
Digital Control Systems 

^Chapter Learning Outcomes^ 
After completing this chapter the student will be able to: 

• Model the digital computer in a feedback system (Sections 13.1-13.2) 

• Find z- and inverse z-transforms of time and Laplace functions (Section 13.3) 

• Find sampled-data transfer functions (Section 13.4) 

• Reduce an interconnection of sampled-data transfer functions to a single sampled-
data transfer function (Section 13.5) 

• Determine whether a sampled-data system is stable and determine sampling rates 
for stability (Section 13.6) 

• Design digital systems to meet steady-state error specification (Section 13.7) 

• Design digital systems to meet transient response specifications using gain adjust­
ment (Sections 13.8-13.9) 

• Design cascade compensation for digital systems (Sections 13.10-13.11) 

^ Case Study Learning Outcomes ^ 
You will be able to demonstrate your knowledge of the chapter objectives with a case 
study as follows: 

• Given the analog antenna azimuth position control system shown on the front 
endpapers and in Figure 13.1(a), you will be able to convert the system to a digital 
system as shown in Figure 13.1(6) and then design the gain to meet a transient 
response specification. 
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FIGURE 13.1 Conversion of antenna azimuth position control system from a. analog control 
to b. digital control 

• Given the digital antenna azimuth position control system shown in Figure 13.1(6), 
you will be able to design a digital cascade compensator to improve the transient 
response. 

^ 1 3 . 1 Introduction 
This chapter is an introduction to digital control systems and will cover only 
frequency-domain analysis and design. You are encouraged to pursue the study 
of state-space techniques in an advanced course in sampled-data control systems. In 
this chapter, we introduce analysis and design of stability, steady-state error, and 
transient response for computer-controlled systems. 

With the development of the minicomputer in the mid-1960s and the micro­
computer in the mid-1970s, physical systems need no longer be controlled by 
expensive mainframe computers. For example, milling operations that required 
mainframe computers in the past can now be controlled by a personal computer. 

The digital computer can perform two functions: (1) supervisory—external to 
the feedback loop; and (2) control—internal to the feedback loop. Examples of 
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supervisory functions consist of scheduling tasks, monitoring parameters and var­
iables for out-of-range values, or initiating safety shutdown. Control functions are of 
primary interest to us, since a computer that performs within the feedback loop 
replaces the methods of compensation heretofore discussed. Examples of control 
functions are lead and lag compensation. 

Transfer functions, representing compensators built with analog components, 
are now replaced with a digital computer that performs calculations that emulate the 
physical compensator. What advantages are there to replacing analog components 
with a digital computer? 

Advantages of Digital Computers 
The use of digital computers in the loop yields the following advantages over analog 
systems: (1) reduced cost, (2) flexibility in response to design changes, and (3) noise 
immunity. Modern control systems require control of numerous loops at the same 
time—pressure, position, velocity, and tension, for example. In the steel industry, a 
single digital computer can replace numerous analog controllers with a subsequent 
reduction in cost. Where analog controllers implied numerous adjustments and 
resulting hardware, digital systems are now installed. Banks of equipment, meters, 
and knobs are replaced with computer terminals, where information about settings 
and performance is obtained through menus and screen displays. Digital computers 
in the loop can yield a degree of flexibility in response to changes in design. Any 
changes or modifications that are required in the future can be implemented with 
simple software changes rather than expensive hardware modifications. Finally, 
digital systems exhibit more noise immunity than analog systems by virtue of the 
methods of implementation. 

Where then is the computer placed in the loop? Remember that the digital 
computer is controlling numerous loops; thus, its position in the loop depends upon 
the function it performs. Typically, the computer replaces the cascade compensator 
and is thus positioned at the place shown in Figure 13.2(a). 

The signals r, e,/, and c shown in Figure 13.2(a) can take on two forms: digital or 
analog. Up to this point we have used analog signals exclusively. Digital signals, 
which consist of a sequence of binary numbers, can be found in loops containing 
digital computers. 
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FIGURE 13.2 a. Placement of the digital computer within the loop; b. detailed block diagram 
showing placement of A/D and D/A converters 
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Loops containing both analog and digital signals must provide a means for 
conversion from one form to the other as required by each subsystem. A device that 
converts analog signals to digital signals is called an analog-to-digital (A/D) converter. 
Conversely, a device that converts digital signals to analog signals is called a digital-to-
analog (D/A) converter. For example, in Figure 13.2(b), if the plant output, c, and the 
system input, r, are analog signals, then an analog-to-digital converter must be provided 
at the input to the digital computer. Also, if the plant input,/, is an analog signal, then a 
digital-to-analog converter must be provided at the output of the digital computer. 

Digital-to-Analog Conversion 
Digital-to-analog conversion is simple and effectively instan­
taneous. Properly weighted voltages are summed together to 
yield the analog output. For example, in Figure 13.3, three 
weighted voltages are summed. The three-bit binary code is 
represented by the switches. Thus, if the binary number is 
IIO2, the center and bottom switches are on, and the analog 
output is 6 volts. In actual use, the switches are electronic and 
are set by the input binary code. 

Analog-to-Digital Conversion 
Analog-to-digital conversion, on the other hand, is a two-step 
process and is not instantaneous. There is a delay between the 

input analog voltage and the output digital word. In an analog-to-digital converter, 
the analog signal is first converted to a sampled signal and then converted to a 
sequence of binary numbers, the digital signal. 

The sampling rate must be at least twice the bandwidth of the signal, or else there 
will be distortion. This minimum sampling frequency is called the Nyquist sampling rate.1 

In Figure 13.4(a), we start with the analog signal. In Figure 13.4(b), we see the 
analog signal sampled at periodic intervals and held over the sampling interval by a 
device called a zero-order sample-and-hold (z.o.h.) that yields a staircase approxi­
mation to the analog signal. Higher-order holds, such as a first-order hold, generate 
more complex and more accurate waveshapes between samples. For example, a first-
order hold generates a ramp between the samples. Samples are held before being 
digitized because the analog-to-digital converter converts the voltage to a digital 
number via a digital counter, which takes time to reach the correct digital number. 
Hence, the constant analog voltage must be present during the conversion process. 

After sampling and holding, the analog-to-digital converter converts the 
sample to a digital number (as shown in Figure 13.4(c)), which is arrived at in 
the following manner. The dynamic range of the analog signal's voltage is divided 
into discrete levels, and each level is assigned a digital number. For example, in 
Figure 13.4(6), the analog signal is divided into eight levels. A three-bit digital 
number can represent each of the eight levels as shown in the figure. Thus, the 
difference between quantization levels is M/8 volts, where M is the maximum analog 
voltage. In general, for any system, this difference is M/2" volts, where n is the 
number of binary bits used for the analog-to-digital conversion. 

Looking at Figure 13.4(b), we can see that there will be an associated error for 
each digitized analog value except the voltages at the boundaries such as M/8 and 
2M/8. We call this error the quantization error. Assuming that the quantization 
process rounds off the analog voltage to the next higher or lower level, the maximum 

1 See Ogata (1987:170-177) for a detailed discussion. 
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value of the quantization error is 1/2 the difference between quantization levels in 
the range of analog voltages from 0 to 15M/16. In general, for any system using 
roundoff, the quantization error will be (l/2)(M/2") = M/2n+1. 

We have now covered the basic concepts of digital systems. We found out why 
they are used, where the digital computer is placed in the loop, and how to convert 
between analog and digital signals. Since the computer can replace the compensator, 
we have to realize that the computer is working with a quantized amplitude 
representation of the analog signal formed from values of the analog signal at 
discrete intervals of time. Ignoring the quantization error, we see that the computer 
performs just as the compensator does, except that signals pass through the 
computer only at the sampled intervals of time. We will find that the sampling of 
data has an unusual effect upon the performance of a closed-loop feedback system, 
since stability and transient response are now dependent upon the sampling rate; if it 
is too slow, the system can be unstable since the values are not being updated rapidly 
enough. If we are to analyze and design feedback control systems with digital 
computers in the loop, we must be able to model the digital computer and associated 
digital-to-analog and analog-to-digital converters. The modeling of the digital 
computer along with associated converters is covered in the next section. 

( 1 3 . 2 Modeling the Digital Computer 
If we think about it, the form of the signals in a loop is not as important as what 
happens to them. For example, if analog-to-digital conversion could happen instan­
taneously, and time samples occurred at intervals of time that approached zero, there 
would be no need to differentiate between the digital signals and the analog signals. 
Thus, previous analysis and design techniques would be valid regardless of the 
presence of the digital computer. 

FIGURE 13.4 Steps in analog-
to-digital conversion: a. analog 
signal; b. analog signal after 
sample-and-hold; c. conversion 
of samples to digital numbers 



728 Chapter 13 Digital Control Systems 

The fact that signals are sampled at specified intervals and held causes the 
system performance to change with changes in sampling rate. Basically, then, the 
computer's effect upon the signal comes from this sampling and holding. Thus, in 
order to model digital control systems, we must come up with a mathematical 
representation of this sample-and-hold process. 

Modeling the Sampler 
Our objective at this point is to derive a mathematical model for the digital computer 
as represented by a sampler and zero-order hold. Our goal is to represent the 
computer as a transfer function similar to that for any subsystem. When signals are 
sampled, however, the Laplace transform that we have dealt with becomes a bit 
unwieldy. The Laplace transform can be replaced by another related transform 
called the z-transform. The z-transform will arise naturally from our development of 
the mathematical representation of the computer. 

Consider the models for sampling shown in Figure 13.5. The model in Figure 
13.5(a) is a switch turning on and off at a uniform sampling rate. In Figure 13.5(6), 
sampling can also be considered to be the product of the time waveform to be 
sampled,/(r), and a sampling function, s{t). \is{t) is a sequence of pulses of width 7V, 
constant amplitude, and uniform rate as shown, the sampled output, f*Tw(t), will 
consist of a sequence of sections of /(f) at regular intervals. This view is equivalent to 
the switch model of Figure 13.5(a). 

We can now write the time equation of the sampled waveform, ft (t). Using 
the model shown in Figure 13.5(6), we have 

00 

TTVW = /('M0 =/(0 £ u(t - kT) - u(t -kT- Tw) (13.1) 
k=—oo 

where k is an integer between —oo and +oo, Tis the period of the pulse train, and TV 
is the pulse width. 

FIGURE 13.5 Two views of 
uniform-rate sampling: 
a. switch opening and closing; 
b. product of time waveform 
and sampling waveform 
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Since Eq. (13.1) is the product of two time functions, taking the Laplace 
transform in order to find a transfer function is not simple. A simplification can be 
made if we assume that the pulse width, TV, is small in comparison to the period, T, 
such that f(t) can be considered constant during the sampling interval. Over the 
sampling interval, then,/(f) — f(kT). Hence, 

/rw(0 = E f(kT)lu(* - kT) - u(t -kT- 7»] (13.2) 
fc=—CO 

for small 7V. 
Equation (13.2) can be further simplified through insight provided by the 

Laplace transform. Taking the Laplace transform of Eq. (13.2), we have 
T„-kTs 7-kTs-Ty/s 

**7vM = E KkT) 
k=—co 

Replacing e~TwS with its series expansion, we obtain 

= E KkT) 
k=-oo 

1 _ e-Tw* 
,-kTs (13.3) 

*r„(') = E f(kT>> 
/:=—oo 

For small 7V, Eq. (13.4) becomes 

1 - H-(T2-]j 
s 

,-kTs (13.4) 

k=—oo 

Tws ,-kTs = £ f{kT)Twe 
k=—oo 

-kTs 

Finally, converting back to the time domain, we have 
oo 

f*Tw(t) = Tw Y^f(kT)§(f-kT) 

(13.5) 

(13.6) 
k=—oo 

where S(t — kT) are Dirac delta functions. 
Thus, the result of sampling with rectangular pulses can be thought of as a 

series of delta functions whose area is the product of the rectangular pulse width and 
the amplitude of the sampled waveform, or Twf{kT). 

Equation (13.6) is portrayed in Figure 13.6. The sampler is divided into two 
parts: (1) an ideal sampler described by the portion of Eq. (13.6) that is not 
dependent upon the sampling waveform characteristics, 

r(t)j2f(kT)s(t-kT) 
k=-oo 

(13.7) 

and (2) the portion dependent upon the sampling waveform's characteristics, Tw-

Modeling the Zero-Order Hold 
The final step in modeling the digital computer is modeling the zero-order hold that 
follows the sampler. Figure 13.7 summarizes the function of the zero-order hold, 

Ideal 
sampler 

m <s fm 
o-
= '±AkT)S(t-kT) 

fkm 
= TwZMT)S(t-kT) 

FIGURE 13.6 Model of 
sampling with a uniform 
rectangular pulse train 
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Ideal sampler 

m </ o f*m Hold /„« 

FIGURE 13.7 Ideal sampling 
and the zero-order hold 

t AkT)S{t-kT) 

which is to hold the last sampled value of f(t). If we assume an ideal sampler 
(equivalent to setting 7V = 1), then /*(r) is represented by a sequence of delta 
functions. The zero-order hold yields a staircase approximation to f(t). Hence, the 
output from the hold is a sequence of step functions whose amplitude is f(t) at the 
sampling instant, orf(kT). We have previously seen that the transfer function of any 
linear system is identical to the Laplace transform of the impulse response since the 
Laplace transform of a unit impulse or delta function input is unity. Since a single 
impulse from the sampler yields a step over the sampling interval, the Laplace 
transform of this step, G/,(s), which is the impulse response of the zero-order hold, is 
the transfer function of the zero-order hold. Using an impulse at zero time, the 
transform of the resulting step that starts at t = 0 and ends at t = T is 

Gh(s) = 
1-e -Ts 

(13.8) 

In a physical system, samples of the input time waveform, /(kT), are held over 
the sampling interval. We can see from Eq. (13.8) that the hold circuit integrates the 
input and holds its value over the sampling interval. Since the area under the delta 
functions coming from the ideal sampler is f(kT), we can then integrate the ideal 
sampled waveform and obtain the same result as for the physical system. In other 
words, if the ideal sampled signal, f*{t), is followed by a hold, we can use the ideal 
sampled waveform as the input, rather than f*Tw{t). 

In this section, we modeled the digital computer by cascading two elements: 
(1) an ideal sampler and (2) a zero-order hold. Together, the model is known as a 
zero-order sample-and-hold. The ideal sampler is modeled by Eq. (13.7), and the 
zero-order hold is modeled by Eq. (13.8). In the next section, we start to create a 
transform approach to digital systems by introducing the z-transform. 

( 13.3 The z-Transform 
The effect of sampling within a system is pronounced. Whereas the stability and 
transient response of analog systems depend upon gain and component values, 
sampled-data system stability and transient response also depend upon sampling 
rate. Our goal is to develop a transform that contains the information of sampling 
from which sampled-data systems can be modeled with transfer functions, analyzed, 
and designed with the ease and insight we enjoyed with the Laplace transform. We 
now develop such a transform and use the information from the last section to obtain 
sampled-data transfer functions for physical systems. 
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Equation (13.7) is the ideal sampled waveform. Taking the Laplace transform 
of this sampled time waveform, we obtain 

r® = £/(*?> - * 7 A -

k=0 

Now, letting z = els, Eq. (13.9) can be written as 

F(z) = 1£f(kT)z -* 

(13.9) 

(13.10) 

Equation (13.10) defines the z-transform. That is, an F{z) can be transformed 
to f(kT), or an f(kT) can be transformed to F(z). Alternately, we can write 

f{kT)±=_F{z) (13.11) 

Paralleling the development of the Laplace transform, we can form a table relating 
f(kT), the value of the sampled time function at the sampling instants, to F(z). Let 
us look at an example. 

