Modeling in the
Frequency Domain

@ chapter Learning Outcomes ) |

After completing this chapter, the student will be able to:

Find the Laplace transform of time functions and the inverse Laplace transform
(Sections 2.1-2.2)

Find the transfer function from a differential equation and solve the differential
equation using the transfer function (Section 2.3)

Find the transfer function for linear, time-invariant electrical networks (Section 2.4)

Find the transfer function for linear, time-invariant translational mechanical systems
(Section 2.5)

Find the transfer function for linear, time-invariant rotational mechanical systems
(Section 2.6)

Find the transfer functions for gear systems with no loss and for gear systems with
loss (Section 2.7)

Find the transfer function for linear, time-invariant electromechanical systems
(Section 2.8)

Produce analogous electrical and mechanical circuits (Section 2.9)

Linearize a nonlinear system in order to find the transfer function (Sections 2.10-
2.11)
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Chapter 2 Modeling in the Frequency Domain

( Case Study Learning Outcomes)

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

® Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the transfer function of each subsystem.

® Given a model of a human leg or a nonlinear electrical circuit, you will be able to
linearize the model and then find the transfer function.

@€ 2.1 Introduction

FIGURE 2.1 a. Block diagram
representation of a system; b.
block diagram representation
of an interconnection of
subsystems

In Chapter 1, we discussed the analysis and design sequence that included obtaining
the system’s schematic and demonstrated this step for a position control system. To
obtain a schematic, the control systems engineer must often make many simplifying
assumptions in order to keep the ensuing model manageable and still approximate
physical reality.

The next step is to develop mathematical models from schematics of physical
systems. We will discuss two methods: (1) transfer functions in the frequency domain
and (2) state equations in the time domain. These topics are covered in this chapter
and in Chapter 3, respectively. As we proceed, we will notice that in every case the
first step in developing a mathematical model is to apply the fundamental physical
laws of science and engineering. For example, when we model electrical networks,
Ohm’s law and Kirchhoff’s laws, which are basic laws of electric networks, will be
applied initially. We will sum voltages in a loop or sum currents at a node. When we
study mechanical systems, we will use Newton’s laws as the fundamental guiding
principles. Here we will sum forces or torques. From these equations we will obtain
the relationship between the system’s output and input.

In Chapter 1 we saw that a differential equation can describe the relationship
between the input and output of a system. The form of the differential equation and its
coefficients are a formulation or description of the system. Although the differential
equation relates the system to its input and output, it is not a satisfying representation
from a system perspective. Looking at Eq. (1.2), a general, nth-order, linear, time-
invariant differential equation, we see that the system parameters, which are the
coefficients, as well as the output, c(¢), and the input, r(¢), appear throughout the equation.

We would prefer a mathematical representation such as that shown in
Figure 2.1(a), where the input, output, and system are distinct and separate parts.
Also, we would like to represent conveniently the interconnection of several sub-
systems. For example, we would like to represent cascaded interconnections, as shown

Input Output
———  System [———
) ?)
(@)
Input Output
T» Subsystem |—={ Subsystem |—»] Subsystem T
P
®

Note: The input, r(¢), stands for reference input.
The output, c(#), stands for controlled variable.



2.2 Laplace Transform Review

in Figure 2.1(b), where a mathematical function, called a transfer function, is inside
each block, and block functions can easily be combined to yield Figure 2.1 (a) for
ease of analysis and design. This convenience cannot be obtained with the
differential equation.

@ 2.2 1aplace Transform Review

A system represented by a differential equation is difficult to model as a block

diagram. Thus, we now lay the groundwork for the Laplace transform, with which we

can represent the imput, output, and system as separate entities. Further, their

interrelationship will be simply algebraic. Let us first define the Laplace transform

and then show how it simplifies the representation of physical systems (Nilsson, 1996).
The Laplace transform is defined as

L1501 =F6) = [ f0ea @)

wheres = o + jow, acomplex variable. Thus, knowing f{¢) and that the integral in Eq. (2.1)
exists, we can find a function, F(s), that is called the Laplace transform of f(t).!

The notation for the lower limit means that even if f{¢) is discontinuous at ¢ = 0,
we can start the integration prior to the discontinuity as long as the integral
converges. Thus, we can find the Laplace transform of impulse functions. This
property has distinct advantages when applying the Laplace transform to the
solution of differential equations where the initial conditions are discontinuous
att = 0. Using differential equations, we have to solve for the initial conditions after
the discontinuity knowing the initial conditions before the discontinuity. Using the
Laplace transform we need only know the initial conditions before the discontinuity.
See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(¢) given F(s), is

LUFS =5 [ Fls)etds = FOule) 22)
o~joo
where
u)=1 >0
=0 <0

is the unit step function. Multiplication of f(r) by u(r) yields a time function that is
zero for t < 0.

Using Eq. (2.1), it is possible to derive a table relating f{z) to F(s) for specific
cases. Table 2.1 shows the results for a representative sample of functions. If we use
the tables, we do not have to use Eq. (2.2), which requires complex integration, to
find f(r) given F(s).

!The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge if
Jos IF(Dle=¢ di < oc. Tf |f(7)] < Me®,0 < t < oo, the integral will converge if 0o > o1 > 02. We call 03
the abscissa of convergence, and it is the smallest value of o, where s = o + jw, for which the integral exists.
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36 Chapter2  Modeling in the Frequency Domain

TABLE 2.1 Laplace transform table

Item no. S F(s)
1. 3(2) 1
2. u(t) 1
s
1
3. tu(f) o
4, u(t nl
u(t) o)
5. e "u(t) 1
s+a
6. sin wtu(f) d
52+ o?
7. cos wtu(t) _5
52 + o?

In the following example we demonstrate the use of Eq. (2.1) to find the
Laplace transform of a time function.

G (ool 2.1 JD

Laplace Transform of a Time Function
PROBLEM: Find the Laplace transform of f(t) = Ae™"u(t).

SOLUTION: Since the time function does not contain an impulse function, we can
replace the lower limit of Eq. (2.1) with 0. Hence,

F(s) = f f(Hetdt = / Ae@e™'dt=A / e stakr g
0 0 0
A

* A
=0 S+a

— e (s+a)t

T s+a @3)

In addition to the Laplace transform table, Table 2.1, we can use Laplace
transform theorems, listed in Table 2.2, to assist in transforming between f{¢) and
F(s). In the next example, we demonstrate the use of the Laplace transform
theorems shown in Table 2.2 to find f(r) given F(s).

G :omple 2.2 NED

Inverse Laplace Transform
PROBLEM: Find the inverse Laplace transform of Fi(s) =1/(s+ 3)%

SOLUTION: For this example we make use of the frequency shift theorem, Item 4
of Table 2.2, and the Laplace transform of f(¢) = ru(t), Item 3 of Table 2.1. If the
inverse transform of F(s) = 1/s® is tu(t), the inverse transform of F(s+a) =
1/(s + a)* is e~*zu(t). Hence, f,(f) = e 'tu(?).
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TABLE 2.2 Laplace transform theorems

Item no. Theorem Name
1. L] =F(s) =[5> f(t)edt Definition
2. Lkf (1) = kF(s) Linearity theorem
3. L1 (t) + f2(1)] = F1(s) + Fa(s) Linearity theorem
4, Llef(1)] = F(s +a) Frequency shift theorem
5. ZLIf(t-T) =eTF(s) Time shift theorem
1 _rs .
6. &z [_f (at)] =_F (Z) Scaling theorem
7. kg % = sF(s) — f(0-) Differentiation theorem
8 & d_zzf_c] = 2F(s) — sf(0-) — f(0-) Differentiation theorem
’ dt

rd"f S ke k-1 Differentiation th

£/ = - —kek=100_ ifferentiation theorem
9. .z’_dtn] s"F(s) k;s" F-1(0-)
10. g[ ﬂ; f(t)d‘l’] = @ Integration theorem

- s

11. f(o0) = lim sF(s) Final value theorem!
12. f(0+) = slirg sF(s) Initial value theorem?

!For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real
parts, and no more than one can be at the origin.

2For this theorem to be valid, f(t) must be continuous or have a step discontinuity at ¢ = 0 (that is, no
impulses or their derivatives at ¢ = 0).

Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function, we can convert the
function to a sum of simpler terms for which we know the Laplace transform of each
term. The result is called a partial-fraction expansion. If F1(s) = N(s)/D(s), where
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can
be made. If the order of N(s) is greater than or equal to the order of D(s), then N(s)
must be divided by D(s) successively until the result has a remainder whose
numerator is of order less than its denominator. For example, if

S +252465+7
s24+5+5

we must perform the indicated division until we obtain a remainder whose numera-

tor is of order less than its denominator, Hence,

2
F](S)—S+1+m (2.5)

Fy(s) (2.4)

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the
differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain
ds(t) 1 2
f)=——=+38 N .

fi0 =T o0+ 27 [ 2] 29)
Using partial-fraction expansion, we will be able to expand functions like F(s) =
2/(s*> + s+ 5) into a sum of terms and then find the inverse Laplace transform for
each term. We will now consider three cases and show for each case how an F(s) can be
expanded into partial fractions.
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Chapter2  Modeling in the Frequency Domain

Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example of an
F(s) with real and distinct roots in the denominator is

2
T

The roots of the denominator are distinct, since each factor is raised only to unity
power. We can write the partial-fraction expansion as a sum of terms where each
factor of the original denominator forms the denominator of each term, and
constants, called residues, form the numerators. Hence,

(2.7)

2 K K;
F(s) = = .
O =6 067D 61 6+ 28)
To find K, we first multiply Eq. (2.8) by (s + 1), which isolates K;. Thus,

s+2) ' (s+2)

Letting s approach —1 eliminates the last term and yields K; = 2. Similarly, K, can be
found by multiplying Eq. (2.8) by (s + 2) and then letting s approach —2; hence, K, = —2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(¢) is the sum
of the inverse Laplace transform of each term, or

£(1) = (2™ — 2e2Yu(r) (2.10)

In general, then, given an F(s) whose denominator has real and distinct roots, a
partial-fraction expansion,

_NG) _ NG
PO =D = Gro0e+r) - 6+pm 67
= K] K2 e Km vae _Kn
QTR o R e R o S

can be made if the order of N(s) is less than the order of D(s). To evaluate each
residue, K;, we multiply Eq. (2.11) by the denominator of the corresponding partial
fraction. Thus, if we want to find K,,, we multiply Eq. (2.11) by (s +p,,) and get

B (s +)N(s)
(s +pm)F(s) = (5+p)+py) - (5+pn) - (5+Py)
=(s+pm)(sf;1)+(s+pm)gf—i,5+"'+Km+“"
L
+ (s +pm)(s+p j (212)

