kg-m2 

3 N-m/rad ^ 2 = 50 

Ni=5 
0<t) 

200 kg-m2 

250 N-m/rad 

N2 

J? 
rWHI Ns 

h 

h 

FIGURE P2.23 

D, ± 

SB 
FIGURE P2.20 

38. Given the rotational system shown in Figure P2.24, 
find the transfer function, G(s) =9(,(s)/0i(s). 
[Section: 2.7] 
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0,(/) 

J[,D 

N2 
N, A i K, (=1 

w 
J4,D 

— A 

A', D 

FIGURE P2.24 

39. In the system shown in Figure P2.25, the inertia, /, of 
radius, r, is constrained to move only about the station­
ary axis A. A viscous damping force of translational 
value /„ exists between the bodies J and M. If an 
external force, f(t), is applied to the mass, find the 
transfer function, G{s) = Q(s)/F(s). [Sections: 2.5; 2.6] 

FIGURE P2.27 

42. For the motor, load, and torque-speed curve shown 
in Figure P2.28, find the transfer function, 
G(s) = $L{s)/Ea(s). [Section: 2.8] 

^m^ 

(•„(!) )./,=5 kg-m2) 1 

//2 = 150 i 

D2 = 36 N-m-s/rad 

Nj =50 

Dx = 8 N-m-s/rad 6L(t) 

-(-)¾ =18kg-m^ 

M AD 

FIGURE P2.25 

40. For the combined translational and rotational sys­
tem shown in Figure P2.26, find the transfer func­
tion, G{s) = X(s)/T(s). [Sections: 2.5; 2.6; 2.7] 

150 

FIGURE P2.28 

co (rad/s) 

7(/) 
/V, = 10 

NA = 60 I 
N2 = 20 I I $3 = 30 

/ = 3 kg-m2 i N-m-s/rad 
, ^ ^Radius = 2 m 

£)2 = I N-m-s/rad 

Ideal 
gear 1:1 

43. The motor whose torque-speed characteristics are 
shown in Figure P2.29 drives the load shown in the 
diagram. Some of the gears have inertia. Find the 
transfer function, G(s) — &g(s)/Ea{s). [Section: 2.8] 

edt) 

2 kg 

2 N-s/m I 

Motor 

°3N/m 

N2 = 2Q 

J2 = 2 kg-m2 

# , = 10 

7, = 1 kg-m2 

W3=10 

N4 = 20 

/ 3 = 2 kg-m2 

ft (/) D = 32 N-m-s/rad 

/4= 16 kg-m2 

FIGURE P2.26 T(N-m) 

41. Given the combined translational and wileyPius 
rotational system shown in Figure WHJ«K 
P2.27, find the transfer function, control solutions 
G(s) = X(s)/T(s). [Sections: 2.5; 2.6] 

RPM 

FIGURE P2.29 
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44. A dc motor develops 55 N-m of torque at a speed 
of 600 rad/s when 12 volts are applied. It stalls out 
at this voltage with 100 N-m of torque. If the 
inertia and damping of the armature are 7 kg-m 
and 3 N-m-s/rad, respectively, find the transfer 
function, G(s) = 0/,(s)/Ea(s), of this motor if it 
drives an inertia load of 105 kg-m2 through a gear 
train, as shown in Figure P2.30. [Section: 2.8] 

#,„(') 
+ — 

Motor f 

N2 = 25 

N, = 12 

N4 = 72 

^3 = 25 

48. Find the series and parallel analogs for the rota­
tional mechanical systems shown in Figure P2.16(b) 
in the problems. [Section: 2.9] 

49. A system's output, c, is related to the system's input, 
r, by the straight-line relationship, c = 5r + 7. Is the 
system linear? [Section: 2.10] 

50. Consider the differential equation 

d2x ndx _ _. . 
_ + 3 - + 2 * = / M 

where f(x) is the input and is a function of the 
output, x. If f(x) = sinx, linearize the differential 
equation for small excursions. [Section: 2.10] 

x = 0 a. 
Load 

51, 
FIGURE P2.30 

45. In this chapter, we derived the wileyPLUs 
transfer function of a dc motor C J J S J 
relating the angular displace- control solutions 
ment output to the armature 
voltage input. Often we want to control the out­
put torque rather than the displacement. Derive 
the transfer function of the motor that relates 
output torque to input armature voltage. 
[Section: 2.8] 