Example 13.1 

z-Transform of a Time Function 

PROBLEM: Find the z-transform of a sampled unit ramp. 

SOLUTION: For a unit ramp, f{kT) = kT. Hence the ideal sampled step can be 
written from Eq. (13.7) as 

Taking the Laplace transform, we obtain 
oo 

F*(s) = Yl kTe~kTs 

k=0 

Converting to the z-transform by letting e~kTs = z~k, we have 

F(z) = J2 kTz~k = T J2 kt~k = T{z~l + 2z~2 3z - 3 
•) 

(13.12) 

(13.13) 

(13.14) 

Equation (13.14) can be converted to a closed form by forming the series for zF(z) 
and subtracting F(z). Multiplying Eq. (13.14) by z, we get 

zi7(z) = r ( l+2z - 1 +3z~ 2 + ---) 

Subtracting Eq. (13.14) from Eq. (13.15), we obtain 

zF(z) - F(z) = (Z - l)F(z) = r ( l + z-1 + z-2 + 

But 

1 
1 - z -1 = l + z_1 +z~z + z . - 3 

(13.15) 

(13.16) 

(13.17) 
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Symbolic Math 

which can be verified by performing the indicated division. Substituting Eq. (13.17) 
into (13.16) and solving for F(z) yields 

F(z) = T 
z-iy 

(13.18) 

as the z-transform of f(kT) = kT. 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run chl3spl in Appendix F located at www.wiley.com/ 
college/nise. You will learn how to find the z-transform of time 
functions. Example 13.1 will be solved using MATLAB and the 
Symbolic Math Toolbox. 

The example demonstrates that any function of s, F*(s), that represents a 
sampled time waveform can be transformed into a function of z, F(z). The final 
result, F(z) = Tz/(z -1)2, is in a closed form, unlike F*(s). If this is the case for 
numerous other sampled time waveforms, then we have the convenient transform 
that we were looking for. In a similar way, ^-transforms for other waveforms can be 
obtained that parallel the table of Laplace transforms in Chapter 2. A partial table of 
z-transforms is shown in Table 13.1, and a partial table of z-transform theorems is 

TABLE 13.1 Partial table of z- and ^-transforms 

1. 

2. 

3. 

4. 

5. 

6 

7. 

8. 

9. 

/(') 

u® 

t 

f 

e-at 

fg-w 

sin cot 

cos cot 

e_fl'sin cot 

e_f"cos cot 

F(s) 

1 
s 

1 
S2 

sn+\ 

1 
s + a 

n\ 

(s + aT+* 

0) 

s2 + co2 

s 
S2 + C02 

CO 

(s + a)2 + co2 

s + a 

F(z) f(kT) 

z 
z~] 

u(kT) 

Tz kT 
(z -1)2 

dn 

lim(-l)"-f-
a-̂ ir ; dan 

z 
z - e-"T 

z 
z - e-aT 

d" (-If 4½ v ' da" 
z 

z - e~aT 

z sin coT 
z2 - 2z cos coT + 1 

{kTf 

e-akT 

(kT)ne-akT 

sin cokT 

Z(Z~ COS (oT) rnsmlcT 

z2 — IzcoscoT + 1 

ze~aTsin coT „-**rs i n ,„ f c r 

z2 - 2ze-"TcoscoT + e-2"7 

z2-ze~aT cos coT P-"kTc^(likT 

(S + 0^+0)2 z2 - 2ze-"T cos coT + e~2aT 

http://www.wiley.com/
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TABLE 13.2 z-transform theorems 

1. 

2. 

3. 

4, 

5. 

6. 

7. 

Theorem 

z{af{t)} = aF{z) 

z{h(t)+f2(t)} = Fx(z) + 
z{e-aTf(t)} = F(eaTz) 

z{f(t-nT)} = z-"F(z) 

z{tfm-TZ
dF

df 
/ (0) = lim F(z) 

f(oo) = lim(l-Z-l)F(z) 

Fi(z) 

Name 

Linearity theorem 

Linearity theorem 

Complex differentiation 

Real translation 

Complex differentiation 

Initial value theorem 

Final value theorem 

Note: kT may be substituted for t in the table. 

shown in Table 13.2. For functions not in the table, we must perform an inverse 
Z-transform calculation similar to the inverse Laplace transform by partial-fraction 
expansion. Let us now see how we can work in the reverse direction and find the time 
function from its z-transform. 

The Inverse z-Transform 
Two methods for finding the inverse z-transform (the sampled time function from its 
z-transform) will be described: (1) partial-fraction expansion and (2) the power 
series method. Regardless of the method used, remember that since the z-transform 
came from the sampled waveform, the inverse z-transform will yield only the values 
of the time function at the sampling instants. Keep this in mind as we proceed, 
because even as we obtain closed-form time functions as results, they are valid only 
at sampling instants. 

Inverse z-Transforms via Partial-Fraction Expansion Recall that the Laplace trans­
form consists of a partial fraction that yields a sum of terms leading to exponentials, 
that is, A/(s + a). Taking this lead and looking at Table 13.1, we find that sampled 
exponential time functions are related to their z-transforms as follows: 

e-^^^r (13.19) 

We thus predict that a partial-fraction expansion should be of the following form: 

F(Z) = - ^ - + - 5 i ~ + ... (13.20) 
Z - Zl Z - Z2 

Since our partial-fraction expansion of F(s) did not contain terms with s in the 
numerator of the partial fractions, we first form F(z)/z to eliminate the z terms in 
the numerator, perform a partial-fraction expansion of F(z)/z-, and finally 
multiply the result by z to replace the z's in the numerator. An example follows. 

Example 13.2 

Inverse z-Transform via Partial-Fraction Expansion 

PROBLEM: Given the function in Eq. (13.21), find the sampled time function. 
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Symbolic Math 

SOLUTION: Begin by dividing Eq. (13.21) by z and performing a partial-fraction 
expansion. 

Hz) 0.5 A 
+ 

B -2.5 
+ 

2.5 
z (z - 0.5)(z - 0.7) z - 0.5 z - 0.7 z - 0.5 z - 0.7 

Next, multiply through by z. 

0.5z -2.5z 2.5z 
F(z) = [z -0.5)(^-0.7) z - 0 . 5 z -0 .7 

(13.22) 

;i3.23) 

Using Table 13.1, we find the inverse z-transform of each partial fraction. Hence, 
the value of the time function at the sampling instants is 

f(kT) = -2.5(0.5)* + 2.5(0.7)* (13.24) 

Also, from Eqs. (13.7) and (13.24), the ideal sampled time function is 

OO PC 

f*(t) = ] T f{kT)8{t -kT) = ] T [-2-5(0.5)* + 2.5(0.7)*]5(f - kT) (13.25) 
k=-c lc=—oc 

If we substitute k = 0,1,2, and 3, we can find the first four samples of the ideal 
sampled time waveform. Hence, 

f*{t) = 08(t) + 0.5<5(r - T) + 0.65(̂  - 2T) + 0.5458{t - 3T) (13.26) 

Students who are performing the MATLAB exercises and want to 
explore the added capability of MATLAB's Symbolic Math Toolbox 
should now run chl3sp2 in Appendix F located at www.wiley.com/ 
college/nise . You will learn how to find the inverse z-transf orm 
of sampled time functions. Example 13.2 will be solved using 
MATLAB and the Symbolic Math Toolbox. 

Inverse z-Transf orm via the Power Series Method The values of the sampled time 
waveform can also be found directly from F{z). Although this method does not yield 
closed-form expressions for f{kT), it can be used for plotting. The method consists of 
performing the indicated division, which yields a power series for F(z). The power 
series can then be easily transformed into F*(s) and f*(t). 

Example 13.3 

Inverse z-Transform via Power Series 

PROBLEM: Given the function in Eq. (13.21), find the sampled time function. 

SOLUTION: Begin by converting the numerator and denominator of F{z) to 
polynomials in z. 

m= 0.5z 0.5z 
[z -0.5)(z-0.7) z2-1.2z + 0.35 

(13.27) 

http://www.wiley.com/
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Now perform the indicated division. 

0 . 5 ^ + 0 . 6 ^ + 0.5452-3 

z2-1.2z + 0.35)0.5z 
0.5Z-0.6 + 0.175Z-1 

0.6-0.175Z-1 

0 .6-0 .720^+0.21 
0.545Z-1 - 0.21 

Using the numerator and the definition of z, we obtain 

F*(s) = 03e-Ts + 0.6<T27* + QM5e~m + • • • 

from which 

f*{t) = 0.5S(t -T) + 0.68{t - IT) + 0.545S(r - 3 7 ) + ---

(13.28) 

(13.29) 

(13.30) 

You should compare Eq. (13.30) with Eq. (13.26), the result obtained via 
partial expansion. 

Skill-Assessment Exercise 13.1 

PROBLEM: Derive the z-transform for fit) = sin cot u(t). 

1 - 2z-1cos(ft>7j + z~2 

The complete solution is located at www.wiley.com/college/nise. 

wileyPLUS 

Control Solutions 

PROBLEM: Find f(kT) if F(z) = 

Skill-Assessment Exercise 13.2 
z(z + l)(z + 2) 

(z-0.5)(z-0.7)(z-0.9) ' 

68.875(0.9)* 

The complete solution is located at www.wiley.com/college/nise. 

ANSWER: f(kT) = 46.875(0.5)* - 114.75(0.7)* 

^ 13.4 Transfer Functions 
Now that we have established the z-transform, let us apply it to physical systems by 
finding transfer functions of sampled-data systems. Consider the continuous system 
shown in Figure 13.8 (a). If the input is sampled as shown in Figure 13.8(6), the output is 
still a continuous signal. If, however, we are satisfied with finding the output at the 
sampling instants and not in between, the representation of the sampled-data system 

http://www.wiley.com/college/nise
http://www.wiley.com/college/nise
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R(s) 
G(s) 

(«) 

R(S) ^ / c R IM 

o G(s) 

(b) 

C(s) 

C(s) 

FIGURE 13.8 Sampled-data 
systems: a. continuous; 
b. sampled input; c. sampled 
input and output 

-^/o^^ G(s) 
C(s) 

O 
C*(s) 

(c) 

Note: Phantom sampler is shown in color. 

can be greatly simplified. Our assumption is visually described in Figure 13.8(c), where 
the output is conceptually sampled in synchronization with the input by a phantom 
sampler. Using the concept described in Figure 13.8(c), we derive the pulse transfer 
function of G(s). 

Derivation of the Pulse Transfer Function 
Using Eq. (13.7), we find that the sampled input, r*(f), to the system of Figure 13.8(c) is 

r*(t) = Y,r(nT)8(t-nT) (13.31) 
n=0 

which is a sum of impulses. Since the impulse response of a system, G(s), is g(t), we 
can write the time output of G(s) as the sum of impulse responses generated by the 
input, Eq. (13.31). Thus, 

c(0 = £ r ( / i T ) g ( r - n r ) (13.32) 
n=0 

From Eq. (13.10), 

C(z) = J^c(kT)z -k (13.33) 
k=Q 

Using Eq. (13.32) with t = kT,we obtain 

oc 

c{kT) = Yjr{nT)g{kT-nT) 
n=0 

Substituting Eq. (13.34) into Eq. (13.33), we obtain 

DO OO 

-k 

(13.34) 

(13.35) 

*=o «=o 
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Letting m — k — n, we find 

c w = £ Y,r^nT^mT)z~(m+n) oc oo 

w+rt=0 «=0 

= {f^g(mT)z-m\\f2r(nT)z-n 

(13.36) 

,w=0 n=0 

where the lower limit, m + n, was changed to m. The reasoning is that m + n = 0 
yields negative values of m for all n > 0. But, since g(mT) = 0 for all m < 0, m is not 
less than zero. Alternately, g(t) = 0 for t < 0. Thus, n = 0 in the first sum's lower limit. 

Using the definition of the z-transform, Eq. (13.36) becomes 

C(z) = Y,8{mT)z-mY,r{nT)z-n = G(z)R(z) 
m=0 n=0 

(13.37) 

Equation (13.37) is a very important result, since it shows that the transform of the 
sampled output is the product of the transforms of the sampled input and the pulse 
transfer function of the system. Remember that although the output of the system is 
a continuous function, we had to make an assumption of a sampled output (phantom 
sampler) in order to arrive at the compact result of Eq. (13.37). 

One way of finding the pulse transfer function, G(z), is to start with G(s), find 
g(t), and then use Table 13.1 to find G(z). Let us look at an example. 

Example 13.4 

Converting G^(s) in Cascade with z.o.h. to G(z) 

PROBLEM: Given a z.o.h. in cascade with G\ {s) = {s + 2)/(s + 1) or 

1 - e~Ts {s + 2) 
G(*) = 

ft+i: 
(13.38) 

find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5 second. 

SOLUTION: Equation (13.38) represents a common occurrence in digital control 
systems, namely a transfer function in cascade with a zero-order hold. Specifically, 
Gi(s) = (s + 2)/(s 4-1) is in cascade with a zero-order hold, (1 - e~Ts)/s. We can 
formulate a general solution to this type of problem by moving the s in the 
denominator of the zero-order hold to G\{s), yielding 

G{s) = {l-e-T*)^-

from which 

G(z) = (1 - z'^z 
Gi(s)\ z - \ (Gi(s) 

(13.39) 

(13.40) 

Thus, begin the solution by finding the impulse response (inverse Laplace trans­
form) of Gi(s)/s. Hence, 

G2(s) = Gib) 5 + 2 B 

sis 

_A 
l) ~ 7 + s +1 

l 

s + l 
(13.41) 



738 Chapter 13 Digital Control Systems 

Trylt 13.1 
Use MATLAB, the Control 
System Toolbox, and the fol­
lowing statements to find 
G\ (s) in Example 13.4 given 
G(z) in Eq. (13.46) 

num=0.213; 
den=0 .607 ; 
k=l; 
T=0 . 5; 
Gz=zpk(num,den,K,T) 
Gs=d2c(Gz, , zoh ' ) 

MATLAB 

Symbolic Math 

Taking the inverse Laplace transform, we get 

g2(t)=2-e-< 

from which 

g2(kT) = 2-e-kt 

Using Table 13.1, we find 
2z z 

G2(z) = 
z-l z—e -T 

Substituting T = 0.5 yields 

G^s)) 2Z 
G2(z) = z 

From Eq. (13.40), 

z2 - 0.213z 

z-l z- 0.607 {z-l)(z~ 0.607) 

, . z-l z - 0.213 
G(z)= G2(z) = 

(13.42) 

(13.43) 

(13.44) 

(13.45) 

(13.46) z z - 0.607 
Students who are using MATLAB shouldnow run chl3pl in Appendix B. You 

will learn how to use MATLAB to convert G± (s) in cascade with a zero-

order hold to G(z). This exercise solves Example 13.4 using MATLAB. 

Students who are performing the MATLAB exercises and want to 

explore the added capability of MATLAB's Symbolic Math Toolbox 

should now run chl3sp3 in Appendix F located at www.wiley.com/ 

college/nise. MATLAB's Symbolic Math Toolbox yields an alterna­

tive method of finding the z-transform of a transfer function in 

cascade with a zero-order hold. Example 13 .4 will be solved using 

MATLAB and the Symbolic Math Toolbox with a method that follows 

closely the hand calculation shown in that example. 

MATLA8 

MATLAB 

MATLAB 

Students who are using MATLAB should now run chl3p2 in Appendix B. 

You will learn how to use MATLAB to convert G(s) toG(z) whenG(s) is 

not in cascade with a zero-order hold. This is the same as finding 

the z-transform of G(s) . 