If we let s approach —p,,, all terms on the right-hand side of Eq. (2.12) go to zero
except the term K,,, leaving

{s4p7JN(s) _
(5P +p2) - AsH ) - (5 +52) s, Ko (2.13)

The following example demonstrates the use of the partial-fraction expansion
to solve a differential equation. We will see that the Laplace transform reduces the
task of finding the solution to simple algebra.
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— example 2.3 JNEEEEED
Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y{t) if all initial
conditions are zero. Use the Laplace transform.
dy . dy

5 + 12—+ 32y = 32u(1) (2.14)

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(¢) and
dy(z)/dt given by y(0—-) =0 and y(0—) = 0, respectively. Hence, the Laplace
transform of Eq. (2.14) is

s?Y (s) + 12sY(s) + 32Y(s) = % (2.15)
Solving for the response, Y(s), yields
Y(s) = 32 = 32 (2.16)

s(s2+125s+32) s(s+4)(s+8)

To solve for y(t), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,

B 32 _Ki | K K;
Y(s) = GI6TE s + oy + o) (2.17)
where, from Eq. (2.13),
32
= =1 2.1
K =5va6+9| (2182)
32
Ky = =-2 2.18b
=1 (2180)
32
= =1 )
3 et (2.18¢)
Hence,
1 2 1
YO =59 69 (2.19)

Since each of the three component parts of Eq. (2.19) is represented as an
F(s) in Table 2.1, y(¢) is the sum of the inverse Laplace transforms of each term.
Hence,

y(t) = (1 =27 + e ¥)u(r) (2.20)
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MATLAB

Chapter2  Modeling in the Frequency Domain

StudentswhoareusingMATLAB shouldnow runch2pl throughch2p8
inAppendix B. This is your first MATLAB exercise. Youwill learn how
to use MATLAB to (1) represent polynomials, (2) find roots of poly-
nomials, (3) multiply polynomials, and (4) find partial-fraction
expansions. Finally, Example 2.3 will be solved using MATLAB.

Trylt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk{(], -1 -2 -2],2)

Trylt 2.2

Use the following MATLAB

statements to help you get

Eg. (2.26).

numf=2;

denf=poly([—-1 -2 -2]);

[k,p,k] =residue...
(numf, denf)

The u(r) in Eq. (2.20) shows that the response is zero until ¢ = 0. Unless
otherwise specified, all inputs to systems in the text will not start until = 0. Thus,
output responses will also be zero until £ = 0. For convenience, we will leave off the
u(t) notation from now on. Accordingly, we write the output response as

y() =1

Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of
an F(s) with real and repeated roots in the denominator is

2z
(s+1)(s+2)°

—2eH 4™ (2.21)

F(s) = (2.22)

The roots of (s + 2)2 in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at —2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each
factor of the denominator forms the denominator of each term. In addition, each
multiple root generates additional terms consisting of denominator factors of
reduced multiplicity. For example, if

= 2 _ K K; K3
o= (s+1)(s+2)?7 (+1) +(s+2)2 5+

(2.23)

then K; = 2, which can be found as previously described. K, can be isolated by
multiplying Eq. (2.23) by (s + 2)?, yielding

= (s+2)* (2.24)

K,
K 2
s+1 (+1)+ 2+ (5 +2)Ks

Letting s approach —2, K, = —2. To find K3 we see that if we differentiate Eq. (2.24)
with respect to s,

-2 (s+2)s

(s+1)* (s+1)°

Ki+K; (2.25)

K3 is isolated and can be found if we let s approach —2. Hence, K3 = —2.
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(¢) is the sum
of the inverse Laplace transform of each term, or

ft) =2et —2te™ —2e7% (2.26)

If the denominator root is of higher multiplicity than 2, successive differentiation
would isolate each residue in the expansion of the multiple root.
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In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

F(s) =%
_ N(s)
C(5+p) (s+p2)--(s+py)
K K, K,
BT D AT RN Py
Kr+1 Kn

G+p) T +tp) (227)

can be made if the order of N(s) is less than the order of D(s) and the repeated roots
are of multiplicity r at —p,. To find K through K, for the roots of multiplicity greater
than unity, first multiply Eq. (2.27) by (s + p;)" getting F(s), which is
Fi(s) = (s+p,)F(s)
_ (s+p'N(s)
(s+p)(s+py)- - (s +pu)
=Ki+(s+p)Ka+(s+p) K3+ + (s +p) 'K,

Kina(s+p)' | | Kuls+p)
Yo (s +pn) 228

Immediately, we can solve for K if we let s approach —p,. We can solve for K if we
differentiate Eq. (2.28) with respect to s and then let s approach —p,. Subsequent
differentiation will allow us to find K3 through K,. The general expression for K
through X, for the multiple roots is

1 d7'Fy(s)

Ki= = i=1,2,...,r, 0=1 (2.29)

=P

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example
of F(s) with complex roots in the denominator is

3
= 2.30
Fls) $(s2+25+5) (230)
This function can be expanded in the following form:
3 =K1 i Kos + K5 (231)

S(s2+25+5) s s£+25+5
K, is found in the usual way to be % K; and K3 can be found by first multiplying

Eq. (2.31) by the lowest common denominator, s(s® +2s +5), and clearing the
fractions. After simplification with K; = 2, we obtain

3= (Kz +§>s2 + (K3 +§)s+ 3 (2.32)

1

Trylt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=tf(3],[1 2 50D
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Trylt 2.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to get Eq. (2.38)
from Eq. (2.30).

syms s
f=ilaplace...

(3/(s*(s"2+2 x5 +5)));
pretty(f)

Chapter2  Modeling in the Frequency Domain

Balancmg coefficients, (K2 +2) =0 and (K3+£) =0. Hence K, = —32 and K3 =
—£. Thus,

3 _3/5 3 542

F _— =T L e S
(5) = s(Z+25+5) s Ss2+25+S (2.33)

The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in
Table 2.2, we get

LlAeYcos wt] = _Al+a) (2.34)
(s +a)* + ?
Similarly,
F(Be “sinot] = B—;U (2.35)
(s+a) +a?
Adding Egs. (2.34) and (2.35), we get
F[Ae “cos wt + Be ¥sinwt] = Als+a)+Bo (2.36)

(s + a)* + o?

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36)
by completing the squares in the denominator and adjusting terms in the numerator
without changing its value. Hence,

3/5 36+ +(1/2)(2)

F(s) = 2.37
() = 5 5417422 (237)
Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find
3 1.
fO)==-- 38 (cos 2t + 5Sin 21) (2.38)

In order to visualize the solution, an alternate form of f{(¢), obtained by
trigonometric identities, is preferable. Using the amplitudes of the cos and sin

terms, we factor out 4/12 + (1/2)* from the term in parentheses and obtain

£ =~ 33/ + 27

082t + ————==sin2¢ | (2.39)

12+ (1/2)? ,/12+(1/2

Letting 1/4/1% + (1/2)? = cos ¢ and (1/2)/4/1% + (1/2)* = sin ¢,

/12 4+ (1/2)%¢(cos ¢ cos 2t + sin ¢ sin 2¢) (2.40)

£(£) = 0.6 — 0.671e™‘cos(2t — ¢) (2.41)

| W

f=3-

or
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where ¢ = arctan 0.5 = 26.57°. Thus, f{¢) is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely
imaginary roots, a partial-fraction expansion,

N(s) N{(s)

FO =56 “ o a5 -
. K, (KzS+K3)
C(s+py) (24as+b)

can be made if the order of N(s) is less than the order of D(s) p, is real, and (s> +
as + b) has complex or purely imaginary roots. The complex or imaginary roots are
expanded with (K3s + K3) terms in the numerator rather than just simply K, as in
the case of real roots. The K;’s in Eq. (2.42) are found through balancing the
coefficients of the equation after clearing fractions. After completing the squares on
(s* 4+ as + b) and adjusting the numerator, (K,s + K3)/(s* + as + b) can be put into
the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if 2 = 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction
expansion of F(s) with real roots in the denominator can be used for complex
and imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform,
the resulting terms can be identified as

(2.42)

e+ e/

5 = cos 0 (2.43)
e L= sino 24
Z—j = Sin ( . 4)
For example, the previous F(s) can also be expanded in partial fractions as
3 3
F(s) = =
O = T +5) GTITRAGTI—R)
_ K1 K2 K3
s +s-l-l+j2+s+l—j2 (245)
Finding K>,
K; = 3 ——1(2—1—'1) (2.46)
TSI |y, 20T '

Similarly, K3 is found to be the complex conjugate of K,, and K; is found as
previously described. Hence,
_3/5 3 24j1 2-41
Fo ==7=5 (s+1+j2 s+1—j2>

(2.47)

from which

[@+De 4 4 2 - j1 Je1-7]

eth + e—ﬂr eﬂz + e—fz:
-t c e e Te
e [4( 5 ) -|-2< % )} (2.48)

Blw Blw

Trylt 2.5

Use the following MATLAB

statements to help you get

Eq. (247).

numf=3

denf=[1 25 0]

[k,p,kl=residue...
(numf, denf)

43
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Using Egs. (2.43) and (2.44), we get

3
f)= s~ ge" (cos 2t + %sin 2t> =0.6 — 0.671e 'cos(2t — ¢) (2.49)

where ¢ = arctan 0.5 = 26.57°.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch2spl and ch2sp2 in Appendix F at www.wiley.com/
college/nise. Youwill learnhow to construct symbolicobjects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples inCase 2 andCase 3
in this section will be solved using the Symbolic Math Toolbox.

@Y skill-Assessment Exercise 2.1 JEEEEENEED

PROBLEM: Find the Laplace transform of f(¢) = te>.

Symbolic Math

ANSWER: F(s) = 1/(s +5)°

The complete solution is at www.wiley.com/college/nise.

_ skill-Assessment Exercise 2.2

PROBLEM: Find the inverse Laplace transform of F(s) = 10/[s(s + 2)(s + 3)2].

\ 5 5 10 5 40 _
WileyPLUS ANSWER:  f(1) == — 572 4 —pe= 4 —¢~¥
9 3 9
Control Solutions The complete solution is at www.wiley.com/college/nise.