46. Find the transfer function, G(s) = X(s)/Ea(s), for 
the system shown in Figure P2.31. [Sections: 2.5-2.8] 

b. x = it 

Consider the differential equation 

d3x d2x dx 
5 ^ + 1 0 ^ + 3 1 ^ + 30* = /(*) 
dt3 dt2 dt JX ' 

WileyPLUS 
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52. 

ejl) Motor — N, = 10 
D = 1 N-m-s/rad 

N2 = 20 

Radius = 2 m 

For the motor: 

Ja = lkg-m 2 

Da = 1 N-m-s/rad 
Ra = ID 

Kb = 1 V-s/rad 
K, = 1 N-m/A 

where f(x) is the input and is a function of the 
output, x. If f(x) = e~x, linearize the differential 
equation for x near 0. [Section: 2.10] 

Many systems are piecewise linear. That is, over a 
large range of variable values, the system can be 
described linearly. A system with amplifier satura­
tion is one such example. Given the differential 
equation 

g + 1 7 § + 50* = /W 

assume that f(x) is as shown in Figure P2.32. Write 
the differential equation for each of the following 
ranges of x: [Section: 2.10] 

a. — oo < x < —3 

b. - 3 < x < 3 

c. 3 < x < oo 

6 

FIGURE P2.31 

47. Find the series and parallel analogs for the transla-
tional mechanical system shown in Figure 2.20 in the 
text. [Section: 2.9] 

-6 

FIGURE P2.32 
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53. For the translational mechanical system wileyPLUs 
with a nonlinear spring shown in Figure ( J J J J J 
P2.33, find the transfer function, control solutions 
G(s) = X(s)/F(s), for small excursions 
around f(t) = 1. The spring is defined by JC,(/) = 
1 — e~/jM, where xs(t) is the spring displacement 
and/5 (/) is the spring force. [Section: 2.10] 

Nonlinear 
spring 

1 N-s/m 
FIGURE P2.33 

54. Consider the restaurant plate dispenser shown in 
Figure P2.34, which consists of a vertical stack of 
dishes supported by a compressed spring. As each 
plate is removed, the reduced weight on the 
dispenser causes the remaining plates to rise. 
Assume that the mass of the system minus the 
top plate is M, the viscous friction between 
the piston and the sides of the cylinder is /„ , 
the spring constant is K, and the weight of a 
single plate is Wn. Find the transfer function, 
Y(s)/F(s), where F(s) is the step reduction in 
force felt when the top plate is removed, and 
Y(s) is the vertical displacement of the dispenser 
in an upward direction. 

Plates 

Piston 

FIGURE P2.34 Plate dispenser 

55. Each inner ear in a human has a set of three nearly 
perpendicular semicircular canals of about 0.28 mm 
in diameter filled with fluid. Hair-cell transducers 

that deflect with skull movements and whose main 
purpose is to work as attitude sensors as well as help 
us maintain our sense of direction and equilibrium 
are attached to the canals. As the hair cells move, 
they deflect a waterproof flap called the cupula. It 
has been shown that the skull and cupula move­
ments are related by the following equation (Mil-
sum, 1966): 

J(j) + b<i> + k(j>= (af)\jr 

where 

J = moment of inertia of the fluid in the 
thin tube (constant) 

b = torque per unit relative angular velocity 
(constant) 

k = torque per unit relative angular 
displacement (constant) 

a = constant 

¢(1) — angular deflection of the cupula (output) 

•fi(t) = skull's angular acceleration (input) 

Find the transfer function — 
®(s) 

n*) 
56. Diabetes is an illness that has risen to epidemic propor­

tions, affecting about 3% of the total world population 
in 2003. A differential equation model that describes 
the total population size of diabetics is 

dC(t) 

dt 

dN(t) 
dt 

= -(k + fi + 8 + y + v)C(t) + XN(t) 

= -(v + 8)C(t)~/xN(t)+I(t) 

with the initial conditions C(0) = Co and N{0) = JVn 

I(t) — the system input: the number of new 
cases of diabetes 

C(t) = number of diabetics with complications 
N(t) = the system output: the total number of 

diabetics with and without complications 
ix = natural mortality rate (constant) 
X = probability of developing a complication 

(constant) 
8 = mortality rate due to complications 

(constant) 
v = rate at which patients with complications 

become severely disabled (constant) 
y — rate at which complications are cured 

(constant) 
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Assume the following values for parameters: v = 8 = 
0.05/yr, n = 0.02/yr, y = 0.08/yr, A = 0.7, with ini­
tial conditions C0 = 47,000,500 and N0 =, 61,100,500. 
Assume also that diabetic incidence is constant I(t) = 
I = 6 x 106 (Boutayeb, 2004). 

a. Draw a block diagram of the system showing the 
output N(s), the input /(5), the transfer function, 
and the initial conditions. 

b. Use any method to find the analytic expression 
for N(t) for t > 0. 