Students who are using MATLAB shouldnow run chl3p3 in Appendix B. 

You will learn how to create digital transfer functions directly. 

Students who are using MATLAB should now run chl 3p4 in Appendix B. 

You will learn how to useMATLAB to convert G(z) to G(s) when G(s) is 

not in cascade with a zero-order hold. This is the same as finding 

the Laplace transform of G(z) . 

Trylt 13.2 

Use MATLAB, the Control 
System Toolbox, and the fol­
lowing statements to solve 
Skill-Assessment Exercise 13.3. 

Gs=zpk( [ ] , -4 , 8) 
Gz=c2d(Gs, 0 . 2 5 , ' z o h ' ) 

Skill-Assessment Exercise 13.3 

PROBLEM: Find G(z) for G(s) = 8/(s + 4) in cascade with a zero-
order sample and hold. The sampling period is 0.25 second. 

ANSWER: G(z) = 1.264/(z - 0.3679) 

The complete solution is located at www.wiley.com/college/nise. 

WileyPtUS 

Control Solutions 

http://www.wiley.com/
http://www.wiley.com/college/nise
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The major discovery in this section is that once the pulse transfer function, G(z), 
of a system is obtained, the transform of the sampled output response, C(z), for a given 
sampled input can be evaluated using the relationship C(z) — R(z)G(z). Finally, the 
time function can be found by taking the inverse ^-transform, as covered in Section 
13.3. In the next section, we look at block diagram reduction for digital systems. 

£ 13.5 Block Diagram Reduction 
Up to this point, we have defined the z-transform and the sampled-data system 
transfer function and have shown how to obtain the sampled response. Basically, we 
are paralleling our discussions of the Laplace transform in Chapters 2 and 4. We now 
draw a parallel with some of the objectives of Chapter 5, namely block diagram 
reduction. Our objective here is to be able to find the closed-loop sampled-data 
transfer function of an arrangement of subsystems that have a computer in the loop. 

When manipulating block diagrams for sampled-data systems, you must be careful 
to remember the definition of the sampled-data system transfer function (derived in the 
last section) to avoid mistakes. For example, z{Gi(s)G2{s)} ^ Gi(z)G2(z), where 
z{G\ (s)G2(s)} denotes the z-transform. The s-domain functions have to be multiplied 
together before taking the z-transform. In the ensuing discussion, we use the notation 
G{G2{s) to denote a single function that is G\(s)G2{s) after evaluating the product. 
Hence, z{Gi(S)G2(s)} = z{G1G2(s)} = GlG2{z) * Gl(z)G2(z). 

Let us look at the sampled-data systems shown in Figure 13.9. The sampled-
data systems are shown under the column marked s. Their z-transforms are shown 
under the column marked z. The standard system that we derived earlier is shown in 
Figure 13.9(a), where the transform of the output, C(z), is equal to R(z)G(z). This 
system forms the basis for the other entries in Figure 13.9. 

In Figure 13.9(6), there is no sampler between G\ (s) and G2 [s). Thus, we can think of 
a single function, G] (s)G2{s), denoted G\G%{$\ existing between the two samplers and 
yielding a single transfer function, as shown in Figure 13.9(a). Hence, the pulse transfer 
function is z{GiG2 (5)} = GiG2{z). The transform of the output, C(z) = R{z)GiG2{z). 

In Figure 13.9(c), we have the cascaded two subsystems of the type shown in Figure 
13.9(a). For this case, then, the z-transform is the product of the two z-transforms, or 
G2{z)G\(z). Hence the transform of the output C(z) = R(z)G2{z)G\ (z). 

flfeWff
0_Jg(^ 

R(s) 

c < ^ / o ^ 

Gx(s) 
/?(*)G,(s) . / " _ [/?(*)G,(s)]* | — 1 C(s) _/ _ C*(s) 

—O O • •• Gds) — ^ O Q » 

R(z) 

R(z) 

R(z) 

RGx(z) 

G{z) 

G2G\{z) 

G2(z)G](z) 

G2(z) 

C(z) 

C(z) 

C(z) 

C(z) 

(d) 
FIGURE 13.9 Sampled-data 
systems and their z-transforms 
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Finally, in Figure 13.9(d), we see that the continuous signal entering the 
sampler is R(s)Gi(s). Thus, the model is the same as Figure 13.9(a) with R(s) 
replaced by R(s)Gi(s), and G2(s) in Figure 13.9(d) replacing G(s) in Figure 13.9(a). 
The z-transform of the input to G2(s) is z{R(s)G1(s)} = z{i?Gi(s)} = RGi(z). The 
pulse transfer function for the system G2(s) is G2(z). Hence, the output 
C(z) = RG1{z)G2(z). 

Using the basic forms shown in Figure 13.9, we can now find the z-transform of 
feedback control systems. We have shown that any system, G(s), with sampled input 
and sampled output, such as that shown in Figure 13.9(a), can be represented as a 
sampled-data transfer function, G(z). Thus, we want to perform block diagram 
manipulations that result in subsystems, as well as the entire feedback system, that 
have sampled inputs and sampled outputs. Then we can make the transformation to 
sampled-data transfer functions. An example follows. 

Example 13.5 

Pulse Transfer Function of a Feedback System 

PROBLEM: Find the z-transform of the system shown in Figure 13.10(a). 

SOLUTION: The objective of the problem is to proceed in an orderly fashion, 
starting with the block diagram of Figure 13.10(a) and reducing it to the one shown 
in Figure 13.10(/). 

One operation we can always perform is to place a phantom sampler at the 
output of any subsystem that has a sampled input, provided that the nature of the 
signal sent to any other subsystem is not changed. For example in Figure 13.10(6), 
phantom sampler 54 can be added. The justification for this, of course, is that the 

R(s) + 
< / O 

51 
G(s) 

C(s) 

His) 

(«) 

a.s)sS QC*^), 

R{s}rS-R*(s) + 

o * 
FIGURE 13.10 Steps in block 
diagram reduction of a 
sampled-data system 
(figure continues) 

-0 
S3 

<mms) o ,v 
< / < 

si 
O G(s) 

c{S)^y c*(S) 

SA 

SI 

Note: Phantom samplers are shown in color. 
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R(z) + G(z) C(z) 

GH(z) 

id) 

R(z) 
1 + GH(z) G(z) C(z) R(z) 

(e) 

G(z) 
1 + GH(z) 

(/) 

C(z) 

output of a sampled-data system can only be found at the sampling instants 
anyway, and the signal is not an input to any other block. 

Another operation that can be performed is to add phantom samplers 52 and 
53 at the input to a summing junction whose output is sampled. The justification for 
this operation is that the sampled sum is equivalent to the sum of the sampled 
inputs, provided, of course, that all samplers are synchronized. 

Next, move sampler 51 and G(s) to the right past the pickoff point, as shown 
in Figure 13.10(c). The motivation for this move is to yield a sampler at the input of 
G(s)H(s) to match Figure 13.9(b). Also, G(s) with sampler 51 at the input and 
sampler 54 at the output matches Figure 13.9(a). The closed-loop system now has a 
sampled input and a sampled output. 

G(s)H(s) with samplers 51 and 53 becomes GH(z), and G(s) with samplers 51 
and 54 becomes G(z), as shown in Figure 13.10(d). Also, converting R*(s) to R(z) 
and C*(s) to C(z), we now have the system represented totally in the z-domain. 

The equations derived in Chapter 5 for transfer functions represented with 
the Laplace transform can be used for sampled-data transfer functions with only a 
change in variables from 5 to z. Thus, using the feedback formula, we obtain the first 
block of Figure 13.10(e). Finally, multiplication of the cascaded sampled-data 
systems yields the final result shown in Figure 13.10(f). 

FIGURE 13.10 (Continued) 

Skill-Assessment Exercise 13.4 

PROBLEM: Find T(z) = C(z)/R(z) for the system shown in Figure 13.11. 

R(s) T 6 

S £K/O— —̂  
C(s) 

FIGURE 13.11 Digital system 
for Skill-Assessment Exercise 
13.4 

ANSWER: T(z) = 
GiG2(z] 

l + HG1G2(z) 

The complete solution is located at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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This section paralleled Chapter 5 by showing how to obtain the closed-loop, 
sampled-data transfer function for a collection of subsystems. The next section 
parallels the discussion of stability in Chapter 6. 

¢13.6 Stability 
The glaring difference between analog feedback control systems and digital feed­
back control systems, such as the one shown in Figure 13.12, is the effect that the 
sampling rate has on the transient response. Changes in sampling rate not only 
change the nature of the response from overdamped to underdamped, but also can 
turn a stable system into an unstable one. As we proceed with our discussion, these 
effects will become apparent. You are encouraged to be on the lookout. 

We now discuss the stability of digital systems from two perspectives: 
(1) z-piane and (2) s-plane. We will see that the Routh-Hurwitz criterion can be 
used only if we perform our analysis and design on the s-plane. 

Digital System Stability via the z-Plane 
In the 5-plane, the region of stability is the left half-plane. If the transfer function, G(s), 
is transformed into a sampled-data transfer function, G(z), the region of stability on the 
z-plane can be evaluated from the definition, z — eTs. Letting s = m +jto, we obtain 

-. _ £Ts _ eT(a+ja)) _ eaTe'}u>T 

= eaT (cos coT + j sin coT) 
= eaTZa>T (13.47) 

since (cos coT +; ' sin coT) = IZ. coT. 
Each region of the s-plane can be mapped into a corresponding region on the 

z-plane (see Figure 13.13). Points that have positive values of a are in the right half 

FIGURE 13.12 A lathe using digital numerical control (© David J. Green—Industry/Alamy) 
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*-plane 

*-Re 

FIGURE 13.13 Mapping 
regions of the s-plane onto the 
z-plane 

of the i'-plane, region C. From Eq. (13.47), the magnitudes of the mapped points are 
eaT > 1. Thus points in the right half of the s-plane map into points outside the unit 
circle on the z-plane. 

Points on the yw-axis, region B, have zero values of a and yield points on the 
z-plane with magnitude — 1, the unit circle. Hence, points on the /<w-axis in the 
5-plane map into points on the unit circle on the z-plane. 

Finally, points on the s-plane that yield negative values of a a(left-half-plane 
roots, region A) map into the inside of the unit circle on the z-plane. 

Thus, a digital control system is (1) stable if all poles of the closed-loop transfer 
function, T(z), are inside the unit circle on the z-plane, (2) unstable if any pole is 
outside the unit circle and/or there are poles of multiplicity greater than one on the 
unit circle, and (3) marginally stable if poles of multiplicity one are on the unit circle 
and all other poles are inside the unit circle. Let us look at an example. 

Example 13.6 

Modeling and Stability 

PROBLEM: The missile shown in Figure 13.14(a) can be aerodynamically controlled 
by torques created by the deflection of control surfaces on the missile's body. The 
commands to deflect these control surfaces come from a computer that uses tracking 
data along with programmed guidance equations to determine whether the missile is 
on track. The information from the guidance equations is used to develop flight-
control commands for the missile. A simplified model is shown in Figure 13.14(6). 
Here the computer performs the function of controller by using tracking information 
to develop input commands to the missile. An accelerometer in the missile detects the 
actual acceleration, which is fed back to the computer. Find the closed-loop digital 
transfer function for this system and determine if the system is stable for K = 20 and 
K = 100 with a sampling interval of T = 0.1 second. 

SOLUTION: The input to the control system is an acceleration command developed 
by the computer. The computer can be modeled by a sample-and-hold. The s-plane 
model is shown in Figure 13.14(c). The first step in finding the z-plane model is to 
find G(z), the forward-path transfer function. From Figure 13.14(c) or (d), 

t f r ) - 1 - * " " * * , (13.48) 
s s(s + a) v ' 



744 Chapter 13 Digital Control Systems 

Control 
surfaces 
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FIGURE 13.14 Finding stability 
of a missile control system: 
a. missile; b. conceptual block 
diagram; c. block diagram; 
d. block diagram with 
equivalent single sampler 
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Hold 
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where a = 27. The z-transform, G(z), is (1 - z~l)z{Ka/[s2(s + a)]}. 
The term Ka/[s2(s -+- a)] is first expanded by partial fractions, after which we 

find the z-transform of each term from Table 13.1. Hence, 

Thus, 

Ka 
s2(s + a) 

= Kz 
s2(s + a 

Tz z/a 

^ 2 s s + a) 

z/a 1 
( z _ l ) 2 z - l ' z - e - ° r 

Tz (1 - e-"r)z 

( z - l ) 2 fl(z-l)(z-e-flT) 

G(z) = K 
T(z - e-aT) -{z-l) 

1-e -aT 

(z-l)(z-e-°T) 

(13.49) 

(13.50) 
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Letting T = 0.1 and a = 27, we have 
K(0.0655z +0.02783) 

O W - (Z-1)( ,-0.0672) (13"51) 

Finally, we find the closed-loop transfer function, r(z), for a unity feedback system: 

T(T)= gS*j *(0.0655z + 0.02783) 
W 1 + G(z) z2 + (0.0655A: -1.0672)^ + (0.02783^ + 0.0672) l ' ; 

The stability of the system is found by finding the roots of the denominator. 
For K = 20, the roots of the denominator are 0.12 ± /0.78. The system is thus stable 
for K = 20, since the poles are inside the unit circle. For K = 100, the poles are at 
-0.58 and -4.9. Since one of the poles is outside the unit circle, the system is 
unstable for K = 100. 

Students who are using MATLAB should now run chl3p5 in Appendix B. 
You will learn how to use MATLAB to determine the range of K for 
stability in a digital system. This exercise solves Example 13.6 
using MATLAB. 

MATLAB 

In the case of continuous systems, the determination of stability hinges upon 
our ability to determine whether the roots of the denominator of the closed-loop 
transfer function are in the stable region of the s-plane. The problem for high-order 
systems is complicated by the fact that the closed-loop transfer function denomina­
tor is in polynomial form, not factored form. The same problem surfaces with closed-
loop sampled-data transfer functions. 

Tabular methods for determining stability, such as the Routh-Hurwitz method 
used for higher-order continuous systems, exist for sampled-data systems. These 
methods, which are not covered in this introductory chapter to digital control systems, 
can be used to determine stability in higher-order digital systems. If you wish to go 
further into the area of digital system stability, you are encouraged to look at Raible's 
tabular method or Jury's stability test for determining the number of a sampled-data 
system's closed-loop poles that exist outside the unit circle and thus indicate instability.2 

The following example demonstrates the effect of sampling rate on the stability 
of a closed-loop feedback control system. All parameters are constant except for the 
sampling interval, T. We will see that varying T will lead us through regions of 
stability and instability just as though we were varying the forward-path gain, K. 

Example 13.7 

Range of rfor Stability 

PROBLEM: Determine the range of sampling interval, T, that will make the system 
shown in Figure 13.15 stable, and the range that will make it unstable. 

SOLUTION: Since H(s) = 1, the z-transform of the closed-loop system, T(z), is 
found from Figure 13.10 to be 

^ = 1 ¾ (13-53) 

'• A discussion of Raible's tabular method and Jury's stability test can be found in Kuo (1980:278-286). 
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FIGURE 13.15 Digital system 
for Example 13.7 
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To find G(z), first find the partial-fraction expansion of G(s). 