@ 2.3 T1he Transfer Function

In the previous section we defined the Laplace transform andits inverse. We presented
the idea of the partial-fraction expansion and applied the concepts to the solution of
differential equations. We are now ready to formulate the system representation
shown in Figure 2.1 by establishing a viable definition for a function that algebraically
relates a system’s output to its input. This function will allow separation of the input,
system, and output into three separate and distinct parts, unlike the differential
equation. The function will also allow us to algebraically combine mathematical
representations of subsystems to yield a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential

equation,
d'clt) d"e(t) dr(1) d"r(t)
an ar + an-1 g7 + -4 apc(t) = bm_dt_m-_}_ bm"ldT—l— + ot bor(2)

(2.50)
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2.3 The Transfer Function

where c(¢) is the output, r(¢) is the input, and the a/s, b/’s, and the form of the
differential equation represent the system. Taking the Laplace transform of both sides,

ans"C(s) + an_18" 1C(s) + - - - + agC(s) + initial condition
terms involving c(¢)

= bps" R(s) + bpy-15""1R(s) + - - - + boR(s) + initial condition
termsinvolving r(r)  (2.51)

Equation (2.51) is a purely algebraic expression. If we assume that all initial
conditions are zero, Eq. (2.51) reduces to

(@nS" + @po1s" "V + -+ a0)C(5) = (buS™ + b_1s™ L+ -+ bo)R(s)  (2.52)

Now form the ratio of the output transform, C(s), divided by the input transform, R(s):

& =G(s) = (binS™ + by 1™ 1 4 -+ bg)

- 2.53
R(S) (a,,s" + a4 aO) ( )

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, the
ratio of polynomials in s on the right. We call this ratio, G(s), the transfer function and
evaluate it with zero initial conditions.

The transfer function can be represented as a block diagram, as

R(s) B + by 5™+ -+ by)

45

C(s)

shown in Figure 2.2, with the input on the left, the output on the right, and -
the system transfer function inside the block. Notice that the denomina-

(a,s"+ an—lsn_l + 0 +ag)

tor of the transfer function is identical to the characteristic polynomial of FIGURE 2.2 Block diagram of a transfer

the differential equation. Also, we can find the output, C(s) by using ~ function

C(s) = R(s)G(s) (2.54)

Let us apply the concept of a transfer function to an example and then use the result to
find the response of the system.

G :xample 2.4 T

Transfer Function for a Differential Equation
PROBLEM: Find the transfer function represented by

dc(t)
dt

+2c(t) = r(1) (2.55)

SOLUTION: Taking the Laplace transform of both sides, assuming zero initial
conditions, we have

sC(s) +2C(s) = R(s) (2.56)

The transfer function, G(s), is

Gs)==—==

1
RG] 542 (2.57)
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MATLAB

Symbolic Math
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Students who are using MATLAB should now run ch2p$ through ch2pl2
in Appendix B. Youwill learn how to use MATLAB to create transfer
functions with numerators and denominators in polynomial or fac-
tored form. Youwill also learn how to convert between polynomial
and factored forms. Finally, you will learn how to use MATLAB to
plot time functions.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch2sp3 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
simplify the input of complicated transfer functions as well as
improve readability. Youwill learnhow toenter a symbolic trans-
fer function and convert it to a linear,time-invariant (LTI)
object as presented in Appendix B, ch2p8.

G ©xample 2.5

Trylt 2.6

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.60).

syms s

C=1/(sx (s+2)
C=ilaplace(C)

Trylt 2.7

Use the following MATLAB

statements to plot Eq. (2.60)

for ¢t from 0 to 1 sat intervals of
0.01 s

£t=0:0.01:1;

plot...
(t,(1/2-1/2%exp(-2%t)))

System Response from the Transfer Function

PROBLEM: Use the result of Example 2.4 to find the response, c(¢) to an input,
r(t) = u(t), a unit step, assuming zero initial conditions.

SOLUTION: To solve the problem, we use Eq. (2.54), where G(s) =1/(s +2) as
found in Example 2.4. Since r(¢) = u(t), R(s) = 1/s, from Table 2.1. Since the initial
conditions are zero,

1
Expanding by partial fractions, we get
172 172
O ="r-i (2:59)
Finally, taking the inverse Laplace transform of each term yields
1 1 -2t
-—= 2.60
o) =5-7e (260)

G skill-Assessment Exercise 2.3 TN

PROBLEM: Find the transfer function, G(s) = C(s)/R(s), corresponding to the
differential equati d3c+3d2 7d 45 d’r gt s,
ifferential equation dt2 + = t4y
C(s) 52 +4s +3
NSWER: = =
ANS O6) = Re) " F ¥+ 7545

The complete solution is at www.wiley.com/college/nise.
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@ skill-Assessment Exercise 2.4 JEENEEENEED

PROBLEM: Find the differential equation corresponding to the transfer function,

25+1
G(S)_s2+6s+2
d*c dc dr
. 42 =2
ANSWER: pra +6(lt+ C 2d[+r

The complete solution is at www.wiley.com/college/nise.

G s ill-Assessment Exercise 2.5 D

PROBLEM: Find the ramp response for a system whose transfer function is

h)
G(s) = CrOEE8) WileyPLUS
. — _1_ _i —4 i ~8t Control Solutions
ANSWER: ¢(1) = o 168 +3ze

The complete solution is at www.wiley.com/college/nise.

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chapter will
be devoted tothe task of modeling individual subsystems. We willlearn how torepresent
electrical networks, translational mechanical systems, rotational mechanical systems,
and electromechanical systems as transfer functions. As the need arises, the reader can
consult the Bibliography at the end of the chapter for discussions of other types of
systems, such as pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

@ 2.4 Electrical Network Transfer Functions

In this section, we formally apply the transfer function to the mathematical modeling
of electric circuits including passive networks and operational amplifier circuits.
Subsequent sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of
three passive linear components: resistors, capacitors, and inductors.> Table 2.3
summarizes the components and the relationships between voltage and current and
between voltage and charge under zero initial conditions.

We now combine electrical components into circuits, decide on the input and
output, and find the transfer function. Our guiding principles are Kirchhoff’s laws.
We sum voltages around loops or sum currents at nodes, depending on which
technique involves the least effort in algebraic manipulation, and then equate the
result to zero. From these relationships we can write the differential equations for
the circuit. Then we can take the Laplace transforms of the differential equations
and finally solve for the transfer function.

% Passive means that there is no internal source of energy.
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TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/1(s) Y(s) =I(s)/V(s)
__| g 1t ) dv(t) 1 1
v(t):-/ imdr i) =C v(t) = Lq(¢ 1 C
Capacitor Clo © dt ) Cq( ) Cs g
‘J\/\/\/— (1) = Ri(r) i(t) = %v(t) v(t) = dq( ) R l_¢
Resistor R
— 00— di(t) )

=157 / v() = %4 Ls 1
Inductor e )= Tdi? Ls

Note: The following set of symbols and units is used throughout this book: v(t) ~ V (volts), i(t) — A (amps), g(¢) ~ Q (coulombs), C — F (farads),
R - Q (ohms), G — Q) (mhos), L — H (henries).

Simple Circuits via Mesh Analysis

Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.> We call this method loop or mesh analysis and
demonstrate it in the following example.

G :<omple 2. D

Transfer Function—Single Loop via the Differential Equation

L R PROBLEM: Find the transfer function relating the capacitor voltage, V¢(s), to
the input voltage, V(s) in Figure 2.3.

+ SOLUTION: In any problem, the designer must first decide what the input and
i ) C A~ e output should be. In this network, several variables could have been chosen to be
’I\ the output—for example, the inductor voltage, the capacitor voltage, the resistor

voltage, or the current. The problem statement, however, is clear in this case: We

FIGURE 2.3 RLC network are to treat the capacitor voltage as the output and the applied voltage as the input.
Summing the voltages around the loop, assuming zero initial conditions,

yields the integro-differential equation for this network as

d t
L4 | Rigy 4+ 1 / i(z)dr = v(t) (2.61)
dt CJlo
Changing variables from current to charge using i(¢) = dq(t)/dt yields
dq(t) dq(t)
L PR R—~ i Cq(t) =v(t) (2.62)
From the voltage-charge relationship for a capacitor in Table 2.3,
a(t) = Cve(®) (2.63)
Substituting Eq. (2.63) into Eq. (2.62) yields
2
Lc? ;tcz(t) +RC d"gz(’) +veld) = v() (2.64)

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.
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Taking the Laplace transform assuming zero initial conditions, rearranging terms,
and simplifying yields V(s)

49

L
LC

(LCs* + RCs + 1)V(s) = V(s) (2.65)
Solving for the transfer function, V¢(s)/V(s), we obtain

as shown in Figure 2.4.

R

L

S+Ts+o

1
LC

Ve (s)

FIGURE 2.4 Block diagram of

Vels) 1/LC series RLC electrical network
= (2.66)
V(s) R 1
$2+—=5+-—
L LC

Let us now develop a technique for simplifying the solution for future
problems. First, take the Laplace transform of the equations in the voltage-current
column of Table 2.3 assuming zero initial conditions.

For the capacitor,

Vi(s) = él(s) (2.67)
For the resistor,

V(s) = RI(s) (2.68)
For the inductor,

V(s) = Lsl(s) (2.69)
Now define the following transfer function:

%= Z(s) (2:70)

Notice that this function is similar to the definition of resistance, that is, the ratio of
voltage to current. But, unlike resistance, this function is applicable to capacitors and
inductors and carries information on the dynamic behavior of the component, since it
represents an equivalent differential equation. We call this particular transfer function
impedance. The impedance for each of the electrical elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial
conditions, is

(Ls +R+ é)f(s) =V(s) (2.71)

Notice that Eq. (2.71), which is in the form
[Sum of impedances]/(s) = [Sum of applied voltages] (2.72)

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of
Figure 2.5 could have been obtained immediately from the circuit of Figure 2.3y,
simply by replacing each element with its impedance. We call this altered circuit
the transformed circuit. Finally, notice that the transformed circuit leads imme-

Ls

1 +
)— Vel
Ccs T ¢ !
1(s)

diately to Eq. (2.71) if we add impedances in series as we add resistors in series. figyRE 2.5 Laplace-transformed

Thus, rather than writing the differential equation first and then taking the petwork
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Laplace transform, we can draw the transformed circuit and obtain the Laplace
transform of the differential equation simply by applying Kirchhoff’s voltage law to
the transformed circuit. We summarize the steps as follows:

1. Redraw the original network showing all time variables, such as v(z), i(¢), and
ve(t), as Laplace transforms V(s), I(s), and V(s), respectively.

2. Replace the component values with their impedance values. This replacement is
similar to the case of dc circuits, where we represent resistors with their resistance
values.

We now redo Example 2.6 using the transform methods just described and bypass
the writing of the differential equation.

G :omple 2.7 D

Transfer Function—Single Loop via Transform Methods

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods
without writing a differential equation.