57. The circuit shown in Figure P235(a) is excited with 
the pulse shown in Figure P2.35(6). 

2Q 

vjl) 
3V 

(«) 

5 msec 

(b) 

FIGURE P2.35 

The Laplace transform can be used to calculate va(t) 
in two different ways: The "exact" method is per­
formed by writing v,(f) = 3[w(f) - u{t - 0.005)], 
from which we use the Laplace transform to obtain 

l - e -0.0055 
Vin(s) = 3 

(Hint: look at Item 5 in Table 2.2, the time shift 
theorem.) In the second approach the pulse is approxi­
mated by an impulse input having the same area 
(energy) as the original input. From Figure F235(b): 
vin(t) « (3V)(5msec) 5(f) = 0.0155(f). In this case, 
Vin(s) = 0.015. This approximation can be used as 
long as the width of the pulse of Figure P2.35(6) is 
much smaller than the circuit's smallest time constant. 
(Here, t = RC = (20)(4F) = 8 s e c > 5msec.) 

a. Assuming the capacitor is initially discharged, 
obtain an analytic expression for v0 (f) using both 
methods. 

b. Plot the results of both methods using any means 
available to you, and compare both outputs. 
Discuss the differences. 

58. In a magnetic levitation experiment a metallic ob­
ject is held up in the air suspended under an electro­
magnet. The vertical displacement of the object can 

be described by the following nonlinear differential 
equation (Galvao, 2003): 

d2H , I2 

m —rr- = me - k —, 
H2 dt2 

where 

m — mass of the metallic object 

g = gravity acceleration constant 
k = a positive constant 

H= distance between the electromagnet and 
the metallic object (output signal) 

I = electromagnet/s current (input signal) 

a. Show that a system's equilibrium will be achieved 

when HQ — IO-

b. Linearize the equation about the equilibrium 
point found in Part a and show that the resulting 
transfer function obtained from the linearized 
differential equation can be expressed as 

8H(s) _ a 

8I(s) ~ s2-b2 

with a > 0. Hint: to perform the linearization, define 
8H = H(t) - HQ and 5/ = /(f) - /0 ; substitute into 
the original equation. This will give 

in 
d2(H0 + 8H) (/0 

'- = me - k-
siy 

= y 
dt2

 {HQ + SHY 

Now get a first-order Taylor's series approximation on 
the right-hand side of the equation. Namely, calculate 

m 
d28H dy 

dt2 38H 
8H 

SH=0, 5/=0 

dy_ 
881 

SI 
5//=0, 81=0 

59. Figure P2.36 shows a quarter-car model commonly 
used for analyzing suspension systems. The car's tire 
is considered to act as a spring without damping, as 
shown. The parameters of the model are (Lin, 1997) 

Mb = car's body mass 
Mlts= wheel's mass 
Ka = strut's spring constant 
K( = tire's spring constant 
/ v = strut's damping constant 

r = road disturbance (input) 
xs = car's vertical displacement 

xw = wheel's vertical displacement 
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Obtain the transfer function from the road distur-
Xs(s) 

bance to the car's vertical displacement R(s)-

/ v C 

Mu 

Wheel 

////////////// 

FIGURE P2.36 Quarter-car model used for suspension design. 
(© 1997 IEEE) 

60. Enzymes are large proteins that biological systems 
use to increase the rate at which reactions occur. For 
example, food is usually composed of large mole­
cules that are hard to digest; enzymes break down 
the large molecules into small nutrients as part of 
the digestive process. One such enzyme is amylase, 
contained in human saliva. It is commonly known 
that if you place a piece of uncooked pasta in your 
mouth its taste will change from paper-like to sweet 
as amylase breaks down the carbohydrates into 
sugars. Enzyme breakdown is often expressed by 
the following relation: 