1 - e~Ts 

G(s) = 10 , * v s(s + l) 

Taking the z-transform, we obtain 

= 1 0 ^ - ^ 6 - J T T ) <13-54) 

G(z) = lQ(z-l) 
z - 1 z — e~T = 10 

(1-e ~T\ 

- e-T> z-e 

Substituting Eq. (13.55) into (13.53) yields 

10(1 -e~T) 
T(z) = z- ( l le -T-- lO) 

(13.55) 

(13.56) 

The pole of Eq. (13.56), (lie"-7" — 10), monotonically decreases from +1 to -1 for 
0 < T < 0.2. For 0.2 < T < oo, ( l l<r r - 10) monotonically decreases from - 1 to 
—10. Thus, the pole of T(z) will be inside the unit circle, and the system will be 
stable if 0 < T < 0.2. In terms of frequency, where / = 1/7, the system will be 
stable as long as the sampling frequency is 1/0.2 = 5 hertz or greater. 

We now have found, via the z-plane, that sampled systems are stable if their 
poles are inside the unit circle. Unfortunately, this stability criterion precludes the 
use of the Routh-Hurwitz criterion, which detects roots in the right half-plane rather 
than outside the unit circle. However, another method exists that allows us to use the 
familiar s-plane and the Routh-Hurwitz criterion to determine the stability of a 
sampled system. Let us introduce this topic. 

Bilinear Transformations 
Bilinear transformations give us the ability to apply our s-plane analysis and design 
techniques to digital systems. We can analyze and design on the s-plane as we have 
done in Chapters 8 and 9 and then, using these transformations, convert the results to 
a digital system that contains the same properties. Let us look further into this topic. 

We can consider z — eT& and its inverse, s = (l/T) In z, as the exact transfor­
mations between z and s. Thus, if we have G(z) and substitute z = eTs, we obtain 
G(eTs) as the result of converting to s. Similarly, if we have G(s) and substitute 
5 = (l/7)ln z, we obtain G((l/7)ln z) as the result of converting to z. Unfortunately, 
both transformations yield transcendental functions, which we of course take care of 
through the rather complicated z-transform. 

What we would like is a simple transformation that would yield linear 
arguments when transforming in both directions (bilinear) through direct substitu­
tion and without the complicated z-transform. 

Bilinear transformations of the form 

z -
as + b 
cs-\-d 

(13.57) 
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and its inverse, 

s = 
-dz + b 
cz — a 

(13.58) 

have been derived to yield linear variables in s and z. Different values of a, b, c, and d 
have been derived for particular applications and yield various degrees of accuracy 
when comparing properties of the continuous and sampled functions. 

For example, in the next subsection we will see that a particular choice 
of coefficients will take points on the unit circle and map them into points on 
the /<w-axis. Points outside the unit circle will be mapped into the right half-plane, and 
points inside the unit circle will be mapped into the left half-plane. Thus, we will be 
able to make a simple transformation from the z-plane to the 5-plane and obtain 
stability information about the digital system by working in the 5-plane. 

Since the transformations are not exact, only the property for which they are 
designed can be relied upon. For the stability transformation just discussed, we 
cannot expect the resulting G(s) to have the same transient response as G(z). 
Another transformation will be covered that will retain that property. 

Digital System Stability via the s-Plane 
In this subsection, we look at a bilinear transformation that maps ;'<w-axis points on 
the 5-plane to unit-circle points on the z-plane. Further, the transformation maps 
right-half-plane points on the 5-plane to points outside the unit circle on the £-plane. 
Finally, the transformation maps left-half-plane points on the 5-plane to points 
inside the unit circle on the z-plane. Thus, we are able to transform the denominator 
of the pulsed transfer function, D(z), to the denominator of a continuous transfer 
function, D(s), and use the Routh-Hurwitz criterion to determine stability. 

The bilinear transformation 

and its inverse 

s -

z 

z + l 
z - \ 

5 + 1 
5 - 1 

(13.59) 

(13.60) 

perform the required transformation (Kuo, 1995). We can show this fact as follows: 
Letting s = a+ jco and substituting into Eq. (13.60), 

{a+ 1)+jco 
z = 

from which 

a - 1) + jco 

yJ{a + l)2+co2 

a-V W 

Thus, 

\z\ < 1 when a < 0 

\z\ > 1 when a > 0 

:i3.6i) 

(13.62) 

(13.63a) 

(13.63b) 
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and 
\z\ = 1 when a = 0 (13.63c) 

Let us look at an example that shows how the stability of sampled systems can be 
found using this bilinear transformation and the Routh-Hurwit criterion. 

Example 13.8 

Stability via Routh-Hurwitz 

PROBLEM: Given T(z) = N{z)/D(z), where D(z) = z3 - z2 - 0.2z + 0.1, use the 
Routh-Hurwitz criterion to find the number of z-plane poles of T(z) inside, outside, 
and on the unit circle. Is the system stable? 

SOLUTION: Substitute Eq. (13.60) into D{z) = 0 and obtain3 

53 - 1¾2 - 45s - 17 = 0 (13.64) 

The Routh table for Eq. (13.64), Table 13.3, shows one root in the right-half-
plane and two roots in the left-half-plane. Hence, T(z) has one pole outside the unit 
circle, no poles on the unit circle, and two poles inside the unit circle. The system is 
unstable because of the pole outside the unit circle. 

TABLE 13.3 Routh table for Example 13.8 

1 

19 

-45.89 

-17 

-45 

-17 

WileyPLUS 

Control Solutions 

Skill-Assessment Exercise 13.5 

PROBLEM: Determine the range of sampling interval, T, that will make the system 
shown in Figure 13.16 stable. 

Hold Plant 

m + AT* r/„ . 
*V. r T 

l-e~Ts 

s 
— * » 20 

5 + 5 
m 

FIGURE 13.16 Digital system 
for Skill-Assessment 
Exercise 13.5 

ANSWER: 0 < T < 0.1022 second 

The complete solution is located at www.wiley.com/college/nise. 

3 Symbolic math software, such as MATLAB's Symbolic Math Toolbox, is recommended to reduce the 
labor required to perform the transformation. 

http://www.wiley.com/college/nise
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PROBLEM: Given T(z) = N(z)/D(z), where D{z) = z3 - z2 - 0.5z + 0.3, use the 
Routh-Hurwitz criterion to find the number of z-plane poles of T(z) inside, outside, 
and on the unit circle. Is the system stable? 

ANSWER: T(z) has one pole outside the unit circle, no poles on the unit circle, and 
two poles inside the unit circle. The system is unstable. 

The complete solution is located at www.wiley.com/college/nise. 

In this section, we covered the concepts of stability for digital systems. Both 
z- and s-plane perspectives were discussed. Using a bilinear transformation, we are 
able to use the Routh-Hurwitz criterion to determine stability. 

The highlight of the section is that sampling rate (along with system parame­
ters, such as gain and component values) helps to determine or destroy the stability 
of a digital system. In general, if the sampling rate is too slow, the closed-loop digital 
system will be unstable. We now move from stability to steady-state errors, paral­
leling our previous discussion of steady-state errors in analog systems. 

f 13.7 Steady-State Errors 
We now examine the effect of sampling upon the steady-state error for digital systems. 
Any general conclusion about the steady-state error is difficult because of the 
dependence of those conclusions upon the placement of the sampler in the loop. 
Remember that the position of the sampler could change the open-loop transfer 
function. In the discussion of analog systems, there was only one open-loop transfer 
function, G(s), upon which the general theory of steady-state error was based and from 
which came the standard definitions of static error constants. For digital systems, 
however, the placement of the sampler changes the open-loop transfer function and 
thus precludes any general conclusions. In this section, we assume the typical place­
ment of the sampler after the error and in the position of the cascade controller, and we 
derive our conclusions accordingly about the steady-state error of digital systems. 

Consider the digital system in Figure 13.17(a), where the digital computer is 
represented by the sampler and zero-order hold. The transfer function of the plant is 
represented by Gi(s) and the transfer function of the z.o.h. by (1 - e~Ts)/s. Letting G(s) 
equal the product of the z.o.h. and G\ (s), and using the block diagram reduction techniques 
for sampled-data systems, we can find the sampled error, E* (s) = E{z). Adding synchro­
nous samplers at the input and the feedback, we obtain Figure 13.17(6). Pushing G{s) 
and its input sampler to the right past the pickoff point yields Figure 13.17(c). Using 
Figure 13.9(a), we can convert each block to its z-transform, resulting in Figure 13.17(̂ /). 

From this figure, E(z) = R{z) - E(z)G(z), or 

^)=1¾ (13-65> 
The final value theorem for discrete signals states that 

e*{oo)=\im{l-Z-1)E{z) 
z-*\ 

(13.66) 

http://www.wiley.com/college/nise
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T T 

1 - e~Ts 

s 
—»- GM 

cid 

(a.) 

'<">• ^ o ^ ^ { g ) ^ c / « .£*(.?) 

T T 
G(s) 

-O 

(b) 

^k/o^L 

£*(*) 

-o G(s) -o 

</c^H C(.v) c.(w / 0 d i ) r 

r 
m 

FIGURE 13.17 a. Digital 
feedback control system for 
evaluation of steady-state errors; 
b. phantom samplers added; 
c. pushing G(s) and its samplers 
to the right past the pickoff 
point; d, z-transform 
equivalent system 

*fc) +fi 

— 
7) 

y 
E(z) 

G(z) 

C(r.) 
Qz) 

id) 

Note: Phantom samplers are shown in color. 

where e*(oo) is the final sampled value of e(t), or (alternatively) the final value of 

e(kT)4 

Using the final value theorem on Eq. (13.65), we find that the sampled steady-
state error, e*(oo), for unity negative-feedback systems is 

e*(oo) = lim(l - z-l)E(z) = Hm(l - z~l) r ^ L 
z-ii z~*i l + y-r(z) 

(13.67) 

Equation (13.67) must now be evaluated for each input: step, ramp, and parabola. 

Unit Step Input 
For a unit step input, R(s) = l/s. From Table 13.1, 

* (* ) = - 1 

Substituting Eq. (13.68) into Eq. (13.67), we have 

1 
e*(oo) = 

I+ \im G{z) 
S-+1 

(13.68) 

(13.69) 

4 See Ogam (1987: 59) for a derivation. 
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Defining the static error constant, Kp, as 

we rewrite Eq. (13.69) as 

Kp=limG(z) (13.70) 

(13.tr 

Unit Ramp Input 
For a unit ramp input, R(z) = Tz/{z - 1 ) - Following the procedure for the step 
input, you can derive the fact that 

e*(oo) = 
& 

(13.72) 

where 

Kv = Lim(z-l)G(z) 
1 z-»l 

(13.73) 

Unit Parabolic Input 
For a unit parabolic input, R{z) = T2z/{z + l)/[2(z - 1)3]. Similarly, 

e*(oo) = 
Ka 

where 

Ka=±]im(z-l)2G(z) 
T z—i 

(13.74) 

[13.75) 

Summary of Steady-State Errors 
The equations developed above for e*(oo), Kp, Kv, and Ka are similar to the 
equations developed for analog systems. Whereas multiple pole placement at the 
origin of the .y-plane reduced steady-state errors to zero in the analog case, we can 
see that multiple pole placement at z = 1 reduces the steady-state error to zero for 
digital systems of the type discussed in this section. This conclusion makes sense 
when one considers that s = 0 maps into z = 1 under z = eTs. 

For example, for a step input, we see that if G(z) in Eq. (13.69) has one pole at 
z = 1, the limit will become infinite, and the steady-state error will reduce to zero. 

For a ramp input, if G(z) in Eq. (13.73) has two poles at z = 1, the limit will 
become infinite, and the error will reduce to zero. 

Similar conclusions can be drawn for the parabolic input and Eq. (13.75). Here, 
G(z) needs three poles at z = 1 in order for the steady-state error to be zero. Let us 
look at an example. 

13.tr
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MATLAB 

Example 13.9 

Finding Steady-State Error 

PROBLEM: For step, ramp, and parabolic inputs, find the steady-state error for the 
feedback control system shown in Figure 13.17(a) if 

SOLUTION: First find G(s), the product of the z.o.h. and the plant. 
"1 1 1 ^ - ¾ ¾ ^ ^ ^ + 1 

(13.77) 

The z-transform is then 

¢ ( 2 ) = 1 0 ( 1 - ^ 1 ) 

T 

Tz 

= 10 
z - 1 

z-lf z-l 

- 1 + * - 1 

+ -0~T 

z-e -T 

For a step input, 

Kp = lim G(z) = oo; e*(oo) = 

For a ramp input, 

K 

For a parabolic input, 

* - i l + K. 
= 0 

/Cv = i l im(z- l )G(z) = 10; e*(oo) = ^ = 0.1 
K, 

1 1 

(13.78) 

(13.79) 

(13.80) 

(13.81) K a ~ l i m ( z - l ) 2 G ( z ) = 0 ; e*(oo)=-±- = oc 

You will notice that the answers obtained are the same as the results obtained 
for the analog system. However, since stability depends upon the sampling interval, 
be sure to check the stability of the system after a sampling interval is established 
before making steady-state error calculations. 

Students who are using MATLAB should now run chl3p6 in Appendix B. 
You will learn how to use MATLAB to determine Kp, Kv, and Ka in a 
digital system as well as check the stability. This exercise 
solves Example 13.9 using MATLAB. 

WileyPLUS 

Control Solutions 

Skill-Assessment Exercise 13.7 

PROBLEM: For step, ramp, and parabolic inputs, find the steady-state error for the 
feedback control system shown in Figure 13.17(a) if 

20(5 + 3) 
G l ( i ) = (, + 4)(, + 5) 

Let T = 0.1 second. Repeat for T = 0.5 second. 

ANSWER: F o r i = 0.1second,Kp = 3, Kv = 0,and#fl = 0;for7/ = 0.5second,the 
system is unstable. 

The complete solution is located at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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In this section, we discussed and evaluated the steady-state error of digital 
systems for step, ramp, and parabolic inputs. The equations for steady-state error 
parallel those for analog systems. Even the definitions of the static error constants 
were similar. Poles at the origin of the s-plane for analog systems were replaced with 
poles at +1 on the z -plane to improve the steady-state error. We continue our 
parallel discussion by moving into a discussion of transient response and the root 
locus for digital systems. 

^ 13.8 Transient Response on the /-Plane 
Recall that for analog systems a transient response requirement was specified by 
selecting a closed-loop, s-plane pole. In Chapter 8, the closed-loop pole was on the 
existing root locus, and the design consisted of a simple gain adjustment. If the 
closed-loop pole was not on the existing root locus, then a cascade compensator was 
designed to reshape the original root locus to go through the desired closed-loop 
pole. A gain adjustment then completed the design. 

In the next two sections, we want to parallel the described analog methods and 
apply similar techniques to digital systems. For this introductory chapter, we will 
parallel the discussion through design via gain adjustment. The design of compen­
sation is left to you to pursue in an advanced course. 

Chapter 4 established the relationships between transient response and the 
5-plane. We saw that vertical lines on the s-plane were lines of constant settling time, 
horizontal lines were lines of constant peak time, and radial lines were lines of 
constant percent overshoot. In order to draw equivalent conclusions on the z-plane, 
we now map those lines through z = esT. 

The vertical lines on the s-plane are lines of constant settling time and are 
characterized by the equation s — a\ + joy, where the real part, o\ = —4/Ts, is constant 
and is in the left-half-plane for stability. Substituting this into z — esT, we obtain 

z = e<nTeJ0T = riei<oT ( 1 3 8 2 ) 

Equation (13.82) denotes concentric circles of radius rx. If o\ is positive, the circle has 
a larger radius than the unit circle. On the other hand, if a\ is negative, the circle has a 
smaller radius than the unit circle. The circles of constant settling time, normalized to 
the sampling interval, are shown in Figure 13.18 with radius eaxT = e~4^T^T\ Also, 
Ts/T = -4/ ln(r) , where r is the radius of the circle of constant settling time. 