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as
we would use resistor values in a purely resistive circuit, we obtain

(Ls + R+ -les> I(s) = V(s) (2.73)
Solving for I(s)/V(s), 1)
s 1
= (2.74)
Vi(s) Ls+ R+ é

But the voltage across the capacitor, V¢ (s), is the product of the current and the
impedance of the capacitor. Thus,

Vels) = I(s)

Cs
Solving Eq. (2.75) for I(s), substituting I(s) into Eq. (2.74), and simplifying yields
the same result as Eq. (2.66).

(2.75)

Simple Circuits via Nodal Analysis

Transfer functions also can be obtained using Kirchhoff’s current law and summing
currents flowing from nodes. We call this method nodal analysis. We now demon-
strate this principle by redoing Example 2.6 using Kirchhoff’s current law and the
transform methods just described to bypass writing the differential equation.

Example 2.8

Transfer Function—Single Node via Transform Methods

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a
differential equation.
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SOLUTION: The transfer function can be obtained by summing currents flowing out
of the node whose voltage is V¢ (s) in Figure 2.5. We assume that currents leaving the
node are positive and currents entering the node are negative. The currents consist of
the current through the capacitor and the current flowing through the series resistor
and inductor. From Eq. (2.70), each I(s) = V(s)/Z(s). Hence,

Vels) | Vels) = V(s)
T/Cs R+Ls

=0 (2.76)

where V(s)/(1/Cs) is the current flowing out of the node through the capacitor,
and [V¢(s) — V(s)]/(R + Ls) is the current flowing out of the node through the
series resistor and inductor. Solving Eq. (2.76) for the transfer function, V¢(s)/V (s),
we arrive at the same result as Eq. (2.66).

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed
network. We now demonstrate this technique.

G :-mple 2.0 M

Transfer Function—Single Loop via Voltage Division

PROBLEM: Repeat Example 2.6 using voltage division and the transformed
circuit.

SOLUTION: The voltage across the capacitor is some proportion of the input
voltage, namely the impedance of the capacitor divided by the sum of the
impedances. Thus,

Ve (s) = ( VEs vy (2.77)

1
LS+R+EE>

Solving for the transfer function, V¢ (s)/V (s), yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for
this circuit?

The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we
must write and solve simultaneous differential equations in order to find the transfer
function, or solve for the output.

Complex Circuits via Mesh Analysis

To solve complex electrical networks—those with multiple loops and nodes —using
mesh analysis, we can perform the following steps:

1. Replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform,

3. Assume a transform current and a current direction in each mesh.
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FIGURE 2.6 a. Two-loop
electrical network;

b, transformed two-loop
electrical network;

¢. block diagram
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4. Write Kirchhoff’s voltage law around each mesh.
5. Solve the simultaneous equations for the output.
6. Form the transfer function.

Let us look at an example.

O :x:pic 2.10

Transfer Function—Multiple Loops

PROBLEM: Given the network of Figure 2.6(a), find the transfer function,
12(s)/V (s).

SOLUTION: The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial conditions.
The result is shown in Figure 2.6(b). The circuit with which we are dealing requires
two simultaneous equations to solve for the transfer function. These equations can
be found by summing voltages around each mesh through which the assumed
currents, I1(s) and I(s), flow. Around Mesh 1, where I(s) flows,

RiIi(s) + LsIy(s) — LsI,(s) = V(s) (2.78)

Around Mesh 2, where I;(s) flows,

1
LSIz(S) + RzIz(S) + alz(s) - LsI4 (S) =0 (2.79)
Ry Ry
JJ
v(1) f) L C ve(n
i ia(1) /I\
(a)
Ws) ‘_5 Ls & —
1(s) I5(s)
®)
W(s) LCs? I1(s)

" | (R R)LCS2H(R\R,C+ L)s + R,

(c)
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Combining terms, Egs. (2.78) and (2.79) become simultaneous equations in /1 (s)
and I5(s):

(R1 + Ls)I1(s) — LsI>(s) = V() (2.80a)
— LsIi(s) + (Ls +R + é)lz(s) =0 (2.80b)

We can use Cramer’s rule (or any other method for solving simultaneous
equations) to solve Eq. (2.80) for I,(s).* Hence,

(Ri+ Ls) V(s
—Ls 0

L(s) = n A (2.81)

where
(R; + Ls) —Ls
ol ) Ls+Ry +—
—Ls ( §+ Ky + —Cs—)
Forming the transfer function, G(s), yields
2
Gis) =28 _Ls _ LCs (2.82)

V(s) A (R +R)LCs?2+ (RiR,C+L)s+ Ry

as shown in Figure 2.6(c).

We have succeeded in modeling a physical network as a transfer function: The
network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c).
Before leaving the example, we notice a pattern first illustrated by Eq. (2.72). The
form that Eq. (2.80) take is

Sum of

[‘ Sum of impedances Sum of applied
impedances |Ii(s) — P I(s) = | voltages around | (2.83a)
P common to the
| around Mesh 1 Mesh 1
i two meshes
imszglazfces Sum of Sum of applied
— comfnon to the Ii(s)+ | impedances |I,(s)= [ voltages around] (2.83b)
around Mesh 2 Mesh 2
two meshes

Recognizing the form will help us write such equations rapidly; for example, mechani-
cal equations of motion (covered in Sections 2.5 and 2.6) have the same form.

Studentswhoareperforming the MATLABexercises andwant toexplore
the added capability of MATLABR's Symbolic Math Toolbox should now
run ch2sp4 in Appendix F at www.wiley.com/college/nise, where
Example 2.10 is solved. You will learn how to use the Symbolic
Math Toolbox to solve simultaneous equations using Cramer’s
rule. Specifically, the Symbolic Math Toolbox will be used to solve
for the transfer function in Eq. (2.82) using Eq. (2.80).

53

Symbolic Math

4See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer’s rule.
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Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than
mesh analysis. The number of simultaneous differential equations that must be
written is equal to the number of nodes whose voltage is unknown. In the previous
example we wrote simultaneous mesh equations using Kirchhoff’s voltage law. For
multiple nodes we use Kirchhoff’s current law and sum currents flowing from each
node. Again, as a convention, currents flowing from the node are assumed to be
positive, and currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the
reciprocal of impedance, or

Y(s) = % = % (2.84)

When writing nodal equations, it can be more convenient to represent circuit
elements by their admittance. Admittances for the basic electrical components
are shown in Table 2.3. Let us look at an example.

Y £xample 2.11 JD

Transfer Function—Multiple Nodes

PROBLEM: Find the transfer function, V¢(s)/V(s), for the circuit in Figure 2.6(b).
Use nodal analysis.

SOLUTION: For this problem, we sum currents at the nodes rather than sum
voltages around the meshes. From Figure 2.6(b) the sum of currents flowing from
the nodes marked V (s) and V¢(s) are, respectively,

Vils) = Vis)  Vils)  Vils) = Vels)

- R] + zs + R2

Vc(S)—VL(S)
R,

Rearranging and expressing the resistances as conductances,’ G; = 1/R; and
G, = 1/R;, we obtain,

=0 (2.85a)

CsVels) + =0 (2.85b)

W(s)

GG

c

(G + Go)s?+

GleL’i‘ C
LC

Figure 2.6

FIGURE 2.7 Block diagram of the network of

(Gl + G2 +%) Vi(s) - GVc(s) = V(s)Gy (2.86a)
—GVL(s)+ (G2 +Cs)Vc(s) =0 (2.86b)
. Solving for the transfer function, V¢(s)/V(s), yields
e ‘:/C((s;) - GC; G;L TC G (2:87)
(G1+ Gy)s?2 + —5c + Ic

as shown in Figure 2.7.

> In general, admittance is complex. The real part is called conductance and the imaginary part is called
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity
results. The reciprocal of resistance is called conductance.
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Another way to write node equations is to replace voltage sources by
current sources. A voltage source presents a constant voltage to any load;
conversely, a current source delivers a constant current to any load. Practically,
a current source can be constructed from a voltage source by placing a large
resistance in series with the voltage source. Thus, variations in the load do not
appreciably change the current, because the current is determined approxi-
mately by the large series resistor and the voltage source. Theoretically, we rely
on Norton’s theorem, which states that a voltage source, V(s), in series with an
impedance, Z(s), can be replaced by a current source, I(s) = V(s}/Z(s), in
parallel with Z,(s).

In order to handle multiple-node electrical networks, we can perform the
following steps:

. Replace passive element values with their admittances.

. Replace all sources and time variables with their Laplace transform.

. Replace transformed voltage sources with transformed current sources.
. Write Kirchhoff’s current law at each node.

. Solve the simultaneous equations for the output.

. Form the transfer function.

[FOR N

N U &

Let us look at an example.

PROBLEM: For the network of Figure 2.6, find the transfer function,
Ve(s)/V(s), using nodal analysis and a transformed circuit with current
sources.

SOLUTION: Convert all impedances to admittances and all voltage
sources in series with an impedance to current sources in parallel with
an admittance using Norton’s theorem.

Redrawing Figure 2.6(b) to reflect the changes, we obtain Fig-
ure 2.8, where G; =1/Ry, G, =1/R,, and the node voltages—the
voltages across the inductor and the capacitor—have been identified
as V.(s) and V(s), respectively. Using the general relationship,
I(s) = Y(s)V(s), and summing currents at the node V/(s),

GIVLE) + VL) + GalVis) - VeW] = V)G (289

V)G,

Summing the currents at the node V(s) yields
CsVe(s)+ Ga[Ve(s) = Vi(s)] =0 (2.89)

Combining terms, Egs. (2.88) and (2.89) become simultaneous equations in V¢(s)
and V (s), which areidentical to Eq. (2.86) and lead to the same solution as Eq. (2.87).

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its
direct relationship to Figure 2.8, namely

G :corple 2.2 N

Transfer Function—Multiple Nodes with Current Sources

55

FIGURE 2.8 Transformed network
ready for nodal analysis
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¢ .
Sum of admittances Viis) - igz;oadtmit}:axzces Vels) = Sum of applied
connected toNode 1 | ' © REIOHCIWO | VeS) = | currents at Node 1

nodes
(2.90a)
itt

B igﬁ;ﬁid::;:r::f Vils) + Sum of admittances Vels) = Sum of applied

L connected to Node 2 = currents at Node 2
nodes
(2.90b)

A Problem-Solving Technique

In all of the previous examples, we have seen a repeating pattern in the equations
that we can use to our advantage. If we recognize this pattern, we need not write the
equations component by component; we can sum impedances around a mesh in the
case of mesh equations or sum admittances at a node in the case of node equations.
Let us now look at a three-loop electrical network and write the mesh equations by
inspection to demonstrate the process.