S + E^tC^P 

In this expression a substrate (S) interacts with an 
enzyme (E) to form a combined product (Q at a 
rate k\. The intermediate compound is reversible 
and gets disassociated at a rate k-\. Simultaneously 
some of the compound is transformed into the final 
product (P) at a rate k2. The kinetics describing this 
reaction are known as the Michaelis-Menten equations 
and consist of four nonlinear differential equations. 
However, under some conditions these equations can 
be simplified. Let EQ and 5b be the initial concentra­
tions of enzyme and substrate, respectively. It is gener­
ally accepted that under some energetic conditions or 
when the enzyme concentration is very big (EQ » So), 

the kinetics for this reaction are given by 
/70 

-jt = kf(KsC-S) 

— = k^(S — KM C) 

dP vr 
where the following constant terms are used 
{Schnell, 2004) : 

k* = k]E0 

K< = 
k-l 

KM — &$ + 7— 
kf 

a. Assuming the initial conditions for the reaction 
are S(0) = S0, £(0) = E0, C(0) = P(0) = 0, find 
the Laplace transform expressions for S, C, and 
P: &{S}, S£{C}, and Sf{P}, respectively. 

b. Use the final theorem to find S(oo), C(oo), and 
P(oo). 

61. Humans are able to stand on two legs through a 
complex feedback system that includes several sensory 
inputs—equilibrium and visual along with muscle ac­
tuation. In order to gain a better understanding of the 
workings of the postural feedback mechanism, an 
individual is asked to stand on a platform to which 
sensors are attached at the base. Vibration actuators are 
attached with straps to the individual's calves. As the 
vibration actuators are stimulated, the individual sways 
and movements are recorded. It was hypothesized that 
the human postural dynamics are analogous to those of 
a cart with a balancing standing pole attached (inverted 
pendulum). In that case, the dynamics can be described 
by the following two equations: 

J~dfi = ms / s i n 6 )W + r b a I + r<'W 

rbal(0 = -mgUm6{t) + kJd{t) - i]J0(t) 

1 

-pj fo(t)dt 

where m is the individual's mass; / is the height of 
the individual's center of gravity; g is the gravita­
tional constant; J is the individual's equivalent 
moment of inertia; ??, p, and k are constants given 
by the body's postural control system; 6(t) is the 
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individual's angle with respect to a vertical line; 
Tba\(t) is the torque generated by the body muscles 
to maintain balance; and Ta(t) is the external 
torque input disturbance. Find the transfer func-

K ' (Johansson, 1988). tion 
Td(s) 

62. Figure P2.37 shows a crane hoisting a load. Al­
though the actual system's model is highly non­
linear, if the rope is considered to be stiff with a 
fixed length L, the system can be modeled using the 
following equations: 

mLxLa = mLg<t) 

mT'xr = fa - mLg$ 

XLa =XT-XL 

XL = L<t> 

where mt is the mass of the load, mj is the mass of the 
cart, xj and XL are displacements as defined in the 
figure, 0 is the rope angle with respect to the vertical, 
and/ r is the force applied to the cart (Marttinen, 1990). 
a. Obtain the transfer function from cart velocity to 

rope angle 
VT(s)' 

b. Assume that the cart is driven at a constant 
velocity Vo and obtain an expression for the 
resulting 0(f). Show that under this condition, 

fg 
the load will sway with a frequency COQ = ,/—. 

V 
c. Find the transfer function from the applied force 

XT(s) to the cart's position, 
FT{s)' 

d. Show that if a constant force is applied to the cart, 
its velocity will increase without bound as t —* oo. 

FIGURE P2.37 (© 1990 IEEE) 

63. In 1978, Malthus developed a model for human 
growth population that is also commonly used to 
model bacterial growth as follows. Let N(t) be the 
population density observed at time t. Let K be the 

rate of reproduction per unit time. Neglecting pop­
ulation deaths, the population density at a time 
t + At (with small At) is given by 

N{t + At) t* N(t) + KN(t)At 

which also can be written as 

N(t + At)-N{t) 
At 

= KN(t) 

Since N(t) can be considered to be a very large 
number, letting At -* 0 gives the following differen­
tial equation (Edelstein-Keshet, 2005): 

dN(t) 
= KN(t) 

a. Assuming an initial population ./V(O) = TVo, solve 
the differential equation by finding N(t). 

b. Find the time at which the population is double 
the initial population. 