The horizontal lines are lines of constant peak time. The lines are characterized 
by the equation s = 0 + jco\, where the imaginary part, co\ =TZ/TP, is constant. 
Substituting this into z = esT, we obtain 

z = eoTemT = e°Tej8x ( 1 3 8 3 ) 

Equation (13.83) represents radial lines at an angle of 9\.\fa is negative, that section 
of the radial line lies inside the unit circle. If a is positive, that section of the radial 
line lies outside the unit circle. The lines of constant peak time normalized to the 
sampling interval are shown in Figure 13.18. The angle of each radial line is 
coiT = 0i = 7t/(Tp/T), from which Tp/T = n/di. 

Finally, we map the radial lines of the s-plane onto the z-plane. Remember, 
these radial lines are lines of constant percent overshoot on the s-plane. From Figure 
13.19, these radial lines are represented by 

°- = -tan(sin-V) = - * _ (13.84) 



754 Chapter 13 Digital Control Systems 

FIGURE 13.18 Constant 
damping ratio, normalized 
settling time, and normalized 
peak time plots on the z-plane 

Hence, 

s = a +jco = -co-
C 

+ ja> 
yfi-f 

Transforming Eq. (13.85) to the z-plane yields 

Z = esT = e^&^e** = e T ^ W 1 ^ 1 ) ZcoT 

[13.85) 

(13.86) 

Constant percent 
overshoot line 

s= a + jco 

FIGURE 13.19 Thes -p lane 
sketch of constant percent 
overshoot line 

i-plane 
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Thus, given a desired damping ratio, £, Eq. (13.86) can be plotted on the z-plane 
through a range of a>Tas shown in Figure 13.18. These curves can then be used as 
constant percent overshoot curves on the z-plane. 

This section has set the stage for the analysis and design of transient 
response for digital systems. In the next section, we apply the results to digital 
systems using the root locus. 

m + 

( 13.9 Gain Design on the z-Plane 
In this section, we plot root loci and determine the gain required for stability 
as well as the gain required to meet a transient response requirement. Since 
the open-loop and closed-loop transfer functions for the generic digital 
system shown in Figure 13.20 are identical to the continuous system except 
for a change in variables from s to z, we can use the same rules for plotting a 
root locus. 

However, from our previous discussion, the region of stability on the 
z-plane is within the unit circle and not the left half-plane. Thus, in order to 
determine stability, we must search for the intersection of the root locus with the unit 
circle rather than the imaginary axis. 

In the last section, we derived the curves of constant settling time, peak time, 
and damping ratio. In order to design a digital system for transient response, we find 
the intersection of the root locus with the appropriate curves as they appear on the z-
plane in Figure 13.18. Let us look at the following example. 

*<& G(z) 
C(z) 

H(z) 

FIGURE 13.20 Generic digital feedback 
control system 

Example 13.10 

Stability Design via Root Locus 

PROBLEM: Sketch the root locus for the system shown in Figure 13.21. Also, 
determine the range of gain, K, for stability from the root locus plot. 

m it>) 
*Vy 

1 

K(z+l) 
(2-1 )(z-0.5) 

C(z) 
FIGURE 13.21 Digital 
feedback control for 
Example 13.10 

SOLUTION: Treat the system as if z were s, and sketch the root locus. The result is 
shown in Figure 13.22. Using the root locus program discussed in Appendix H.2 at 
www.wiley.com/college/nise, search along the unit circle for 180°. Identification of 
the gain, K, at this point yields the range of gain for stability. Using the program, we 
find that the intersection of the root locus with the unit circle is 1Z60°. The gain at 
this point is 0.5. Hence, the range of gain for stability is 0 < K < 0.5. 

Students who are using MATLAB should now run chl3p7 in Appendix B . 
You will learn how to use MATLAB to plot a root locus on the z-plane 
as well as superimpose the unit circle. You will learn how to 
select interactively the intersection of the root locus and the 
unit circle to obtain the value of gain for stability. This 
exercise solves Example 13.10 using MATLAB. 

MATLAB 

http://www.wiley.com/college/nise
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2-plane 

1.50 

Unit circle 

Root locus 

3.00 Re 

-3.00 -

FIGURE 13.22 Root locus for the system of Figure 13.21 

In the next example, we design the value of gain, K, in Figure 13.21 to meet a 
transient response specification. The problem is handled similarly to the analog system 
design, where we found the gain at the point where the root locus crossed the specified 
damping ratio, settling time, or peak time curve. In digital systems, these curves are as 
shown in Figure 13.18. In summary, then, draw the root locus of the digital system and 
superimpose the curves of Figure 13.18. Then find out where the root locus intersects the 
desired damping ratio, settling time, or peak time curve and evaluate the gain at that 
point. In order to simplify the calculations and obtain more accurate results, draw a radial 
line through the point where the root locus intersects the appropriate curve. Measure the 
angle of this line and use the root locus program in Appendix H.2 at www.wiley.com/ 
college/nise to search along this radial line for the point of intersection with the root locus. 

Example 13.11 

Transient Response Design via Gain Adjustment 

PROBLEM: For the system of Figure 13.21, find the value of gain, K, to yield a 
damping ratio of 0.7. 

SOLUTION: Figure 13.23 shows the constant damping ratio curves superimposed 
over the root locus for the system as determined from the last example. Draw a 
radial line from the origin to the intersection of the root locus with the 0.7 damping 
ratio curve (a 16.62° line). The root locus program discussed in Appendix H.2 at 
www.wiley.com/college/nise can now be used to obtain the gain by searching along 
a 16.62° line for 180°, the intersection with the root locus. The results of the 
program show that the gain, K, is 0.0627 at 0.719 +/0.215, the point where the 0.7 
damping ratio curve intersects the root locus. 

http://www.wiley.com/
http://www.wiley.com/college/nise


13.9 Gain Design on the z-PIane 757 

Root locus 

«•» Re 

FIGURE 13.23 Root locus for 
the system of Figure 13.21 with 
constant 0.7 damping ratio 
curve 

We can now check our design by finding the unit sampled step response of the 
system of Figure 13.21. Using our design, K = 0.0627, along with R(z) = z/(z - 1), 
a sampled step input, we find the sampled output to be 

R(z)G{z) 0.0627z2 + 0.0627z 
C(z) = 1 + G{z) z3 - 2.4373z2 + 2z- 0.5627 

(13.87) 

Performmg the indicated division, we obtain the output valid at the sampling 
instants, as shown in Figure 13.24. Since the overshoot is approximately 5%, the 
requirement of a 0.7 damping ratio has been met. You should remember, however, 
that the plot is valid only at integer values of the sampling instants. 

Students who are using MATLAB should now run chl3p8 in Appendix B. 
You will learn how to use MATLAB to plot a root locus on the z-planeas 
well as superimpose a grid of damping ratio curves . You will learn 
how to obtain the gain and a closed-loop step response of a digital 
system after interactively selecting the operating point on the 
root locus. This exercise solves Example 13.11 using MATLAB. 

10 12 

Sampling instant 

Note: Valid only at integer values of sampling instant 

MATLAB 

FIGURE 13.24 Sampled step 
response of the system of 
Figure 13.21 with K = 0.0627 
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Trylt 13 .3 

Use MATLAB, the Control System 
Toolbox, and the following statements 
to solve Skill-Assessment Exercise 
13.8. 

G z = z p k ( - 0 . 5 , [ 0 . 2 5,0.75], . . . 

1, []) 
r l o c u s (Gz) 
z g r i d ( 0 . 5 , [ ]) 
[K, p] = r locf ind (Gz) 

Note: When the root locus appears, 
click on the intersection of the 0.5 
damping ratio curve and the root locus 
to calculate the gain. 

Skill-Assessment Exercise 13.8 

PROBLEM: For the system of Figure 13.20 where H(z) = 1 and 

K(z +0.5) 
{Z) (z-0.25)(z-0.75) 

find the value of gain, K, to yield a damping ratio of 0.5. 

ANSWER: K = 0.31 

The complete solution is at www.wiley.com/college/nise. 

Simulink 

Gui Toi 

MATLAB's Simulink provides an alternative method of simulating 
digital systems to obtain the time response. Students who are 
performing the MATLAB exercises and want to explore the added 
capability of Simulink should now consult Appendix C, MATLAB's 
Simulink Tutorial. Example C . 4 in the tutorial shows how to use 
Simulink to simulate digital systems. 

MATLAB's LTI Viewer provides another method of simulating digital 
systems to obtain the time response. Students who are performing 
the MATLAB exercises and want to explore the added capability of 
MATLAB's LTI Viewer should now consult Appendix E at www.wiley. 
com/college/nise, which contains a tutorial on the LTI Viewer as 
well as some examples. One of the illustrative examples, Example 
E. 5, finds the closed-loop step response of a digital system using 
the LTI Viewer. 

In this section, we used the root locus and gain adjustment to design the 
transient response of a digital system. This method suffers the same drawbacks as 
when it was applied to analog systems; namely, if the root locus does not intersect a 
desired design point, then a simple gain adjustment will not accomplish the design 
objective. Techniques to design compensation for digital systems can then be 
applied. 

( 13.10 Cascade Compensation via the s-Plane 
In previous sections of this chapter, we analyzed and designed digital systems 
directly in the z-domain up to and including design via gain adjustment. We are 
now ready to design digital compensators, such as those covered in Chapters 9 and 
11. Rather than continuing on this path of design directly in the z-domain, we depart 
by covering analysis and design techniques that allow us to make use of previous 
chapters by designing on the s-plane and then transforming our s-plane design to a 

http://www.wiley.com/college/nise
http://www.wiley
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digital implementation. We covered one aspect of s-plane analysis in Section 13.6, 
where we used a bilinear transformation to analyze stability. We now continue with 
s-plane analysis and design by applying it to cascade compensator design. Direct 
design of compensators on the z-plane is left for a dedicated course in digital control 
systems. 

Cascade Compensation 
In order to perform design in the s-plane and then convert the continuous 
compensator to a digital compensator, we need a bilinear transformation that 
will preserve, at the sampling instants, the response of the continuous compen­
sator. The bilinear transformation covered in Section 13.6 will not meet that 
requirement. A bilinear transformation that can be performed with hand 
calculations and yields a digital transfer function whose output response at 
the sampling instants is approximately the same as the equivalent analog 
transfer function is called the Tustin transformation. This transformation is 
used to transform the continuous compensator, Gc(s), to the digital compensa­
tor, Gc{z). The Tustin transformation is given by5 

(13.88) 

and its inverse by 

(13.89) 

As the sampling interval, T, gets smaller (higher sampling rate), the 
designed digital compensator's output yields a closer match to the analog 
compensator. If the sampling rate is not high enough, there is a discrepancy 
at higher frequencies between the digital and analog filters' frequency responses. 
Methods are available to correct the discrepancy, but they are beyond the scope 
of our discussion. The interested reader should investigate the topic of prewarp-
ing, covered in books dedicated to digital control and listed in the Bibliography 
at the end of this chapter. 

Astrom and Wittenmark {1984) have developed a guideline for selecting the 
sampling interval, T. Their conclusion is that the value of Tin seconds should be in 
the range 0.15/co^M to 0.5/co^M, where a><pM is the zero dB frequency (rad/s) of the 
magnitude frequency response curve for the cascaded analog compensator and 
plant. 

In the following example, we will design a compensator, Gc(s), to meet the 
required performance specifications. We will then use the Tustin transformation to 
obtain the model for an equivalent digital controller. In the next section, we will 
show how to implement the digital controller. 

5 See Ogata (1987: 315-318) for a derivation. 
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Example 13.12 

Digital Cascade Compensator Design 

PROBLEM: For the digital control system of Figure 13.25(a), where 

Gp{s)~ s(s + 6)(s + 10) 
(13.90) 

design a digital lead compensator, Gc{z), as shown in Figure 13.25(c), so that the 
system will operate with 20% overshoot and a settling time of 1.1 seconds. Create 
your design in the ^-domain and transform the compensator to the z-domain. 

Digital 
controller Plant 

m + Ms) £ 0 = * A/D Digital 
computer 

D/A GM 
C(s) 

compensator Plant 

R(s) + 7) m* P Gc(s) Gp(s) 
C(s) 

m 
Digital 

lead 
compensator 

Plant with 
sample-and-hold 

m + 7) £(z). P GM Gpiz) m 

(c) 

FIGURE 13.25 a. Digital control system showing the digital computer performing compen­

sation; b . continuous system used for design; c. transformed digital system 

SOLUTION: Using Figure 13.25(6), design a lead compensator using the techniques 
described in Chapter 9 or 11. The design was created as part of Example 9.6, where 
we found that the lead compensator was 

Gc(s) = 
1977'(s + 6) 
(s + 29.1) 

(13.91) 
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Using Eqs. (13.90) and (13.91), we find that the zero dB frequency, a>$M, for 
Gp(s)Gc(s) is 5.8 rad/s. Using the guideline described by Astrom and Wittenmark 
{1984), the lowest value of T should be in the range 0,15/6¾ = 0.026 to 0.5/w<j>M = 
0.086 second. Let us use T = 0.01 second. 

Substituting Eq. (13.88) into Eq. (13.91) with T = 0.01 second yields 

Gc(z) = 
1778z -1674 

z - 0.746 
(13.92) 

The z-transform of the plant and zero-order hold, found by the method discussed in 
Section 13.4 with T = 0.01 second, is 

GP{z) = 
(1.602 x lO 'V) + (6.156 x 10~7z) + (1.478 x 10~7) 

z3 - 2.847z2 + 2.699^ - 0.8521 
(13.93) 

The time response in Figure 13.26 (T = 0.01 s) shows that the compensated 
closed-loop system meets the transient response requirements. The figure also 
shows the response for a compensator designed with sampling times at the 
extremes of Astrom and Wittenmark's guideline. 

Students who are usingMATLAB should now run chl3p9 in Appendix B. 
You will learn how to use MATLAB to design a digital lead compen­
sator using the Tustin transformation. This exercise solves 
Example 13.12 usingMATLAB. 

MATLAB 

Time (seconds) 

Note: Valid only at integer values of sampling instant 

FIGURE 13.26 Closed-loop response for the compensated system of Example 13.12 
showing effect of three different sampling frequencies 
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WileyPLUS 

Control Solutions 

Skill-Assessment Exercise 13.9 

PROBLEM: In Example 11.3, a lead compensator was designed for a unity feed­
back system whose plant was 

G(s) = 
WOK 

s{s + 36){s + 100) 

The design specifications were as follows: percent overshoot = 20%, peak time 
0.1 second, and Kv = 40. In order to meet the requirements, the design yielded 
K = 1440 and a lead compensator, 

Ge{s) = 2.38 
^ + 25.3 
s + 60.2 

If the system is to be computer controlled, find the digital controller, Gc(z). 

7 - 0 975 
ANSWER: GAz) = 2.34 nnA„ , T = 0.001 second 

Z — 0.9416 

The complete solution is at www.wiley.com/college/nise. 

Now that we have learned how to design a digital cascade compensator, Gc(z), 
the next section will teach us how to use the digital computer to implement it. 

( 13.11 Implementing the Digital Compensator 
The controller, Gc(z), can be implemented directly via calculations within the digital 
computer in the forward path as shown in Figure 13.27. Let us now derive a 
numerical algorithm that the computer can use to emulate the compensator. We 
will find an expression for the computer's sampled output, x*(t), whose transforms 
are shown in Figure 13.27 as X{z). We will see that this expression can be used to 
program the digital computer to emulate the compensator. 