G ample 213 D

Mesh Equations via Inspection

PROBLEM: Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

1
N
A
1€

13(s) :

1 4s

M\ 00—
Vi) i) g 3s

/|(.\')

FIGURE 2.9 Three-loop
electrical network

SOLUTION: Each of the previous problems has ijllustrated that the mesh
equations and nodal equations have a predictable form. We use that knowledge
to solve this three-loop problem. The equation for Mesh 1 will have the following
form:
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Sum of
Sum of impedances
impedances |/;(s) — | commonto |I(s)
around Mesh 1 Mesh 1 and
Mesh 2
(2.91)
Sum of
impedances Sum of applied
— | commonto |I3(s) = [ voltages around
Mesh 1 and Mesh 1
Mesh 3 _|
Similarly, Meshes 2 and 3, respectively, are
Sum of Sum of
impedances Sum of impedances Sum of appied
—| commonto |I;(s) + | impedances |I(s)— | commonto |I3(s) = | voltages around
Mesh 1 and around Mesh 2 Mesh 2 and Mesh 2
Mesh 2 Mesh 3
(2.92)
and
[ Sumof [ Sumof
impedances impedances
— | commonto [I(s) — | commonto [I:(s)
Mesh 1 and Mesh 2 and
| Mesh3 Mesh 3 (2.93)
Sum of Sum of applied Trylt 2.8
. Use the following MATLAB
+| impedances |I3(s) = | voltages around and Symbolic Math Toolbox
statements to help you solve for
Laround Mesh 3 Mesh 3 the electrical currents in Eq.

Substituting the values from Figure 2.9 into Egs. (2.91) through (2.93) yields

+(25+ 2L1(s) — (25 + Da(s) — I3(s) = V(s) (2.94a)
= (25 + DI1(s) + (9s + 1)2(s) —4sl3(s) =0 (2.94b)
- I1(s) —4sh(s) + (4s +1+1)I5(s) = 0 (2.94c)

which can be solved simultaneously for any desired transfer function, for
example, I5(s)/V(s).

(2.94).

syms s I1 I2 I3 WV
A=[(2*s+2) -(2*s+1)...
-1
—(2*s+1)
—4*g

-1 ~4*s...
(4*s+1+1/s)l;
B=(I1;12;13];
C=[v;0;0];
B=inv(A)*C;
pretty(B)

(9*s+1)...
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+V

+1y(r) vill)

+1a(1)

(b)
Zy(s)
Vi A0 g =
—_— Vo)
_’II ® 1.(s)

(©
FIGURE 2.10  a. Operational amplifier; b. schematic for an inverting operational amplifier;
¢. inverting operational amplifier configured for transfer function realization. Typically, the
amplifier gain, A, is omitted.

Passive electrical circuits were the topic of discussion up to this point. We now
discuss a class of active circuits that can be used to implement transfer functions.
These are circuits built around an operational amplifier.

Operational Amplifiers

An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as
a basic building block to implement transfer functions. It has the following
characteristics:

1. Differential input, V,(t) — v{(z)

2. High input impedance, Z; = co (ideal)

3. Low output impedance, Z, = 0 (ideal)

4. High constant gain amplification, A = co (ideal)

The output, v,(¢), is given by
Volt) = A(va(f) = vi(£)) (2.95)

Inverting Operational Amplifier
If vy(z) is grounded, the amplifier is called an inverting operational amplifier, as
shown in Figure 2.10(b). For the inverting operational amplifier, we have

Vo(t) = —Avi(t) (2.96)

If two impedances are connected to the inverting operational amplifier as
shown in Figure 2.10(c), we can derive an interesting result if the amplifier has the
characteristics mentioned in the beginning of this subsection. If the input impedance
to the amplifier is high, then by Kirchhoff’s current law, I,(s) = 0 and I (s) = —12(s).
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Also, since the gain A is large, vi(¢) = 0. Thus, I;(s) = Vi(s)/Zi(s), and —I»(s) =
—V,(s)/Za(s). Equating the two currents, V,(s)/Z>(s) = —Vi(s)/Z1(s), or the transfer
function of the inverting operational amplifier configured as shown in Figure 2.10(c) is

(2.97)

G <omple 214 TED

Transfer Function—Inverting Operational Amplifier Circuit

PROBLEM: Find the transfer function, V,(s)/V;(s), for the circuit given in
Figure 2.11.

RZ = Cy=
¢ 220kQ 0.1 yF

5.6 uF e—
H.

V()

v

R, = FIGURE 2.11 Inverting operational
360 kQ amplifier circuit for Example 2.14

SOLUTION: The transfer function of the operational amplifier circuit is given by
Eq. (2.97). Since the admittances of parallel components add, Z(s) is the recipro-
cal of the sum of the admittances, or

3
Zi(s) = —— = ——- ;%q: 101 (2:98)
Cis+—= S56x10654— - V08T
R 360 x 10°
For Z,(s) the impedances add, or
Zy(s)=R Jri—zzoxlo%r}o—7 (2.99)
28) =12 Cos s ’
Substituting Egs. (2.98) and (2.99) into Eq. (2.97) and simplifying, we get
Vo(s) s2 +45.955 4 22.55
=-1.232 .
V.5) . (2.100)

The resulting circuit is called a PID controller and can be used to improve the
performance of a control system. We explore this possibility further in Chapter 9.

Noninverting Operational Amplifier
Another circuit that can be analyzed for its transfer function is the noninverting
operational amplifier circuit shown in Figure 2.12. We now derive the transfer
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Zy(9) function. We see that

Vols) = A(Vi(s) — V1(s)) (2.101)
Vl(S) ;oo
veo | ) " But, using voltage division,
()

Zy(s) V1 (S) = m Vo (S) (2102)
1 Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

FIGURE 2.12 General Vo(s) A
nverti tional o) _ 2.103
noninwerting operaions Vi) ~ T AZONZE + 2260 (2109

For large A, we disregard unity in the denominator and Eq. (2.103) becomes

Vol(s) _ Z(s) + Z>(s)
V,’(S) Z] (S)

(2.104)

Let us now look at an example.

G example 2.15 D

Transfer Function—Noninverting Operational Amplifier Circuit

f; PROBLEM: Find the transfer function, V,(s)/Vi(s), for the circuit given in
1< Figure 2.13.
Ry SOLUTION: We find each of the impedance functions, Z;(s) and Z;(s), and then
()/\/\/\/ substitute them into Eq. (2.104). Thus,
wilt

v

- l'”(l) l
—_— 2.
> Zi(s) = Ri + & (2.105)

i
T

Example 2.15

and
Zy(s) = % (2.106)
1 Substituting Egs. (2.105) and (2.106) into Eq. (2.104) yields
f,fe'iﬁfénli"anﬁ?ﬁlﬁf o for Vols) _ CoCiReRiS” + (CoRp + C1Rs + CiRy)s +1 (2.107)

Vi(s) CC1RR 5% + (CaRy + CrRy)s + 1

skill-Assessment Exercise 2.6

PROBLEM: Find the transfer function, G(s) = V(s)/V(s), for the circuit given in
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show
that the two methods yield the same result.
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+
vir) C’) 1H % ] H§ vy (1)

ANSWER: Vp(s)/V(s) = (s + 25+ 1)/(s* + 55 +2)

FIGURE 2.14 Electric circuit for Skill-
Assessment Exercise 2.6

The complete solution is at www.wiley.com/college/nise.
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@ skill-Assessment Exercise 2.7 JEEEEEEED

PROBLEM: If Z;(s) is the impedance of a 10 uF capacitor and Z,(s) is the
impedance of a 100 k) resistor, find the transfer function, G(s) = V,(s)/V(s),
if these components are used with (a) an inverting operational amplifier and (b) a
noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: G(s) = —s for an inverting operational amplifier; G(s) =s+ 1 for a
noninverting operational amplifier.

The complete solution is at www.wiley.com/college/nise.

WileyPLUS

| WPCS

Control Solutions

In this section, we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as operational amplifier circuits. We developed mesh and
nodal equations, noted their form, and wrote them by inspection. In the next section
we begin our work with mechanical systems. We will see that many of the concepts
applied to electrical networks can also be applied to mechanical systems via analo-
gies—from basic concepts to writing the describing equations by inspection. This
revelation will give you the confidence to move beyond this textbook and study
systems not covered here, such as hydraulic or pneumatic systems.

2.5 Translational Mechanical System
Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s),
that algebraically relates the Laplace transform of the output to the Laplace transform
of the input. Now we will do the same for mechanical systems. In this section we
concentrate on translational mechanical systems. In the next section we extend the
concepts to rotational mechanical systems. Notice that the end product, shown in
Figure 2.2, will be mathematically indistinguishable from an electrical network.
Hence, an electrical network can be interfaced to a mechanical system by cascading
their transfer functions, provided that one system is not loaded by the other.®

The concept of loading is explained further in Chapter 5.
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TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zy(s) = F(s)/X(s)
Spring
—7—> v(1)
0 f(t) =K [yv(r)de () = Kx(¢) K
K
Viscous damper
T dx(t)
e T =M0 £y =1, fus
5
Mass
x(1) 2
L dv(t) o dx(n) 2
| fiy=m=Y £ =M=3 Ms
M = f(»

Note: The following set of symbols and units is used throughout this book: f(f) =N (newtons),
x(f) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), f, = N-s/m(newton-seconds/
meter), M = kg (kilograms = newton-seconds’/meter).

Mechanical systems parallel electrical networks to such an extent that there are
analogies between electrical and mechanical components and variables. Mechanical
systems, like electrical networks, have three passive, linear components. Two of
them, the spring and the mass, are energy-storage elements; one of them, the viscous
damper, dissipates energy. The two energy-storage elements are analogous to the
two electrical energy-storage elements, the inductor and capacitor. The energy
dissipator is analogous to electrical resistance. Let us take a look at these mechanical
elements, which are shown in Table 2.4. In the table, K, f,, and M are called spring
constant, coefficient of viscous friction, and mass, respectively.