64. Blood vessel blockages can in some instances be 
diagnosed through noninvasive techniques such as 
the use of sensitive microphones to detect flow 
acoustic anomalies. In order to predict the sound 
properties of the left coronary artery, a model has 
been developed that partitions the artery into 14 
segments, as shown in Figure P2.38(a). 

(a) 
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o- AA/v-^IKKK^ 

Q, 

p2 

-o 

c ~z = > Q 2 

FIGURE P2.38 (© 1990 IEEE) 

Each segment is then modeled through the anal­
ogous electrical circuit of Figure P2.38(6), resulting 
in the total model shown in Figure P2.38(c), where 
eight terminal resistances (Z) have been added. In 
the electrical model, pressure is analogous to volt­
age and blood flow is analogous to current. As an 
example, for Segment 3 it was experimentally veri­
fied that R3 = 41760, C3 = 0.98 /zF, L3 = 140.6 H, 
and Z3 = 308,163 ft (Wang, 1990). 

a. For Segment 3, find the transfer function from 

input pressure to blood flow through Z3, °3 . 

b. It is well known in circuit analysis that if a 
constant input is applied to a circuit such as 
the one of Figure P2.38(fr), the capacitor can be 
substituted by an open circuit and the inductor 
can be substituted by a short circuit as time 
approaches infinity. Use this fact to calculate 
the flow through Z3 after a constant unit pres­
sure pulse is applied and time approaches 
infinity. 

c. Verify the result obtained in Part b using the 
transfer function obtained in Part a and applying 
the final value theorem. 

65. In order to design an underwater vehicle that has 
the characteristics of both a long-range transit vehi­
cle (torpedo-like) and a highly maneuverable low-
speed vehicle (boxlike), researchers have developed 
a thruster that mimics that of squid jet locomotion 
(Krieg, 2008). It has been demonstrated there that 
the average normalized thrust due to a command 

T 
step input, U(s) = - ^ - , is given by: 

T(t) = Tref(\ - e~xt) + a sm(2irft) 
where Tref- is the reference or desired thrust, A. is 
the system's damping constant, a is the amplitude of 
the oscillation caused by the pumping action 
of the actuator, / is the actuator frequency, and 
T(t) is the average resulting normalized thrust. Find 

T(s) 
the thruster's transfer function -r—r- Show all steps. 

U{s) 

66. The Gompertz growth model is commonly used to 
model tumor cell growth. Let v(t) be the tumor's 
volume, then 

dv(t) 

dt 
= Xe-atv{t) 

where X and a are two appropriate constants 
(Edelstein-Keshet, 2005). 

a. Verify that the solution to this equation is given 
by v(t) = vo^-/a^~e"'\ where vo is the initial 
tumor volume. 

This model takes into account the fact that when 
nutrients and oxygen are scarce at the tumor's 
core, its growth is impaired. Find the final pre­
dicted tumor volume (let t —* oo). 

For a specific mouse tumor, it was experimen­
tally found that A = 2.5 days, a = 0.1 days with 
v0 = 50 x 10"3 mm3 (Chignola, 2005). Use any 
method available to make a plot of v(t) vs. t. 

Check the result obtained in Part b with the results 
from the graph from Part c. 

5). 

C. 

d. 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 
67. High-speed rail pantograph. Problem 21 in Chap­

ter 1 discusses active control of a pantograph 
mechanism for high-speed rail systems. The dia­
gram for the pantograph and catenary coupling is 
shown in Figure P2.39(a). Assume the simplified 
model shown in Figure P2.39(6), where the catenary 
is represented by the spring, Kavc (O'Connor, 1997). 
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Tower 

Mh 

Pantograph shoe 

Head mass 

Kb < U /v/, Head suspension 

Mr Frame mass 

, Frame 
KfS ?/v/ 
7777777777777777 

Direction 
of travel 

suspension 

tfnvp=l.535xl06N/m 

Kt=82.3xl03N/m 

/v/r=130N-s/m 

I —|/v / = 30N-s/m 

FIGURE P2.39 a. Coupling of pantograph and catenary; b. simplified representation showing the active-control force (Reprinted 
with permission of ASME.) 

a. Find the transfer function, G\{s) = Ycal(s)/ 
^up(s), where ycat(f) is the catenary displacement 
and /up(r) is the upward force applied to the 
pantograph under active control. 

b. Find the transfer function G2(s) = Yh(s)/Fup(s), 
where yh(t) is the pantograph head displacement. 

c. Find the transfer function, G(s) = (Yt,(s)-
Ycat(s))/Fap(s). 