Consider a second-order compensator, Gc(z), 

Gc(z) = 
X{z) 
E{z) 

Q3Z3 + a2z
2 a\z + «o 

b2z
2 + b\z + b0 

(13.94) 

Cross-multiplying, 

{b2z
2 + bxz + b0)X(z) = («3z

3 + a2z
2 + fliz + a0)E(z) (13.95) 

Solving for the term with the highest power of z operating on the output, X(z), 

b2z
2X{z) = (a3z

3 + a2z
2 + mz + a0)E(z) - {bxz + b0)X{z) (13.96) 

FIGURE 13.27 Block diagram 
showing computer emulation 
of a digital compensator 

emu 

E(z) 

Computer 
lating compensator 

Gc(z) 
X(z) 

Plant with 
sample-and-hold 

G(z) 
Clzl 

http://www.wiley.com/college/nise
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e*(t) 

\ 

Delay 
Tseconds 

e-it-T) „ 

' 
Delay 

Tseconds 

e-{t-2D 

«2 

a, 

ao 
b2 

+ ' 

">\ . ^ 

9 .fvv - b2 

**(') 

Delay 
Tseconds 

% x'U-T) 

Delay 
Tseconds 

^ x*(t-2T) 

FIGURE 13.28 Flowchart for a 
second-order digital 
compensator (Reprinted with 
permission of John Wiley & 
Sons, Inc.) 

Dividing by the coefficient of X{z) on the left-hand side of Eq. (13.96) yields 

X{z) = a3 £ 2 , £i_ -i 
b2 b2 

%-> * < - ' l ^ - 1 + l ^ X{z) (13.97) 

Finally, taking the inverse z-transform, 

-f/(^n+f/(^f/(t-T)^{t~2T) 
-^x*(t-T)-^x*{t-2T) 

D2 b2 

(13.98) 

We can see from this equation that the present sample of the compensator output, 
x*(t), is a function of future (e*(f + T)) present (e*(t)) and past (e*(t-T)) and 
e*(t — 2T)) samples of e(t), along with past values of the output, x*(t — T) and 
x*(t — 2T). Obviously, if we are to physically realize this compensator, the output 
sample cannot be dependent upon future values of the input. Hence, to be 
physically realizable, «3 must equal zero for the future value of e{t) to be zero. 
We conclude that the numerator of the compensator's transfer function must be 
of equal or lower order than the denominator in order that the compensator be 
physically realizable. 

Now assume that a3 does indeed equal zero. Equation (13.98) now becomes 

*W-5'M+!*» 
bo 

T)+^-e*{t- 2T) - ^-x*(t - 7 ) - -^x*(t - 27) 
b2 kt bi 

(13.99) 

Hence, the output sample is a function of current and past input samples of the input 
as well as past samples of the output. Figure 13.28 shows the flowchart of the 
compensator from which a program can be written for the digital computer.6 The 
figure shows that the compensator can be implemented by storing several successive 
values of the input and output. The output is then formed by a weighted linear 
combination of these stored variables. Let us now look at a numerical example. 

6 For an excellent discussion on basic flowcharts to represent digital compensators, including the 
representation shown in Figure 13.28 and alternative flowcharts with half as many delays, see Chassaing 
(1999, pp. 135-143). 
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Example 13.13 

Digital Cascade Compensator Implementation 

PROBLEM: Develop a flowchart for the digital compensator defined by Eq. (13.100). 

X{z) z + 0.5 
Gc{z) = 

E(z) z2-0.5z + 0.7 

SOLUTION: Cross-multiply and obtain 

{z2 - 0.5z + 0.7)X{z) = (z + 0.5)E(z) 

Solve for the highest power of z operating on the output, X(z), 

z2X(z) = (z + 0.5)E(z) - (-0.5z + 0.7)X{z) 

Solving for X(z) on the left-hand side, 

X{z) = (z~l + 0.5Z-2)E(Z) - (-0.5Z"1 +0.7z-2)X(z) 

(13.100) 

(13.101) 

(13.102) 

(13.103) 

Implementing Eq. (13.103) with the flowchart of Figure 13.29 completes the design. 

FIGURE 13.29 Flowchart to 

implement Gc(z) = 
z2 - 0.5z + 0.7 

(Reprinted with permission of 
John Wiley & Sons, Inc.) 

e*{i) 

Delay 
Tseconds 

e*(t-T) 

Delay 
Tseconds 

e*(t-2T) 
0.5 

X*(t) 

V - -0.5 

0.7 

X* 

Delay 
T seconds 

t-T) 

Delay 
Tseconds 

x*{t-2T) 

Skill-Assessment Exercise 13.10 

PROBLEM: Draw a flowchart from which the compensator 

1899z2 - 376U + 1861 
C^Z'~ z2-1.908z +0.9075 

can be programmed if the sampling interval is 0.1 second. 

ANSWER: The complete solution is at www.wiley.com/college/nise. 

http://www.wiley.com/college/nise
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In this section, we learned how to implement a digital compensator. The 
resulting flowchart can serve as the design of a digital computer program for the 
computer in the loop. The design consists of delays that can be thought of as storage 
for each sampled value of input and output. The stored values are weighted and 
added. The engineer then can implement the design with a computer program. 

In the next section, we will put together the concepts of this chapter as we apply 
the principles of digital control system design to our antenna azimuth control system. 

Case Studies 

Antenna Control: Transient Design via Gain 
We now demonstrate the objectives of this chapter by turning to our ongoing 
antenna azimuth position control system. We will show where the computer is 
inserted in the loop, model the system, and design the gain to meet a transient 
response requirement. Later, we will design a digital cascade compensator. 

The computer will perform two functions in the loop. First, the computer will be 
used as the input device. It will receive digital signals from the keyboard in the form of 
commands, and digital signals from the output for closed-loop control. The keyboard 
will replace the input potentiometer, and an analog-to-digital (A/D) converter along 
with a unity gain feedback transducer will replace the output potentiometer. 

Figure 13.30(A) shows the original analog system, and Figure 13.30(6) shows 
the system with the computer in the loop. Here the computer is receiving digital 
signals from two sources: (1) the input via the keyboard or other tracking commands 
and (2) the output via an A/D converter. The plant is receiving signals from the digital 
computer via a digital-to-analog (D/A) converter and the sample-and-hold. 

Figure 13.30(6) shows some simplifying assumptions we have made. The 
power amplifier's pole is assumed to be far enough away from the motor's pole that 
we can represent the power amplifier as a pure gain equal to its dc gain of unity. 
Also, we have absorbed any preamplifier and potentiometer gain in the computer 
and its associated D/A converter. 

PROBLEM: Design the gain for the antenna azimuth position control system 
shown in Figure 13.30(6) to yield a closed-loop damping ratio of 0.5. Assume a 
sampling interval of T = 0.1 second. 

H*S* -
-3 

Pot 

0.64 

Preamj 

K 

Power 
amp 

100 
s+100 

Motor & loac 

—*- 2.083 
5(5+1.71) 

—̂  

Gears 

0.1 e„^ 

(a) 

Computer 
&D/A 

Power 
amp Motor & load Gears 

AID + (<?\ 
1 

Sample-and-
hold 

»• 1 2.083 
5(5+1.71) 

0.1 % 

(b) 

Design 

FIGURE 13.30 Antenna 
control system: a. analog 
implementation; b. digital 
implementation 



Chapter 13 Digital Control Systems 

SOLUTION: Modeling the System: Our first objective is to model the system in the 
z-domain. The forward transfer function, G(s), which includes the sample-and-
hold, power amplifier, motor and load, and the gears, is 

G(s) = 
1 - erTs 0.2083 0.2083 

( 1 - e 7V 

s s(s + a) 

where a = 1.71, and T = 0.1. 
Since the z-transform of (1 — e~Ts) is (1 - z~r 

z-transform of a/[s2 (s + a)] is 

(13.104) 
s2(s + a) 

and, from Example 13.6, the 

s2 0 + a] 
Tz {l-e-al)z 

( z -1 ) 2 a{z-l){z-e-aT) 
(13.105) 

the z-transform of the plant, G(z), is 

_, , 0.2083.. _! 

a 

0.2083 

a" 

s2(s-{ 

aT - ( 1 - e-aT] \z + [(1 - e-aT) - aTe~aT] 
(13.106) 

(13.107) 

(z-l)(z-e-"T) 

Substituting the values for a and T, we obtain 

_ 9.846 x 10~4(z + 0.945) 
W ~ ( z - l ) ( z - 0.843) 

Figure 13.31 shows the computer and plant as part of the digital feedback control 
system. 

Designing for Transient Response: Now that the modeling in the z-domain is 
complete, we can begin to design the system for the required transient response. We 
superimpose the root locus over the constant damping ratio curves in the z-plane, 
as shown in Figure 13.32. A line drawn from the origin to the intersection forms an 
8.58° angle. Searching along this line for 180°, we find the intersection to be 
(0.915 +/0.138), with a loop gain, 9.846 x 10"4#, of 0.0135. Hence, K = 13.71. 

Checking the design by finding the unit sampled step response of the closed-loop 
system yields the plot of Figure 13.33, which exhibits 20% overshoot (£ = 0.456). 

CHALLENGE: We now give you a case study to test your knowledge of this chapter's 
objectives: You are given the antenna azimuth position control system shown on 
the front endpapers, Configuration 2. Do the following: 

a. Convert the system into a digital system with T — 0.1 second. For the purposes 
of the conversion, assume that the potentiometers are replaced with unity gain 
transducers. Neglect power amplifier dynamics. 

b. Design the gain, K, for 16.3% overshoot. 

c. For your designed value of gain, find the steady-state error for a unit ramp input. 

d. Repeat Part b using MATLAB. 
Computer Plant = G(z) 

R(z) 
FIGURE 13.31 Analog 
antenna azimuth position 
control system converted to a 
digital system 

<&~ 
9.846 x 10-4^ + 0.945) 

(z-l)(z-0.843) 
C(-) 
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-0.2 -

-0.4 -

-0.6 -

0 3 4 5 6 
Time (seconds) 

Note: Valid only at integer values of sampling instant 

FIGURE 13.33 Sampled step response of the antenna 
azimuth position control system 

FIGURE 13.32 Root locus superimposed over constant 
damping ratio curve 

Antenna Control: Digital Cascade Compensator Design 
PROBLEM: Design a digital lead compensator to reduce the settling time by a 
factor of 2.5 from that obtained for the antenna azimuth control system in the 
previous Case Study problem in this chapter. 

SOLUTION: Figure 13.34 shows a simplified block diagram of the continuous 
system, neglecting power amplifier dynamics and assuming that the potentiometers 
are replaced with unity gain transducers as previously explained. 

We begin with an s-plane design. From Figure 13.33, the settling time is about 5 
seconds. Thus, our design requirements are a settling time of 2 seconds and a 
damping ratio of 0.5. The natural frequency is con = 4/(£T5) = 4rad/s. The com­
pensated dominant poles are located at — £a>„ ± jcon\/l — £2 = —2 ±/3.464. 

Designing a lead compensator zero to cancel the plant pole on the s-plane at 
—1.71 yields a lead compensator pole at - 4 . Hence the lead compensator is 
given by 

Gc(s) = 
1.71 

s + 4 
(13.108) 

Lead compensator Plant 

0,(.v) + <gH- KGc(s) 
0.2083 

5(5+1.71) 
M 

FIGURE 13.34 Simplified 
block diagram of antenna 
azimuth control system 
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Using root locus to evaluate the gain, K, at the design point yields 0.2083.K = 16, 
or K = 76.81. 

We now select an appropriate sampling frequency as described in Section 13.10. 
Using the cascaded compensator, 

76.81(. + 1.71) 

and plant, 

KGc{s) = 

GM = 

(. + 4) 

0.2083 

(13.109) 

(13.110) 

(13.111; 

. ( . + 1.71) 

the equivalent forward-path transfer function, Gc(s) = KGc(s)Gp(s), is 

Ge(s) = - ^ -
. ( . + 4) 

The magnitude frequency response of Eq. (13.111) is 0 dB at 3.1 rad/s. Thus, from 
Section 13.10, the value of the sampling interval, T, should be in the range 0.15/CD$M = 
0.05 to 0.5/&>4>M = 0.16 second. Let us choose a smaller value, say T = 0.025 second. 

Substituting Eq. (13.88) into Eq. (13.111), where T = 0.025, yields the digital 
compensator 

In order to simulate the digital system, we calculate the z-transform of the plant in 
Figure 13.34 in cascade with a zero-order sample-and-hold. The z-transform of the 
sampled plant is evaluated by the method discussed in Section 13.4 using 
T = 0.025. The result is 

i -5 

GP(z) = 
6.418 x lQ-°z + 6.327 x 10 

z 2 -1 .958* + 0.9582 

- 5 

(13.113) 

The step response in Figure 13.35 shows approximately 20% overshoot and a 
settling time of 2.1 seconds for the closed-loop digital system. 

FIGURE 13.35 Closed-loop 
digital step response for 
antenna control system with 
a lead compensator 

0 0.5 1 1.5 2 2.5 3 

Time (seconds) 

Note: Valid only at integer values of sampling instant 
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FIGURE 13.36 Flowchart for 
digital lead compensator. 
(Reprinted with permission of 
John Wiley & Sons, Inc.) 

We conclude the design by obtaining a flowchart for the digital compensator. Using 
Eq. (13.112), where we define KGc(z) = X(z)/E(z), and cross-multiplying yields 

(z - 0.9048)X(z) = (74.72z - 71.59)E(z) 

Solving for the highest power of z operating on X(z), 

zX{z) = (74.72z - 71.59)£(z) + 0.9048X(z) 

Solving for X(z), 

X{z) = (74.72 - 71.59^-1)^) + 0 .9048^¾^ 

Implementing Eq. (13.116) as a flowchart yields Figure 13.36. 

(13.114) 

(13.115) 

(13.116) 

CHALLENGE: You are now given a case study to test your knowledge of this 
chapter's objectives. You are given the antenna azimuth position control system 
shown on the front endpapers, Configuration 2. Replace the potentiometers with 
unity gain transducers, neglect power amplifier dynamics, and do the following: 

a. Design a digital lead compensator to yield 10% overshoot with a 1-second peak 
time. Design in the s-plane and use the Tustin transformation to specify and 
implement a digital compensator. Choose an appropriate sampling interval. 

b. Draw a flowchart for your digital lead compensator. 
C. Repea t P a r t a u s i n g MATLAB. 

MATLAB 

^ Summary j | 
In this chapter, we covered the design of digital systems using classical methods. 
State-space techniques were not covered. However, you are encouraged to pursue 
this topic in a course dedicated to sampled-data control systems. 

We looked at the advantages of digital control systems. These systems can 
control numerous loops at reduced cost. System modifications can be implemented 
with software changes rather than hardware changes. 

Typically, the digital computer is placed in the forward path preceding the plant. 
Digital-to-analog and analog-to-digital conversion is required within the system to 
ensure compatibility of the analog and digital signals throughout the system. The 
digital computer in the loop is modeled as a sample-and-hold network along with any 
compensation that it performs. 

Throughout the chapter, we saw direct parallels to the methods used for 
5-plane analysis of transients, steady-state errors, and the stability of analog systems. 
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The parallel is made possible by the z-transform, which replaces the Laplace 
transform as the transform of choice for analyzing sampled-data systems. The 
z-transform allows us to represent sampled waveforms at the sampling instants. 
We can handle sampled systems as easily as continuous systems, including block 
diagram reduction, since both signals and systems can be represented in the 
z-domain and manipulated algebraically. Complex systems can be reduced to a 
single block through techniques that parallel those used with the s-plane. Time 
responses can be obtained through division of the numerator by the denominator 
without the partial-fraction expansion required in the ^-domain. 

Digital systems analysis parallels the s-plane techniques in the area of stability. 
The unit circle becomes the boundary of stability, replacing the imaginary axis. 