We now create analogies between electrical and mechanical systems by
comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4
to the voltage-current column of Table 2.3, we see that mechanical force is analogous
to electrical voltage and mechanical velocity is analogous to electrical current.
Comparing the force-displacement column of Table 2.4 with the voltage-charge
column of Table 2.3 leads to the analogy between the mechanical displacement and
electrical charge. We also see that the spring is analogous to the capacitor, the
viscous damper is analogous to the resistor, and the mass is analogous to the
inductor. Thus, summing forces written in terms of velocity is analogous to summing
voltages written in terms of current, and the resulting mechanical differential
equations are analogous to mesh equations. If the forces are written in terms of
displacement, the resulting mechanical equations resemble, but are not analogous
to, the mesh equations. We, however, will use this model for mechanical systems so
that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the
analogy is between force and current and between velocity and voltage. Also, the
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spring is analogous to the inductor, the viscous damper is analogous to the resistor,
and the mass is analogous to the capacitor. Thus, summing forces written in terms of
velocity is analogous to summing currents written in terms of voltage and the
resulting mechanical differential equations are analogous to nodal equations. We
will discuss these analogies in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical
systems. Our first example, shown in Figure 2.15(a), is similar to the simple RLC
network of Example 2.6 (see Figure 2.3). The mechanical system requires just one
differential equation, called the equation of motion, to describe it. We will begin by
assuming a positive direction of motion, for example, to the right. This assumed
positive direction of motion is similar to assuming a current direction in an electrical
loop. Using our assumed direction of positive motion, we first draw a free-body
diagram, placing on the body all forces that act on the body either in the direction of
motion or opposite to it. Next we use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero. Finally, assuming
zero initial conditions, we take the Laplace transform of the differential equation,
separate the variables, and arrive at the transfer function. An example follows.

G :omple 2.1 T

Transfer Function—One Equation of Motion

M L L 1 X(s) o
An Ms2+fs+ K "
FIGURE2.15 a.Mass, spring,
and damper system; b. block
®) diagram

PROBLEM: Find the transfer function, X(s)/F(s), for the system of Figure 2.15(a).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is
traveling toward the right. Thus, only the applied force points to the right; all other
forces impede the motion and act to oppose it. Hence, the spring, viscous damper,
and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton’s law to sum
to zero all of the forces shown on the mass in Figure 2.16(a):

Ex(t) , dx(t)
M — = f(t 2.
o+ S+ Kx(0) = £ (2.108)
—1—» x(1) —'—— X(s)
Kx(t) -1 KX(s) -
fV% - M —=an fsX(s) = M F(s)
2. FIGURE 2.16 a. Free-body
M -dz—" Ms2X(s) < diagram of mass, spring, and
dr damper system; b. trans-

(a) ®) formed free-body diagram
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Taking the Laplace transform, assuming zero initial conditions,

Ms?X(s) + f,sX(s) + KX (s) = F(s) (2.109)
or
(Ms® +f,s + K)X(s) = F(s) (2.110)
Solving for the transfer function yields

X(s) 1

Gls) = F(s) Ms2+fs+K

(2.111)

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the
writing of differential equations and by defining impedances for mechanical
components? If so, we can apply to mechanical systems the problem-solving
techniques learned in the previous section. Taking the Laplace transform of the
force-displacement column in Table 2.4, we obtain for the spring,

F(s) = KX(s) (2.112)
for the viscous damper,
F(s) = fisX(s) (2.113)
and for the mass,
F(s) = Ms*X(s) (2.114)

If we define impedance for mechanical components as

Zy(s) = %% (2.115)

and apply the definition to Egs. (2.112) through (2.114), we arrive at the impedances
of each component as summarized in Table 2.4 (Raven, 1995).

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the
format

F(s) = Zu(s)X(s) (2.116)

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immedi-
ately without writing the differential equation. From now on we use this approach.

"Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by
defining mechanical impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient
definition for writing the equations of motion in terms of displacement, rather than velocity. The
alternative, however, is available.
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Finally, notice that Eq. (2.110) is of the form

[Sum of impedances] X (s) = [Sum of applied forces] (2.117)

which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node
electrical networks, where more than one simultaneous differential equation is
required to describe the system. In mechanical systems, the number of equations of
motion required is equal to the number of linearly independent motions. Linear
independence implies that a point of motion in a system can still move if all other
points of motion are held still. Another name for the number of linearly independent
motions is the number of degrees of freedom. This discussion is not meant to imply
that these motions are not coupled to one another; in general, they are. For example,
in a two-loop electrical network, each loop current depends on the other loop
current, but if we open-circuit just one of the loops, the other current can still exist if
there is a voltage source in that loop. Similarly, in a mechanical system with two
degrees of freedom, one point of motion can be held still while the other point of
motion moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point
of motion and then use superposition. For each free-body diagram we begin by holding
all other points of motion still and finding the forces acting on the body due only to its
own motion. Then we hold the body still and activate the other points of motion one at
a time, placing on the original body the forces created by the adjacent motion.

Using Newton’s law, we sum the forces on each body and set the sum to zero.
The result is a system of simultaneous equations of motion. As Laplace transforms,
these equations are then solved for the output variable of interest in terms of the
input variable from which the transfer function is evaluated. Example 2.17 demon-
strates this problem-solving technique.
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@ example 2.17 D

Transfer Function—Two Degrees of Freedom
PROBLEM: Find the transfer function, X, (s)/F(s), for the system of Figure 2.17(a).
‘\](l)
H fn
is K
— 0000 &
= il
= = 0000 A o
AREEEEARS O O s P B TRV
/
5, 5
()
FIGURE 2.17 a.Two-
Fls) (54K, X(5) degrees-of-freedom
—» 2 y —— translational
mechanical system;®
(®) b. block diagram

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, f
and f,, are not Coulomb friction, but arise because of a viscous interface.

Virtual Experiment 2.1
Automobile Suspension

Put theory into practice
exploring the dynamics of
another two degree of free-
dom system—an automobile
suspension system driving
over a bumpy road demon-
strated with the Quanser
Active Suspension System
modeled in LabVIEW.

Virtual experiments are found
on WileyPLUS.
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FIGURE 2.18 a. Forces on
M, due only to motion of My;
b. forces on M, due only to
motion of M>; ¢. all forces

on My

FIGURE 2.19 a. Forces on
M3 due only to motion of M»;
b. forces on M, due only to
motion of Mj; c. all forces

on M,

Chapter2  Modeling in the Frequency Domain

SOLUTION: The system has two degrees of freedom, since each mass can be moved
in the horizontal direction while the other is held still. Thus, two simultaneous
equations of motion will be required to describe the system. The two equations
come from free-body diagrams of each mass. Superposition is used to draw the free-
body diagrams. For example, the forces on M, are due to (1) its own motion and
(2) the motion of M, transmitted to M, through the system. We will consider these
two sources separately.

If we hold M, still and move M; to the right, we see the forces shown in
Figure 2.18(a). If we hold M; still and move M, to the right, we see the forces shown
in Figure 2.18(b). The total force on M is the superposition, or sum, of the forces
just discussed. This result is shown in Figure 2.18(c). For M, we proceed in a similar
fashion: First we move M, to the right while holding M; still; then we move M; to
the right and hold M, still. For each case we evaluate the forces on M,. The results
appear in Figure 2.19.

KX (s)
fosXy(s) FisX(9) KyXo(s)
M, KX\ (s) M,
F(s) fo5Xo9)
M\s2X(s)
(a) ®)
Ky + K2)X;(s)
(fy, + Fi)sXi () KaXo(s)
M
Fs) fo5Xa(s)
M]JZX] (S)
(c)
KzXz(S )
fv,-"X (S) KZXI(“‘)
2 My f— KyXos) M,
Ju 5X(s) JosXy(s)
M35 Xo(5)
(@) ®
(Ka + K3)X(s)
Jo5X1(s)
(o, +fr)5X28) M,
KzX 1 (.S)

M352Xo(s)
()

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c¢) and 2.19(c) as

[Mis2(f,, + fu)s+ (Ky + K2)]| Xa(s) — (f,,8 + K2)Xa(5) = F(s) (2.118a)

~(fors + K2)X1(5) + [Mas® + (fi, + fi,)s + (K2 + K3)]Xa2(s) =0 (2.118b)
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From this, the transfer function, X, (s)/F(s), is

Xa(s)
F(s)

as shown in Figure 2.17(b) where

(fvﬁs + Kz)
A

= G(s) = (2.119)

[M132 + (fvl +f,,3)S + (K] + Kz)]
—(ﬁ.3S+K2)

—(fv;s + K2)
[Mas? + (f,, + £,.)s + (K2 + K3)]
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Notice again, in Eq. (2.118), that the form of the equations is similar to
electrical mesh equations:

Sum of
. Sum of
impedances impedances Sum of
connected | Xi(s) — P X,(s) = [applied forces (2.120a)
. between
to the motion at x,
x1 and x»
at x; -
Sum of ’ Sum of
impedances impedances Sum of
- bl::tween X1(s) +| connected | X(s) = | applied forces (2.120b)
to the motion at x;
x1 and x;
- atx;

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept
to write the equations of motion of a three-degrees-of-freedom mechanical network
by inspection, without drawing the free-body diagram.

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical
network of Figure 2.20.

—— 3(4)

M,

Ay
\ —— ()

Ky
]
....... A — LA
RS PN DN g e AR M|
£, £

G :<ample 2.13 D

FIGURE 2.20 Three-
degrees-of-freedom
translational mechanical
system
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SOLUTION: The system has three degrees of freedom, since each of the three
masses can be moved independently while the others are held still. The form of the
equations will be similar to electrical mesh equations. For M1,

Sum of .
. Sum of
impedances impedances
connected | Xi(s) — p Xo(s)
. between
to the motion
| x1and x;
at x; § (2.121)
S
impizlaflf:es Sum of
| between Xs(s) = [apphed forces}
at x;
| xjandx; |
Similarly, for M, and M3, respectively,
Sum of . Sum of
impedances impedances
I X1(s) +| connected | X,(s)
between .
to the motion
x1 and x, ¢
atxy (2.122)
S f
impzrclllazces Sum of
| between X3(s) = [ apph:td forces}
| xandx; | 2
Sum of Sum of
impedances impedances
between Xi(s) between Xa(s)
x1 and x3 | x> andx3 |
Sum of (2.123)
impedances Sum of
+| connected | X3(s) = [applied forces
to the motion at x3

M has two springs, two viscous dampers, and mass associated with its motion.

There is one spring between M; and M, and one viscous damper between M; and
M. Thus, using Eq. (2.121),

M8 + (f,, +£,)5 + (K1 + K2)]Xa(s) — KaXa(s) — f,,5Xa(s) =0 (2.124)
Similarly, using Eq. (2.122) for Ms,
—KaXi(s) + [MaS? + (F,, +£,)5 + Ko Xa(s) = £,5X3(5) = F(s)  (2.125)




2.6 Rotational Mechanical System Transfer Functions

and using Eq. (2.123) for M3,
— f,5X1(s) — f,,5Xa(s) + [Mas® + (f,,, +£,,)5] X3(s) = O (2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X (s), X2(s), or X3(s), or transfer function.
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@ skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, G(s) = X2(s)/F(s), for the translational
mechanical system shown in Figure 2.21.