68. Control of HIV/AIDS. HIV inflicts its damage by 
infecting healthy CD4 + T cells (a type of white 
blood cell) that are necessary to fight infection. As 
the virus embeds in a T cell and the immune system 
produces more of these cells to fight the infection, 
the virus propagates in an opportunistic fashion. As 
we now develop a simple HIV model, refer to Figure 
P2.40. Normally T cells are produced at a rate s and 
die at a rate d. The HIV virus is present in the 
bloodstream in the infected individual. These 
viruses in the bloodstream, called free viruses, infect 
healthy T cells at a rate fi. Also, the viruses repro­
duce through the T cell multiplication process or 
otherwise at a rate k. Free viruses die at a rate c. 
Infected T cells die at a rate /x. 

U I 
Healthy cell Free virus Infected cell 

H • > fi 

FIGURE P2.40 (© 2004 IEEE) 

A simple mathematical model that illustrates 
these interactions is given by the following equa­
tions {Craig, 2004): 

— = s-dT- pTv 
dt 

dV 
dt 

= PTv - IMT* 

dv .-» 
— = kT — cv 
dt 
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where 
T = number of healthy T cells 

T* = number of infected T cells 
v = number of free viruses 

a. The system is nonlinear; thus linearization is 
necessary to find transfer functions as you will 
do in subsequent chapters. The nonlinear nature 
of this model can be seen from the above equa­
tions. Determine which of these equations are 
linear, which are nonlinear, and explain why. 

b. The system has two equilibrium points. Show 
that these are given by 

(To, Tl v0) = ( ^ , 0 , 0 ) 

and 

(en s cd sk d\ 
(To, r0 ,v0) = ^ , - - - , - - - j 

69. Hybrid vehicle. Problem 23 in Chapter 1 discusses 
the cruise control of serial, parallel, and split-
power hybrid electric vehicles (HEVs). The func­
tional block diagrams developed for these HEVs 
indicated that the speed of a vehicle depends upon 
the balance between the motive forces (developed 
by the gasoline engine and/or the electric motor) 
and running resistive forces. The resistive forces 
include the aerodynamic drag, rolling resistance, 
and climbing resistance. Figure P2.41 illustrates 
the running resistances for a car moving uphill 
(Bosch, 2007). 

FIGURE P2.41 Running resistances 

The total running resistance, Fw is calculated as 
Fw — FR0 + FL + Fst, where FR(I is the rolling resist­
ance, Fi is the aerodynamic drag, and F& is the 
climbing resistance. The aerodynamic drag is propor­
tional to the square of the sum of car velocity, v, and 
the head-wind velocity, v/,*., or v + v/,H.. The other two 
resistances are functions of car weight, G, and the 
gradient of the road (given by the gradient angle, a), 
as seen from the following equations: 

FRO = fG cos a — fmg cos a 

where 

/ = coefficient of rolling resistance, 

m — car mass, in kg, 
g = gravitational acceleration, inm/s2. 

FL=Q.5pCwA{v + v,lw)2 

where 

p — air density, in kg/m3, 

Cw = coefficient of aerodynamic drag, 

A = largest cross-section of the car, in kg/m2. 

Fst = G since = mgsin a 

The motive force, F, available at the drive wheels 
is: 

j-, _ I hot _ Film, 

where 

T = motive torque. 
P = motive power, 

i tot = total transmission ratio, 

r = tire radius, 
r\tol — total drive-train efficiency. 

The surplus force, F — Fw, accelerates the vehicle (or 
F — Fw retards it when Fw > F). Letting a = - . where a 
km • m 

is the acceleration and km is a coefficient that com­
pensates for the apparent increase in vehicle mass due 
to rotating masses (wheels, flywheel, crankshaft, etc.): 

a. Show that car acceleration,16 a, may be deter­
mined from the equation: 

F = fmg cos a + mg sin a + 0.5pCwA(v + v/TO.)2 + km ma 

16 Other quantities, such as top speed, climbing ability, etc., may also be 
calculated by manipulation from that equation. 
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b. Assuming constant acceleration and using the 
average value for speed, find the average motive 
force, Fav (inN), and power, Pav (inkW) the car needs 
to accelerate from 40 to 60 km/h in 4 seconds on a 
level road, (a = 0°), under windless conditions, 
where VHW — 0. You are given the following parame­
ters: m = 1590kg, A = 2m2, / = 0.011, p; = 
l.2kg/m3,Cw = 0.3,t]tot = 0.9, km = 1.2.Further­
more, calculate the additional power, PaM, the car 
needs after reaching 60 km/h to maintain its speed 
while climbing a hill with a gradient a = 5°. 