We also found that the concepts of root locus and transient response are easily 
carried into the z-plane. The rules for sketching the root locus do not change. We can 
map points on the s-plane into points on the z-plane and attach transient response 
characteristics to the points. Evaluating a sampled-data system shows that the 
sampling rate, in addition to gain and load, determines the transient response. 

Cascade compensators also can be designed for digital systems. One method is 
to first design the compensator on the s-plane or via frequency response techniques 
described in Chapters 9 and 11, respectively. Then the resulting design is transformed 
to a digital compensator using the Tustin transformation. Designing cascade com­
pensation directly on the z-plane is an alternative method that can be used. 
However, these techniques are beyond the scope of this book. 

This introductory control systems course is now complete. You have learned 
how to analyze and design linear control systems using frequency-domain and state-
space techniques. This course is only a beginning. You may consider furthering your 
study of control systems by taking advanced courses in digital, nonlinear, and 
optimal control, where you will learn new techniques for analyzing and designing 
classes of systems not covered in this book. We hope we have whetted your appetite 
to continue your education in control systems engineering. 

^Review Questions ^ 
1. Name two functions that the digital computer can perform when used with 

feedback control systems. 

2. Name three advantages of using digital computers in the loop. 

3. Name two important considerations in analog-to-digital conversion that yield 
errors. 

4. Of what does the block diagram model for a computer consist? 

5. What is the z-transform? 

6. What does the inverse z-transform of a time waveform actually yield? 

7. Name two methods of finding the inverse z-transform. 

8. What method for finding the inverse z-transform yields a closed-form expression 
for the time function? 

9. What method for finding the inverse z-transform immediately yields the values 
of the time waveform at the sampling instants? 

10. In order to find the z-transform of a G(s), what must be true of the input and the 
output? 

11. If input R(z) to system G{z) yields output C(z), what is the nature of c(r)? 
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12. If a time waveform, c(t), at the output of system G(z) is plotted using the inverse 
z-transform, and a typical second-order response with damping ratio = 0.5 
results, can we say that the system is stable? 

13. What must exist in order for cascaded sampled-data systems to be represented 
by the product of their pulse transfer functions, G(z)? 

14. Where is the region for stability on the z-plane? 

15. What methods for finding the stability of digital systems can replace the Routh-
Hurwitz criterion for analog systems? 

16. To drive steady-state errors in analog systems to zero, a pole can be placed at the 
origin of the 5-plane. Where on the z-plane should a pole be placed to drive the 
steady-state error of a sampled system to zero? 

17. How do the rules for sketching the root locus on the z-plane differ from those for 
sketching the root locus on the 5-plane? 

18. Given a point on the z-plane, how can one determine the associated percent 
overshoot, settling time, and peak time? 

19. Given a desired percent overshoot and settling time, how can one tell which 
point on the z-plane is the design point? 

20. Describe how digital compensators can be designed on the 5-plane. 

21. What characteristic is common between a cascade compensator designed on the 
5-plane and the digital compensator to which it is converted? 

Problems 

+ z'2 + z - 3 

1. Derive the z-transforms for the time functions listed 
below. Do not use any z-transform tables. Use the 
plan/(f) -+ f*(t) -+ F*(s) -+ F{z), followed by con­
verting F(z) into closed form making use of the 
fact that 1 / ( 1 - ^ ) = 1 + ^ - 1 

Assume ideal sampling. [Section: 13.3] 

a. e-alu(t) 

b. u(t) 

c. t2e-alu(i) 

d. cos cot u{t) 

2. Repeat all parts of Problem 1 
using MATLAB and MATLAB's 
Symbolic Math Toolbox. 

3. For each F(z), find f{kT) using partial-fraction 
expansion. [Section: 13.3] 

z(z + 3)(z + 5) 

Symbolic Math 

a. F(z) = 

b. F{Z) = 

c F(z) = 

( z - 0 . 4 ) ( z - 0 . 6 ) ( z - 0 . 8 ) 

(z + 0.2)(z + 0.4) 

( z - 0 . 1 ) ( z - 0 . 5 ) ( z - 0 . 9 ) 

(z + l)(z + 0.3)(z + 0.4) 
z ( z - 0 . 2 ) ( z - 0 . 5 ) ( z - 0 . 7 ) 

4. Repea t a l l p a r t s of Problem 3 symbolicMaih 
u s i n g MATLAB and MATLAB's Sym- V L W 
b o l i c Math Toolbox. 

5. For each F(z) in Problem 3, do the following: 
[Section: 13.3] 

a. Find f(kT) using the power series expansion. 

b. Check your results against your answers from 
Problem 3. 

6. Using partial-fraction expansion and ^MJJ/-% 
Table 13.1, find the z-transform for each ' i T 
G(s) shown below if T = 0.5 second. 
[Section: 13.3] 

(s + 4) 
a. 

b. 

c. 

d. 

G(s) = 

G(s) = 

G(s) = 

G(s) = 

(s + 2){s + 5) 

(J+ 1)(J+ 2) 
5(5 + 3)(5 + 4) 

20 

{s + 3)(52 + 65 

15 
25) 

5(5+ 1)(52+ 105 +81 ; 
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7. Repea t a l l p a r t s of Problem 6 symbolic Math 
us ing MATLAB and MATLAB's Syra- ^ H f l M 
b o l i c Math Too lbox . 

8. Find G{z) = C(z)/R(z) for each of the block dia­
grams shown in Figure P13.1 if T = 0.3 second. 
[Section: 13.4] 

9. Find T(z) = C(z)/R(z) for each of the systems 
shown in Figure P13.2. [Section: 13.5] 

10. Find Ciz) in general terms for the digital system 
shown in Figure P13.3. [Section: 13.5] 

11. Find the closed-loop transfer function, T(z) = 
C(z)/R[z), for the system shown in Figure P13.4. 
[Section: 13.5] 

12. Given the system in Figure P13.5, wileypms 
find the range of sampling interval, > V W 
T, that will keep the system stable. control solutions 
[Section: 13.6] 
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r r 
Hold 

1 
< s + l ) 

C(s) 

FIGURE P13.5 

13. Write a MATLAB program that can MATLAB 

be used to find the range of sam- dlu^P 
pling time, T, for stability. The pro­
gram will be used for systems of the type 
represented in Figure P13.6 and should 
meet the following requirements: 

a. MATLAB will convert Gx(s) cascaded 

with a sample-and-hold to G{z) . 

b. The program will calculate the z-plane 
roots of the closed-loop system for a 
range of Tand determine the value of T, 
if any, below which the system will be 
stable. MATLAB will display this value 
of Talong with the z-plane poles of the 
closed-loop transfer function. 

R(s) +, 

i Sample-
and-hold 

C,(.v) 
C(s) 

FIGURE P13.6 

Test the program on 

10(s 
Gi(s) = 

7) 

> + l ) ( s + 3)(s+4)(s + 5; 

14. Find the range of gain, K, to make the system shown 
in Figure PI3.7 stable. [Section: 13.6] 

mf< 
Y. f T=0.2 

Hold 3K 
s(s + 4) 

C(s) 

FIGURE P13.7 

15. Find the static error constants and the 
steady-state error for each of the digital 
systems shown in Figure PI3.8 if the 
inputs are [Section: 13.7] 

a. u(f) 

b. tu{t) 

1 

2 

m*< 
m[Z V T = 0.5 

Hold 
1 

s + 2 

C(s) 

System I 

r r=o.i 
Hold 20 

s(s + 2) 

as) 

System 2 

R(z)+< 

- ? T=0.5 

1.28 
z - 0.37 

C(z) 

System 3 

?) fc 
f T=Q.l 

0.13(z+l) 
( z -DU-0 .74 ) 

az) R(z)+, 

System 4 

FIGURE P13.8 

16. Write a MATLAB program that can be MATLAB 

used to find Kpl Kv, and Ka for dig- flUB 
ital systems. The program will be used 
for systems of the type represented in 
Figure P13 . 6 . Test your program for 

G(z) = 
0.04406Z3 - 0.03624Z2 - 0.03284z + 0.02857 

z4 -3.394z3 + 4.2 9z2 - 2.393z+ 0.4 966 

where G(z) is the pulse transfer func­

tion for G(i)(s) in cascade with the z .o.h. 

and T = 0.1 second. 

c. 7 ¼ ) 

WileyPLUS 

(¾ 
control solutions 17. For the digital system shown in Figure P13.6, where 

Gx (s) = K/[{s + 1) x (s + 4)], find the value of K to 
yield a 16.3% overshoot. Also find the range of K 
for stability. Let 7/ = 0.1 second. [Section: 13.9] 

18. Use Simulink to simulate the step Simulink 

response for the system of Prob- ^01_J 

lem 17. Set the value of gain, K, to that 
designed in Probleml7 for 16.3% overshoot. 
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19. Use MATLAB's LTI Viewer to deter- JjuITo0' 

mine the peak time and settling ^ 1 ^ 

time of the closed-loop step response 

for System 4 in Figure P13 . 8 

20. Write a MATLAB program that can be MATLAB 

used to design the gain of a digi- V L U ^ P 

tal control system to meet a percent over­

shoot requirement. The program will be 

used for systems of the type represented 

in Figure Pi3.6 and meet the following 

requirements: 

a. The user will input the desired per­

cent overshoot. 

b. MATLAB will convert G1(s) cascaded 

with the sample-and-hold to G(z) . 

c. MATLAB will display the root locus on 

the z-plane along with an overlay of 

the percent overshoot curve. 

d. The user will click with the mouse at 

the intersection of the root locus and 

percent overshoot overlay and MATLAB 

will respond with the value of gain 

followed by a display of the step 

response of the closed-loop system. 

Apply your program to Problem 17 and 

compare results. 

21. For the digital system shown in Figure PI3.6, where 
Gi(s) = K/[s(s +1)] , find the value of K to yield a 
peak time of 2 seconds if the sampling interval, T, is 
0.1 second. Also, find the range of K for stability. 
[Section: 13.9] 

22. For the digital system shown in Figure wileypius 
P13.6, where' Gi(s) = K/[s(s + 1) WMH9 
(5 + 3)], find the value of K to yield a control solutions 
20% overshoot if the sampling interval, T, is 
0.1 second. Also, find the range of K for stability. 
[Section: 13.9] 

23. For the digital system shown in Figure P13.6, where 
Gi{s) = K(s + 2) + [$($ + 1)(5 + 3)], find the value 
of K to yield a settling time of 15 seconds if 
the sampling interval, T, is 1 second. Also, find 
the range of K for stability. [Section: 13.9] 

24. A PID controller was designed in Example 9.5 for a 
continuous system with unity feedback. The sys­
tem's plant was 

The designed PID controller was 

GAs) = 4.6 
(5 + 55.92)(5 + 0.5) 

Find the digital transfer function, Gc(z), of the PID 
controller in order for the system to be computer 
controlled if the sampling interval, T, is 0.01 second. 
[Section: 13.10] 

25. A continuous unity feedback system has wileyPLUs 
a forward transfer function of 

Control Solutions 

G W = 5(5 + 5)(5 + 8) 

The system is to be computer controlled with the 
following specifications: 

Percent overshoot: 10% 
Settling time: 2 seconds 
Sampling interval: 0:01 second 

Design a lead compensator for the digital system to 
meet the specifications. [Section: 13.10] 

26. Repea t Problem 25 u s i n g MATLAB. MATLAB 

DESIGN PROBLEMS 
27. a. Convert the heading control for the UFSS vehi­

cle shown on the back endpapers (Johnson, 1980) 
into a digitally controlled system. 

b. Find the closed-loop pulse transfer function, 
7/(4, if T - 0.1 second. 

c. Find the range of heading gain to keep the digital 
system stable. 

28. A robot equipped to perform arc welding was dis­
cussed in Problem 45, Chapter 8. The robot was 
compensated by feeding back pressure and velocity 
signals as shown in Figure P8.13(Z>). Eliminating 
these feedback paths yields the block diagram shown 
in Figure PI3.9 (Hardy, 1967). 

G(s) = 
(5 + 8) 

;5 + 3)(5 + 6)(5 + 10) 

FIGURE P13.9 Simplified block diagram for robot swing 
motion 

a. Convert the robot to a digital control system. Use 
a sampling time of 0.1 second. 

b. Sketch the root locus. 
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c. Find the range of gain, K, to keep the digital 
system stable. 

d. Repeat a l l p r e v i o u s p a r t s u s i n g MATLAB 

MAT LAB . K Q P 

29. The floppy disk drive of Problem 57, Chapter 8 is to 
be digitally controlled. If the analog system is as 
shown in Figure P13.10, do the following: 

Desired 
position M o t o r a n d , o a c 

x,,is) 1(9) . 
*Vy 

L_ 
20,000 

s(s + 100) 

Actual 
position 

YM 

FIGURE P13.10 Simplified block diagram of a floppy 
disk drive 

a. Convert the disk drive to a digital system. Use a 
sampling time of 0.01 second. 

b. Find the range of digital controller gain to keep 
the system stable. 

c. Find the value of digital controller gain to yield 
15% overshoot for a digital step response. 

d. Repeat all previous parts and Ĵ Jî L 
obtain the step response for CiilSP 
Part c using MATLAB. 

30. Scanning probe microscopes are used to visualize 
samples in the sub-micron dimensional range. They 
typically use a silica-based probe to physically track 
the sample topography to create a viable image. 
However, these devices are very sensitive to exter­
nal disturbance and vibrations. An approach called 
inherent disturbance suppression tries to alleviate 
the disturbance problem through the addition of a 
laser interferometer that is used to measure the 
probe-sample interaction and compensate for un-
desired probe movements. The technique was 
implemented in a tapping mode atomic force mi­
croscope measuring single DNA molecules. It was 
shown that for a significant range of frequencies the 
open-loop transmission from the probe's voltage 
input to probe's displacement is (Sparks, 2006) 

Gi(s) = 
20000 

Assuming the probe is digitally controlled in a loop, 
as shown in Figure P13.6, calculate the sampling 
period range that will result in a stable closed-loop 
system. 

31. Problem 35, Chapter 9 described a two-tank system 
where the objective was to maintain a constant 
liquid level in one of the tanks via control of an 
inflow valve. Assume for this problem that the 
transfer function relating liquid-level output, Y(s), 
to flow rate input Fe(s), for the lower tank is 
(Romagnoli, 2006) 

Y(s) 0.0187 
G(s) = 

Fe(s) 0.237^ + 0.00908 

Assume that the system will be controlled in closed 
loop by means of a digital computer system with a 
sample period T = 1 second, as shown in Figure 
P13.6, with Gi(s) = KG(s). Use the bilinear trans­
formation and the Routh-Hurwitz method to find 
the range of K that will result in a stable closed-
loop system. 

32. Assume that the two-tank system of Problem 31 is 
controlled by a digital computer in the configuration 
of Figure P13.6, where Gi (s) = KG(s). If a sampling 
period of T = 1 second is used, do the following 
(Romagnoli, 2006). 

a. Use MATLAB t o draw t h e r o o t _MATLAB 

l o c u s . C u l ^ P 

b. Find the value of K that will result in a stable 
system with a damping factor of £ = 0.7. 

c. Use the root locus of Part b to predict the step-
response settling time, Ts, and peak time, Tp. 

d. Calculate the final value of the closed-loop sys­
tem to a unit step input. 

e. Obtain the step response of simulink 
the system using Simulink. V E 9 P 
Verify the predictions you made in 
Parts c and d. 