Xl (1)

Sv,=1N-s/m K=1N/m

Sy ————»r M =1kg

fv,= I N-sim _E

3s+1
ANSWER: _
GO = (T 1570

The complete solution is at www.wiley.com/college/nise.

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the


http://www.wiley.com/college/nise
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TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Torque-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(s)/0(s)
T(tn 8
Spring
T(f) = K fyw(r)dr T(t) = K6(z) K
K
Viscous 7(y) g(r)
damper do(t
T(t) = Do(2) T(t) = T(Il Ds
D

T 6(n)

Inertia do(t d*o(t
J

Note: The following set of symbols and units is used throughout this book: 7'(¢) — N-m (newton-meters),
8(t) — rad(radians), w(r) — rad/s(radians/second), X — N-m/rad(newton- meters/radian), D — N-m-s/rad
(newton- meters-seconds/radian). J — kg-m?(kilograms-meters? — newton-meters-seconds®/radian).

components look the same as translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are
also summarized in the last column of Table 2.5. The values can be found by taking
the Laplace transform, assuming zero initial conditions, of the torque-angular
displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except
that we test a point of motion by rotating it while holding still all other points of
motion. The number of points of motion that can be rotated while all others are
held still equals the number of equations of motion required to describe the
system.

Writing the equations of motion for rotational systems is similar to writing
them for translational systems; the only difference is that the free-body diagram
consists of torques rather than forces. We obtain these torques using superposition.
First, we rotate a body while holding all other points still and place on its free-body
diagram all torques due to the body’s own motion. Then, holding the body still, we
rotate adjacent points of motion one at a time and add the torques due to the
adjacent motion to the free-body diagram. The process is repeated for each point of
motion. For each free-body diagram, these torques are summed and set equal to zero
to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one
uses free-body diagrams; the second uses the concept of impedances to write the
equations of motion by inspection.
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G :xomple 2.19 IEED

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, 8,(s)/7'(s), for the rotational system shown
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is measured at the

right.
T( 6,(r) 1)
= [wawi) T f),(l‘) 03(1) .
ARY; ) 3 ‘
el ) HERQ )
Bearing Bearing - K D, t
D; Torsion D,
(@) ®)
19 [ g s i
) K S FIGURE 2.22  a. Physical
|_| system; b. schematic;
(c) ¢. block diagram

SOLUTION: First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),” we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J; to the left and an inertia J, to the right.“’ We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram of Ji, using superposition. Figure 2.23(a)
shows the torques on J; if J; is held still and J; rotated. Figure 2.23(b) shows the
torques onJy if J, is held still and J, rotated. Finally, the sum of Figures 2.23(a) and
2.23(b) is shown in Figure 2.23(c), the final free-body diagram for J;. The same
process is repeated in Figure 2.24 for /5.

&, (x) Direction &(x) Direction &,(s) Direction
T~ £526,(5) @ T((&T)\ 11526,(5)
~ Dys8,(s) -~ N }Dlsﬁl(s)
K6,(s) K8y(s) K6\(s) FIGURE 2.23  a. Torques on
>~ J1 due only to the motion of /;
Kgys) b.torques onJ; due only to the
motion of J,; ¢. final free-body
(@ (b} © diagram for J,

®In this case the parameter is referred to as a distributed parameter.
Y9 The parameter is now referred to as a lumped parameter.
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65(s) Direction @-(s) Direction 6,(s) Direction
KB,(s) K8,(s)
N J2520,(5) ~ X J25762(s)
FIGURE2.24 a.Torqueson @/‘D 0 @ 4
J2 due only to the motion of o/ DasOrls) '/ D2sOrls)
J2; b, torques on J, due only K&y(s) KB,(s)
to the motion of Jy; c. final
free-body diagram for J» @ ®) ©
Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the
equations of motion,
(J15* + D1s + K)61(s) — K6(s) = T(s) (2.127a)
Trylt 2.9 2
Use the following MATLAB —K61(s) + (25" + Das + K)6a(s) = 0 (2.127b)
and Symbolic Math Toolbox g,y which the required transfer function is found to be
statements to help you get
Eq. (2.128). o.(s) K
symss J1 D1 KT J2 D2 ;(( ) =x (2.128)
S N e s) A
A:[(ljlt: ;Aztfm:im —K as shown in Figure 2.22(c), where
—K (J2*s"2+D2*s+K)]; ,
B=[thetal 3 (J152 + D1s + K) -K
theta?2); -
e -K (J25% + Das + K)
037 .
B=im} (A)*C; Notice that Eq. (2.127) have that now well-known form
theta2=B(2); Sum of S £
't:ftt:;(’thetaZ) impedances im gg;zces Sum of
P connected |[6;(s) — P 62(s) = | applied torques (2.129a)
. between
to the motion 61 and & até,
ato; 1 2
Sum of
Sum of .
impedances impedances Sum of
- 61(s) + | connected [6:(s) = | applied torques | (2.129b)
between .
9, and 6, to the motion até,
1 at 6,
Example 2.20

FIGURE 2.25 Three-degrees-
of-freedom rotational
system

_

—

Equations of Motion By inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in Figure 2.25.

1) 1) 031

DT

o\t

)




2.6 Rotational Mechanical System Transfer Functions

SOLUTION: The equations will take on the following form, similar to electrical
mesh equations:

Sum of

) Sumof
impedances impedances
connected | 6;(s) — p 62(s)
. between
to the motion
91 and &,
ato; - - (2.130a)
S f
impzr;azces Sum of
| between Os(s) = [apphec: ttgorques}
| 61and 63 an
Sum of . Sum of
impedances impedances
— | 61(s) +| connected |6;(s)
between to the motion
6, and 6, at o
2 (2.130b)
imf)l:;;?lf:es Sum of
| between 03(s) = {appheci ;orques]
92 and 93 ate
Sum of Sum of
impedances impedances
between 61(s) between 0a(s)
61 and 93 6, and )
Sum of {2.130c)
impedances Sum of
+| connected |[8s(s) = !applied torques}
to the motion at s
ato;
Hence,
(Jlsz + Dys+ K)91 (S) —Ko,(s) —093(5’) = T(S)
—K61(s) +(J25* + Das + K)a(s) —D;s63(s) = 0
—06, (S) —DzS@z(S) -|-(.]3S2 + D3s + D5)05(s) = 0

(2.131a,b,c)
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N iill-Assessment Exercise 2.9 JEEENEEND

PROBLEM: Find the transfer function, G(s)=0,(s)/T(s), for the rotational
mechanical system shown in Figure 2.26.

FIGURE 2.26 Rotational 7tr) 1 N-m/rad i1

mechanical system for Skill- E f S I N-nirad E

Assessment Exercise 2.9 L kg-m? | [ k 0000 .
{ N-m-s/rad l

1 N-m-s/rad

1

ANSWER: G(s) = 55—

The complete solution is at www.wiley.com/college/nise.

@ 2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we
realize that these systems, especially those driven by motors, are rarely seen
without associated gear trains driving the load. This section covers this
important topic.

Gears provide mechanical advantage to rotational systems. Anyone who has
ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to
provide more torque and less speed. On the straightaway, you shift to obtain more
speed and less torque. Thus, gears allow you to match the drive system and the
load—a trade-off between speed and torque.

For many applications, gears exhibit backlash, which occurs because of the
loose fit between two meshed gears. The drive gear rotates through a small angle
before making contact with the meshed gear. The result is that the angular rotation
of the output gear does not occur until a small angular rotation of the input gear has
occurred. In this section, we idealize the behavior of gears and assume that there is
no backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An
N> gun 1wn  input gear with radius r; and N; teeth is rotated through angle 6;(z) due to a

T ‘

RO torque, T(#). An output gear with radius r» and N, teeth responds by rotating

( / # v > through angle 6,(¢) and delivering a torque, 7»(¢). Let us now find the relation-
\ Input y ship between the rotation of Gear 1, 6;(z), and Gear 2, 6,(¢t).

drive gear, * From Figure 2.27, as the gears turn, the distance traveled along each gear’s
Gear | driv:np;éar circumference is the same. Thus,
Gear 2

FIGURE 2.27 A gear system roy =rt (2.132)
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or

0 _n_N

RIS 2.133
6 rn N ( )

since the ratio of the number of teeth along the circumference is in the same
proportion as the ratio of the radii. We conclude that the ratio of the angular
displacement of the gears is inversely proportional to the ratio of the number of
teeth.

What is the relationship between the input torque, 7, and the delivered
torque, T,? If we assume the gears are lossless, that is they do not absorb or store
energy, the energy into Gear 1 equals the energy out of Gear 2.'' Since the
translational energy of force times displacement becomes the rotational energy
of torque times angular displacement,

T16; = T26, (2.134)

Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133), we get

75

23 T, N, | T

T, 61 N;
2 A1 2.135
T, 6 N ( )
Thus, the torques are directly proportional to the ratio of the number o
of teeth. All results are summarized in Figure 2.28. — %l
Let us see what happens to mechanical impedances that are 2
driven by gears. Figure 2.29(a) shows gears driving a rotational inertia, (@)

Ny
®)

spring, and viscous damper. For clarity, the gears are shown by anend- FIGURE 2.28 Transfer functions for a. angular
on view. We want to represent Figure 2.29() as an equivalent system at  displacement in lossless gears and b. torque in

6, without the gears. In other words, can the mechanical impedances be  lossless gears
reflected from the output to the input, thereby eliminating the gears?

T 6yn

(¢)

! This is equivalent to saying that the gears have negligible inertia and damping.

FIGURE 2.29  a. Rotational
system driven by gears;

b. equivalent system at the
output after reflection of input
torque; ¢. equivalent system at
the input after reflection of
impedances
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From Figure 2.28(b), T can be reflected to the output by multiplying by N,/N.
The result is shown in Figure 2.29(b), from which we write the equation of motion as

Ny

(N+M+QMQ=M%W

(2.136)

Now convert 6,(s) into an equivalent 8, (s), so that Eq. (2.136) will look as if it were
written at the input. Using Figure 2.28(a) to obtain 6,(s) in terms of 8 (s), we get

@M+m+m&mm=ﬁm& (2.137)
N 2 N 1
After simplification,
Ni\2, Np\2 Np\2 B

which suggests the equivalent system at the input and without gears shown in
Figure 2.29(c). Thus, the load can be thought of as having been reflected from the
output to the input,

Generalizing the results, we can make the following statement: Rotational
mechanical impedances can be reflected through gear trains by multiplying the
mechanical impedance by the ratio

Number of teeth of
gear on destination shaft

Number of teeth of
gear on source shaft

where the impedance to be reflected is attached to the source shaft and is being
reflected to the destination shaft. The next example demonstrates the application of
the concept of reflected impedances as we find the transfer function of a rotational
mechanical system with gears.