e. The equation derived in Part a describes the non­
linear car motion dynamics where F(t) is the input to 
the system, and v(r) the resulting output. Given that 
the aerodynamic drag is proportional to v2 under 

windless conditions, linearize the resulting equation 
of motion around an average speed, v0 = 50 km/h, 
when the car travels on a level road,17 where a = 0°. 
(Hint: Expand v2 - v2, in a truncated Taylor series). 
Write that equation of motion and represent it with a 
block diagram in which the block Gv represents the 
vehicle dynamics. The output of that block is the car 
speed, v(t), and the input is the excess motive force, 
Fe(t), defined as: Fe = F - /¾ — FRo + F0, where 
F0 the constant component of the linearized aerody­
namic drag. 

Use the equation in Part c to find the vehicle 
transfer function: Gv(s) = V(s)/Fe(s). 

Note that on a level road the climbing resistance is Fst = 0, 
since sin a = sin0° = 0. 

Cyber Exploration Laboratory 
Experiment 2.1 

Objectives To learn to use MATLAB to (1) generate polynomials, (2) manipu­
late polynomials, (3) generate transfer functions, (4) manipulate transfer functions, 
and (5) perform partial-fraction expansions. 

Minimum Required Software Packages MATLAB and the Control System 
Toolbox 

Prelab 

1. Calculate the following by hand or with a calculator: 

a. The roots of Px = . 6 + 7.5 + 2s4 + 9.3 + 10.2 + 12s + 15 

b. The roots of P2 = . 6 + 9s5 + 8s4 + 9s7, + 12s2 + 15s + 20 

c. P3 = Pi +P2; P* = Pi- Pi; PS = P1P2 
2. Calculate by hand or with a calculator the polynomial 

P6 = (s + 7)(s + 8)(s + 3)(s + 5)(s + 9){s + 10) 

3. Calculate by hand or with a calculator the following transfer functions: 

20(. + 2)(5 + 3)(. + 6)(. + 8) 
' 1 U . ( . + 7)(.+ 9)(.+ 10)(.+ 15)' 

represented as a numerator polynomial divided by a denominator polynomial. 
.4 + 17.3 + 99.2 + 223. + 140 

2 ̂  ~ s5 + 32.4 + 363.3 + 2092.2 + 5052. + 4320' 

expressed as factors in the numerator divided by factors in the denominator, 
similar to the form of G\ (.) in Prelab 3a. 

c. Gs(s) = Gi(.) + G2(s); GA{s) = Gi(s) - G2(.); G5(.) = Gi(.)G2(.) 
expressed as factors divided by factors and expressed as polynomials divided 
by polynomials. 
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4. Calculate by hand or with a calculator the partial-fraction expansion of the 
following transfer functions: 

a . G 6 = 5(* + 2> 

b. G7 = 

c G8 = 

Lab 

s{s2 + 85 + 15) 
5(5 + 2) 

s{s2 + 65 + 9) 
5(5 + 2) 

s(s2 + 65 + 34) 

1. Use MATLAB to find P3, PA, and P5 in Prelab 1. 
2. Use only one MATLAB command to find P6 in Prelab 2. 
3. Use only two MATLAB commands to find Gi(s) in Prelab 3a represented as a 

polynomial divided by a polynomial. 
4. Use only two MATLAB commands to find G2(s) expressed as factors in the 

numerator divided by factors in the denominator. 
5. Using various combinations of G\(s) and G2(s), find Gi(s), G^s), and Gs(s). 

Various combinations implies mixing and matching Gi(s) and G2(s) expressed as 
factors and polynomials. For example, in finding G3(5), G\ (s) can be expressed in 
factored form and G2(s) can be expressed in polynomial form. Another combi­
nation is Gi(s) and G2(s) both expressed as polynomials. Still another combina­
tion is Gi(5)and G2(5) both expressed in factored form. 

6. Use MATLAB to evaluate the partial fraction expansions shown in Prelab 4. 

Postlab 

1. Discuss your findings for Lab 5. What can you conclude? 
2. Discuss the use of MATLAB to manipulate transfer functions and polynomials. 