33. In Problem 48, Chapter 9, and Problem 39, Chapter 
10, we considered the radial pickup position control 
of a DVD player. A controller was designed and 
placed in cascade with the plant in a unit feedback 
configuration to stabilize the system. The controller 
was given by 

0.5(, + 1.63) 
M[S) 45 + 0.27) 

and the plant by (Bittanti, 2002) 

P(s) = 
0.63 

0.36 
305.4 305.4' 

, 0.04 
1 + ^ 7 7 ^ + 248.2 248.22 
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It is desired to replace the continuous system by an 
equivalent discrete system without appreciably af­
fecting the system performance. 
a. Find an appropriate sampling frequency for the 

discretization. 

b. Using the chosen sampling frequency, translate 
the continuous compensator into a discrete 
compensator. 

c. Use Simulink to simulate the simulink 
continuous and discrete sys­
tems on the same graph. 

Assume a unit step input. Are there 
significant differences in the sys­
tem's performance? 

34. In Problem 25, Chapter 11, we discussed an EVAD, 
a device that works in parallel with the human heart 
to help pump blood in patients with cardiac condi­
tions. The device has a transfer function 

G(s) = 
Pao{s) 1361 
Em(s) s2 +69s+ 70.85 

where Em(s) is the motor's armature voltage, and 
Pao(s) is the aortic blood pressure (Tasch, 1990). 
Using continuous techniques, a cascaded compen­
sator is designed in a unity feedback configuration 
with a transfer function 

0 ^ - f l ) 
* " W s + 0.05 

Selecting to control the device using a microcon­
troller, a discrete equivalent has to be found for 
Gc(s). Do the following. 

a. Find an appropriate sampling frequency for the 
discretization. 

b. Translate the continuous compensator into a 
discrete compensator using the sampling fre­
quency found in Part a. 

c. Use Simulink to simulate the sjmuhnk 
continuous and discrete sys- V 3 ^ P 
terns on the same graph for a unit step 
input. There should be little differ­
ence between the compensated continu­
ous and discrete systems. 

35. In Problem 46, Chapter 9, a steam-driven turbine-
governor system was implemented by a unity feed­
back system with a forward-path transfer function 
(Khodabakhshian, 2005) 

r ( , K 
1 ' ( s + 0.08)(J+ 2)(5 +5) 

a. Use a sampling period of T = 0.5 s and find a 
discrete equivalent for this system. 

b. Use MATLAB t o draw t h e r o o t tmm 
l o c u s . W 1 J P 

c. Find the value of K that will result in a stable 
system with a damping factor of £ = 0.7. 

d. Use the root locus found in Part a to predict the 
step-response settling time, Ts, and peak time, Tp. 

e. Calculate the final value of the closed-loop sys­
tem unit step response. 

f. Obtain the step response of Simulink 
the system using Simulink. ^ E ^ P 
Verify the predictions you made in 
Parts c and d. 

36. If you have not already done so, do wileypms 
Problem 45 in Chapter 9. In this prob- G Z 2 9 
lem, you design a PID controller for a Conlro1 solutions 
temperature control system. Digitize your PID de­
sign and draw a flowchart from which the PID 
controller can be implemented. 

37. Discrete time controlled systems can exhibit unique 
characteristics not available in continuous control­
lers. For example, assuming a specific input and 
some conditions, it is possible to design a system 
to achieve steady state within one single time sam­
ple without overshoot. This scheme is well known 
and referred to as deadbeat control. We illustrate 
deadbeat control design with a simple example. For 
a more comprehensive treatment see (Ogata, 1987). 

Assume in Figure 13.25(a) that Gp(s) = -. 

The purpose of the design will be to find a compen­
sator, Gc(z), such that for a step input the system 
achieves steady state within one sample. We start by 
translating the system into the discrete domain to 
obtain the equivalent of Figure 13.25(c). The pulse 

(1 - e-T)z~x 

is found transfer function, Gp(z) = , , -
1 — e~l z 

using Eq. (13.40), since it is assumed that the com­
pensator will be followed by a zero-order hold. In 
Figure 13.25(c), the closed-loop transfer function is 
. , C(z) - , , Gc(z)Gp(z) , . 

given by -£-% = T(z) = ; , X ,JX rx» or> solving R{z) 1 + Gc(z)Gp(z) 

for the compensator, we get Gc(z) = 1 T(z) 
GJz) 1 - T(Zy 

The desired system output is a unit step delayed by one 
1 

Since 
unit sample. Thus, C(z) = TZ 1 

z-\ z-l 
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the input is a unit step, R(z) — -; the desired 
z — 1 

closed-loop transfer function is —j4- = T(z) = z~\ 

and the resulting compensator, found by direct sub-

stitution, is given by Gc(z) =- zf ^ -

Assume now that the plant is given by Gp(s) = | , 
and a sampling period of 7=0.05 second is used. 

a. Design a deadbeat compensator to reach steady 
state within one time sample for a step input. 

b. Calculate the resulting steady-state error for a 
unit-slope ramp input. 

c. Simulate your system using Simulink 
SIMULINK. (Hint: Fo 11 owing K B 
Figure 13.25, the forward path will 
consist of the cascading of Gc(z), a 
zero-order hold, and Gp{s) . ) Show 
that the system reaches steady state 
after one sample. Also verify your 
steady-state error ramp result. 

38. Given LabViEW 

G(s) = 
s + 4 

Use the LabVIEW Control Design and Simu­

lation Module to (1) convert G(s) to a 

digital transfer function using a sam­

pling rate of 0.25 second; and (2) plot 

the step responses of the discrete and 

the continuous transfer functions. 

39. Given LabVIEW 

K(z + 0.5) 
G(z) = 

>-0.25)(z- 0.75; 

Use t h e LabVIEW C o n t r o l Des ign ÂTJAB 
and S i m u l a t i o n Module and t h e ^Cd^P 
M a t h S c r i p t RT Module t o (1) o b t a i n t h e 
v a l u e of .FCthat w i l l y i e l d a damping r a t i o 
of 0 . 5 f o r t h e c l o s e d - l o o p s y s t e m i n F i g ­
u r e 1 3 . 2 0 , where H(z)=l; and (2) d i s p l a y 
t h e s t e p r e s p o n s e of t h e c l o s e d - l o o p s y s ­
tem i n F i g u r e 13 .20 where H(z) = 1 . Com­
p a r e your r e s u l t s w i t h t h o s e of S k i l l -
A s s e s s m e n t E x e r c i s e 1 3 . 8 . 

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS 
40. High-speed rail pantograph. Problem 21 in Chapter 1 

discusses active control of a pantograph mechanism 
for high-speed rail systems (O'Connor, 1997). In 

Problem 79(a), Chapter 5, you found the block dia­
gram for the active pantograph control system. In 
Chapter 9, you designed a PID controller to yield a 
settling time of 0.3 second with zero steady-state 
error. Assuming that the active control system is to 
be computer controlled, do the following: 

a. Convert the PID controller designed in Problem 
55, Chapter 9, to a digital controller by specifying 
its sampled transfer function, Gc(z). Assume that 
the potentiometers are replaced by a keyboard, 
A/D converters, and unity gain transducers. 

b. Draw a flowchart from which the PID controller 
can be implemented. 

c. Use MATLAB t o s i m u l a t e t h e s t e p J^^L 
r e s p o n s e of t h e d i g i t a l a c t i v e C u I ^ P 
c o n t r o l s y s t e m . 

41. Control of HIV/AIDS. In Chapter 11, a continuous 
cascaded compensator for a unity feedback system 
was designed for the treatment of the HIV-infected 
patient treated with RTIs (Craig, 2004). The transfer 
function of the designed compensator was 

GAs) = - 2 x IP" V + 0.04s + 0.0048) 
s(s + 0.02) 

The linearized plant was given by 

Y(s) -520s - 10.3844 
P(s) = 

Ui (s) s3 + 2.6817^2 + 0.11s + 0.0126 

The compensated system is overdamped with an 
approximate settling time of 100 seconds. This system 
must be discretized for practical reasons: (1) HIV 
patient cannot be monitored continuously and (2) 
medicine dosage cannot be adjusted continuously. 

a. Show that a reasonable sampling period for this 
system is T = 8 days (medicine dosage will be 
updated on a weekly basis). 

b. Use Tustin's method and T = 8 days to find a 
discrete equivalent to GC(S). 

C, Use Simulink to simulate the Simulink 

continuous and discrete com- ^ E ^ P 

pensated systems for a unit step in­

put. Plot both responses on the same 

graph. 

42. Hybrid vehicle. In Problem 7.69 (Figure "*TL^_ 
P7.34), the block diagram of a cascade C u l ^ P 
scheme for the speed control of an HEV (Preitl, 
2007) was represented as a unity feedback system. 
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In that diagram the output of the system is the speed 
transducer's output voltage, C(s) — KssV(s). In 
Part b of Problem 11.35, where a compensator 
was designed for this problem, we discussed the 
feasibility of achieving full pole-zero cancellation 
when we place a PI speed controller's zero, Z/, on 
top of the uncompensated system's real pole, closest 
to the origin (located at -0.0163). Noting that 
perfect pole-zero cancellation may not be main­
tained, we studied a case, in which the Pi-controller's 
zero changed by +20%, moving to -0.01304. In 
that case, the transfer function of the plant with 
a PI speed controller, which has a proportional 
gain = K, was given by: 

G(s) = 
ir(s + 0.6)(.y +0.01304) 

s(j+ 0.0163)(s+ 0.5858) 

Assuming that Gi(s) in Figure P13.6 equals the 
transfer function, G(s), given above for the vehicle 
with the speed controller: 
a. Develop a MATLAB M-f ile that would al­

low you to do the following: [Hint: 

Refer to the M-files you developed 

for Problems 13 and 20 of this chapter] 

(1) Convert Gx{s) cascaded with a sam-

ple-and-hold to G(z); 

(2) Search over the range 0 < T < 5 sec­

onds for the largest sampling pe­

riod Tmax below which the system is 

stable.Calculatethez-planeroots 

of the closed-loop system for the 

whole range of the sampling time, 

T. Subsequently set T= 0.75Tma>:; 

(3) Design the gain of a digital control 

system to meet a percent overshoot 

requirement, %OS, allowingtheuser 
to input the value of the desired 

%OS and the value of the PI speed 
controller's proportional gain, K; 

(4) Plot the step response of that dig­

ital system (in per unit, p. u., 

vs. time in seconds) 

b. Run the M-f ile you developed in Part a 

and enter the values of the desired 

percent overshoot, %OS=0, and the PI 

speed controller's proportional gain, 

iC=61; 

c. Select a point in the graphics window 

displaying the root locus, such that 

all poles of the closed-loop transfer 

function, Tzl are inside the unit 

circle . 

d. Write the sampled-data transfer func­

tions obtained, Gz and Tz, indicating 

the corresponding value of the sam­

pling time, T, and all poles, r, of 

the closed-loop transfer function, Tz; 

e. Plot the step response of that digital 

system (in per unit, p. u., vs. time in 

seconds) noting the following charac­

teristics: final value, rise time, and 

settling time. 

Cyber Exploration Laboratory 
Experiment 13.1 

Objective To design the gain of a digital control system to meet a transient 
response requirement; to simulate a digital control system to test a design; to see the 
effect of sampling rate upon the time response of a digital system. 

Minimum Required Software Packages MATLAB, Simulink, and the 
Control System Toolbox 

Prelab 
1. Given the antenna azimuth control system shown on the front endpapers, use 

Configuration 2 to find the discrete transfer function of the plant. Neglect the 
dynamics of the power amplifier and include the preamplifier, motor, gears, and 
load. Assume a zero-order hold and a sampling interval of 0.01 second. 
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2. Using the digital plant found in Prelab 1, find the preamplifier gain required for a 
closed-loop digital system response with 10% overshoot and a sampling interval 
of 0.01 second. What is the peak time? 

3. Given the antenna azimuth control system shown on the front endpapers, use 
Configuration 2 to find the preamplifier gain required for the continuous system 
to yield a closed-loop step response with 10% overshoot. Consider the open-loop 
system to be the preamplifier, motor, gears, and load. Neglect the dynamics of the 
power amplifier. 

Lab 

1. Verify your value of preamplifier gain found in Prelab 2 using the SISO Design 
Tool to generate the root locus for the digital open-loop transfer function found in 
Prelab 1. Use the Design Constraints capability to generate the 10% overshoot 
curve and place your closed-loop poles at this boundary. Obtain a plot of the root 
locus and the design boundary. Record the value of gain for 10% overshoot. Also, 
obtain a plot of the closed-loop step response using the LTI Viewer and record 
the values of percent overshoot and peak time. Use the same tool to find the 
range of gain for stability. 

2. Using Simulink set up the closed-loop digital system whose plant was found 
in Prelab 1. Make two diagrams: one with the digital transfer function for the 
plant and another using the continuous transfer function for the plant 
preceded by a zero-order sample-and-hold. Use the same step input for 
both diagrams and obtain the step response of each. Measure the percent 
overshoot and peak time. 

3. Using Simulink, set up both the digital and continuous systems calculated in 
Prelabs 2 and Prelab 3, respectively, to yield 10% overshoot. Build the digital 
system with a sample-and-hold rather than the z-transform function. Plot the step 
response of each system and record the percent overshoot and the peak time. 

4. For one of the digital systems built in Lab 2, vary the sampling interval and record 
the responses for a few values of sampling interval above 0.01 second. Record 
sampling interval, percent overshoot, and peak time. Also, find the value of 
sampling interval that makes the system unstable. 

Postlab 

1. Make a table containing the percent overshoot, peak time, and gain for each of 
the following closed-loop responses: the digital system using the SISO Design 
Tool; the digital system using Simulink and the digital transfer functions; the 
digital system using Simulink and the continuous transfer functions with the zero-
order sample-and-hold; and the continuous system using Simulink. 

2. Using the data from Lab 4, make a table containing sampling interval, percent 
overshoot, and peak time. Also, state the sampling interval that makes the system 
unstable. 

3. Compare the responses of all of the digital systems with a sampling interval of 
0.01 second and the continuous system. Explain any discrepancies. 

4. Compare the responses of the digital system at different sampling intervals with 
the continuous system. Explain the differences. 

5. Draw some conclusions about the effect of sampling. 
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Experiment 13.2 

Objective To use the various functions from the Lab VIEW Control Design and 
Simulation Module for the analysis of digital control systems. 

Minimum Required Software Packages LabVIEW with the Control De­
sign and Simulation Module and the MathScript RT Module; MATLAB with the 
Control Systems Toolbox. 

Prelab You are given Figure P8.28 and the parameters listed in the Prelab of 
Cyber Exploration Laboratory Experiment 8.2 for the open-loop NASA eight-axis 
ARMII (Advanced Research Manipulator II) electromechanical shoulder joint/ 
link, actuated by an armature-controlled dc servomotor. 

1. Obtain the open-loop transfer function of the shoulder joint/link, G(s) = T.L , ,, 
VrefiS) 

or use your calculation from Cyber Exploration Laboratory Experiment 8.2. 
2. Use MATLAB and design a digital compensator to yield a closed-loop response 

with zero steady-state error and a damping ratio of 0.7. If you already have 
performed Cyber Exploration Laboratory Experiment 8.2, modify your M-file 
from that experiment. Test your design using MATLAB. 

Lab Simulate your Prelab design using a Simulation Loop from the LabVIEW 
Control Design and Simulation Module. Plot the step response of two loops as 
follows: (1) a unity feedback with the forward path consisting of the continuous 
system transfer function preceded by a zero-order hold, and (2) a unity feedback 
with the forward path consisting of the equivalent discrete transfer function of your 
compensator in cascade with the open-loop plant. 

Postlab Compare the results obtained with those from your prelab MATLAB 
program. Comment on time-performance specifications. 
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