G ol 221 D

Transfer Function—System with Lossless Gears
PROBLEM: Find the transfer function, 6»(s)/ T (s), for the system of Figure 2.30(a).

T 8,1 2

N
N D,=D|(F)+D
N 7o == =) 2
a::) D, ]'“)(N» )92‘” (N]) =

‘ . = 1) NoiN, 62()
D \ - Je = — S
: i 2 0000 = Js2+Dys+ K,
N, 0000 o2y Kot
ﬁ K, e~ Y1 N, 2
@ ®) ()

FIGURE 2.30 a. Rotational mechanical system with gears; b. system after reflection of torques and impedances to the output
shaft; c. block diagram
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SOLUTION: It may be tempting at this point to search for two simultaneous
equations corresponding to each inertia. The inertias, however, do not undergo
linearly independent motion, since they are tied together by the gears. Thus, there
is only one degree of freedom and hence one equation of motion.

Let us first reflect the impedances (/1 and D;) and torque (7;) on the input
shaft to the output as shown in Figure 2.30(b), where the impedances are reflected
by (N2/N;)? and the torque is reflected by (N2/N). The equation of motion can
now be written as N
(Jo$? + Des + K. )62 (s) = T1(s) N% (2.139)

where

N2\ 2 N2\?
Je=f1(]7f) +J2; De:Dl(N—?) +Dy; K.=K;

Solving for 8,(s)/T1(s), the transfer function is found to be

_6s) NNy

= = 2.140
Ti(s) Jes?+Des+K, ( )

G(s)

as shown in Figure 2.30(c).

In order to eliminate gears with large radii, a gear train is used 8,
to implement large gear ratios by cascading smaller gear ratios. A ( ‘
. - . . . - J
schematic diagram of a gear train is shown in Figure 2.31. Next to M 0= /:,‘ 9,

each rotation, the angular displacement relative to 6; has been
calculated. From Figure 2.31, Ny TN Ny NN
VTN, T ONaN, !
NN3N
b= 230 (2.141) Mo Ms Moy _ M
N2N4N6 J_Nn ;_NZN«INn !
For gear trains, we conclude that the equivalent gear ratio is the Ne )

product of the individual gear ratios. We now apply this result tosolve  cupE2.31 Gear train
for the transfer function of a system that does not have lossless gears.

G :xample 2.22 D

Transfer Function—Gears with Loss

PROBLEM: Find the transfer function, 8, (s)/ T (s), for the system of Figure 2.32(a).
Ty O

L
D,
Ji. Dy ¢

¥ Ny
2 2
Prha & Jo=di+ (a4 Jy) (%) + Uyt J5) (%) FIGURE 2.32
N ’ g 2 a. System using a gear
ez Y e 1 Bi) train; b. equivalent
D,=D|+D,(—L - h
¢ Ny J 24+ D,s system at the input;
©) ¢. block diagram

&

(@ ()]
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SOLUTION: This system, which uses a gear train, does not have lossless gears. All of
the gears have inertia, and for some shafts there is viscous friction. To solve the
problem, we want to reflect all of the impedances to the input shaft, ;. The
gear ratio is not the same for all impedances. For example, D, is reflected
only through one gear ratio as Dy(N; /N, )?, whereas J; plus Js is reflected through
two gear ratios as (J4 + J5)[(N3/N4)(N1/N,))>. The result of reflecting all imped-
ances to 8y is shown in Figure 2.32(b), from which the equation of motion is

(Jes? + D,s)6:(s) = Ty(s) (2.142)
where
N\ 2 NyN3\?2
J, = Ty +J3) [ =2
e J1+( 2+ 3)<N2) +(J4+f5)<N2N4)
and

MY
De=D;+D;|—
4 1 Z(Nz

From Eq. (2.142), the transfer function is

_hle) 1 (2.143)

OO =70 " T2 1 Dws

as shown in Figure 2.32(c).

@ sill-Assessment Exercise 2.10 JIEEEEEEED

PROBLEM: Find the transfer function, G(s) = 6,(s)/T(s), for the rotational
mechanical system with gears shown in Figure 2.33.

()
1 N-m-s/rad
1 kg-m? I~ Ny =25

6-(r)

N =50 000 E

4 N-m/rad

FIGURE 2.33 Rotational mechanical system with gears for Skill- Assessment
Exercise 2.10
1/2

The complete solution is at www.wiley.com/college/nise.
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2.8 Electromechanical System Transfer Functions

2.8 Electromechanical System
Transfer Functions

In the last section we talked about rotational systems with gears, which completed
our discussion of purely mechanical systems. Now, we move to systems that are
hybrids of electrical and mechanical variables, the electromechanical systems. We
have seen one application of an electromechanical system in Chapter 1, the antenna
azimuth position control system. Other applications for systems with electrome-
chanical components are robot controls, sun and star trackers, and computer tape
and disk-drive position controls. An example of a control system that uses electro-
mechanical components is shown in Figure 2.34.

A motor is an electromechanical component that yields a displacement output
for a voltage input, that is, a mechanical output generated by an electrical input.
We will derive the transfer function for one particular kind of electromechanical
system, the armature-controlled dc servomotor (Mablekos, 1980). The motor’s
schematic is shown in Figure 2.35(a), and the transfer function we will derive
appears in Figure 2.35(b).

Fixed
Ra La ﬁeld
el Armature vp(0) R’otor L (8) G,,05)
circuit T — G(s) ——>

1,40) _ 6,,(1)

(a)
FIGURE 2.35 DC motor: a. schematic;'? b. block diagram

®

2See Appendix I at www.wiley.com/college/nise for a derivation of this schematic and its parameters.

FIGURE 2.34 NASA flight
simulator robot arm with
electromechanical control
system components.
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In Figure 2.35(a) a magnetic field is developed by stationary permanent
magnets or a stationary electromagnet called the fixed field. A rotating circuit
called the armature, through which current i,(z) flows, passes through this magnetic
field at right angles and feels a force, F = Bli,(t), where B is the magnetic field
strength and /is the length of the conductor. The resulting torque turns the rotor, the
rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at
right angles to a magnetic field generates a voltage at the terminals of the conductor
equal to e = Blv, where e is the voltage and v is the velocity of the conductor normal
to the magnetic field. Since the current-carrying armature is rotating in a magnetic
field, its voltage is proportional to speed. Thus,

dom(1)
dt

vp(t) = Kp (2.144)

We call vy(t) the back electromotive force (back emf); K, is a constant of
proportionality called the back emf constant; and db,,(t)/dt = wn(t) is the angular
velocity of the motor. Taking the Laplace transform, we get

Vio(s) = KpsOm(s) (2.145)

The relationship between the armature current, i,(¢), the applied armature
voltage, ¢,(¢), and the back emf, v (2), is found by writing a loop equation around the
Laplace transformed armature circuit (see Figure 3.5(a)):

RoI,(8) + Lasla(s) + Vi(s) = E,(s) (2.146)

The torque developed by the motor is proportional to the armature current; thus,
Ton(s) = Kely(s) (2.147)

where T, is the torque developed by the motor, and K is a constant of proportion-
ality, called the motor torque constant, which depends on the motor and magnetic

field characteristics. In a consistent set of units, the value of K, is equal to the value of
K. Rearranging Eq. (2.147) yields

14(s) = ¢ T (2148

t

To find the transfer function of the motor, we first substitute Egs. (2.145) and
(2.148) into (2.146), yielding

(Ry + Las)Tim(s)

7 + KpSOm(s) = Eq(s) (2.149)
t
";'I(I) 6”’( ”
5 Now we must find 7,,(s) in terms of 6,,(s) if we are to separate the input and
e ’ output variables and obtain the transfer function, 6,,(s)/Ea(s).
Dy, Figure 2.36 shows a typical equivalent mechanical loading on a motor.
FIGURE 2.36 Typical equivalent J.n is the equivalent inertia at the armature and includes both the armature

mechanical loading on a motor inertia and, as we will see later, the load inertia reflected to the armature.
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Dy, is the equivalent viscous damping at the armature and includes both the
armature viscous damping and, as we will see later, the load viscous damping
reflected to the armature. From Figure 2.36,

Tu(s) = (JuS? + DpnS)6m(s) (2.150)
Substituting Eq. (2.150) into Eq. (2.149) yields

(Rg 4 Lo8)(JmS? + D pu$)Bim(s)
K,

+ Kp$6(s) = Eqls) (2.151)

If we assume that the armature inductance, L,, is small compared to the armature
resistance, R,, which is usual for a dc motor, Eq. (2.151) becomes

(R U+ D)+ K s6) = Exl) 2152)

After simplification, the desired transfer function, 8,,(s)/E4(s), is found to be

2"53 - fX/(RRJmL,K,, (2.153)"
a S[S-I‘E(Dm-l-R—a)]

Even though the form of Eq. (2.153) is relatively simple, namely
bm(s) _ K

_{

= 2.154
Eu(s) s(s+o) ( )
the reader may be concerned about how to evaluate the constants.

Let us first discuss the mechanical constants, /,,, and D,,. Consider Motor
Figure 2.37, which shows a motor with inertia J, and damping D, at the °
armature driving a load consisting of inertia J; and damping Dj. D

ar™~a

Assuming that all inertia and damping values shown are known, J,
and Dy, can be reflected back to the armature as some equivalent inertia

Ny

81

Ny
Dy

and damping to be added to J, and D,, respectively. Thus, the equiv-  figuRe 2.37 DC motor driving a rotational

alent inertia, J,,, and equivalent damping, D,,, at the armature are mechanical load
2 2
Jm=Jo+JL M i Dy =Do+ Dy N (2.155)"
N2 N 2

Now that we have evaluated the mechanical constants, J,, and D,,, what about
the electrical constants in the transfer function of Eq. (2.153)? We will show that
these constants can be obtained through a dynamometer test of the motor, where a
dynamometer measures the torque and speed of a motor under the condition of a

'3 The units for the electrical constants are K, = N-m-A (newton-meters/ampere), and K, = V-sfrad
(volt-seconds/radian).

I the values of the mechanical constants are not known, motor constants can be determined through
laboratory testing using transient response or frequency response data. The concept of transient response
is covered in Chapter 4; frequency response is covered in Chapter 10.
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Tstan

Torque
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constant applied voltage. Let us first develop the relationships that dictate the use of
a dynamom<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>