Discuss any shortcomings in using MATLAB to evaluate partial fraction expansions. 

Experiment 2.2 

Objectives To learn to use MATLAB and the Symbolic Math Toolbox to (1) find 
Laplace transforms for time functions, (2) find time functions from Laplace trans­
forms, (3) create LTI transfer functions from symbolic transfer functions, and (4) 
perform solutions of symbolic simultaneous equations. 

Minimum Required Software Packages MATLAB, the Symbolic 
Math Toolbox, and the Control System Toolbox 

Prelab 

1. Using a hand calculation, find the Laplace transform of: 

/ ( 0 = 0.0075 - 0.00034e"2-5' cos(220 + 0.087e"2-5' sin(220 - 0.0072e~8f 

2. Using a hand calculation, find the inverse Laplace transform of 

2(5 + 3)(5 + 5)(5 + 7) 
1 ; 5(5+ 8)(52+ 105+ 100) 

3. Use a hand calculation to solve the circuit for the loop currents shown in 
Figure P2.42. FIGURE P2.42 
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Lab 

1. Use MATLAB and the Symbolic Math Toolbox to 

a. Generate symbolically the time function f(i) shown in Prelab 1. 
b. Generate symbolically F{s) shown in Prelab 2. Obtain your result symboli­

cally in both factored and polynomial forms. 
c. Find the Laplace transform of/(/) shown in Prelab 1. 
d. Find the inverse Laplace transform of F(s) shown in Prelab 2. 
e. Generate an LTI transfer function for your symbolic representation of F(s) in 

Prelab 2 in both polynomial form and factored form. Start with the F(s) you 
generated symbolically. 

f. Solve for the loop currents in Prelab 3. 

Postlab 

1. Discuss the advantages and disadvantages between the Symbolic Math Toolbox 
and MATLAB alone to convert a transfer function from factored form to 
polynomial form and vice versa. 

2. Discuss the advantages and disadvantages of using the Symbolic Math Toolbox to 
generate LTI transfer functions. 

3. Discuss the advantages of using the Symbolic Math Toolbox to solve simulta­
neous equations of the type generated by the electrical network in Prelab 3. Is it 
possible to solve the equations via MATLAB alone? Explain. 

4. Discuss any other observations you had using the Symbolic Math Toolbox. 

Experiment 2.3 

Objective To learn to use LabVIEW to generate and manipulate polynomials 
and transfer functions. 

Minimum Required Software Packages LabVIEW and the LabVIEW 
Control Design and Simulation Module. 

Prelab 

1. Study Appendix D, Sections D.l through Section D.4, Example D.l. 
2. Perform by hand the calculations stated in Prelab 1 of Experiment 2.1. 
3. Find by a hand calculation the polynomial whose roots are: - 7 , - 8 , - 3 , - 5 , 

-9 , and-10. 
4. Perform by hand a partial-fraction expansion of G(s) = -^— 2 . 

5. Find by a hand calculation Gi(s) + G2(s), Gi(s) - G2{s), and G-[(s)G2(s), where 

Gl{s) = ̂ T7T2 and°2{s) = ,4t/+3-
Lab 

1. Open the LabVIEW functions palette and select the Mathematics/Polynomial palette. 
2. Generate the polynomials enumerated in Prelab la and lb of Experiment 2.1. 
3. Generate the polynomial operations stated in Prelab lc of Experiment 2.1. 
4. Generate a polynomial whose roots are those stated in Prelab 3 of this experiment. 
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5. Generate the partial fraction expansion of the transfer function given in Prelab 4 
of this experiment. 

6. Using the Control Design and Simulation/Control Design/Model Construction 
palette, construct the two transfer functions enumerated in Prelab 5. 

7. Using the Control Design and Simulation/Control Design/Model Inter­
connection palette, display the results of the mathematical operations enumer­
ated in Prelab 5 of this experiment. 

Postlab 
1. Compare the polynomial operations obtained in Lab 3 to those obtained in 

Prelab 2. 
2. Compare the polynomial displayed in Lab 4 with that calculated in Prelab 3. 
3. Compare the partial-fraction expansion obtained in Lab 5 with that calculated in 

Prelab 4. 
4. Compare the results of the mathematical operations found in Lab 7 to those 

calculated in Prelab 5. 
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