CHAPTER 11
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Thus, at (x,5) = (0.2, 0.2)

27(70) .

u="700 + = 20790 o5 [27( 2)] = 765.6 ft/sec

v =-140 1t 27D gin [27(.2)] = -157.2 ft/sec

V= Ju¥ +v2 = [(7656)* — (1572)* =781.6 fi/sec

From Table A.1, for M., = 0.6269, :;:“ =1.079

o

T, = 1.079 T = 0.079 (519) = 560°R

20— IR, = JAA1716)(560) = 1160 fi/sec

z
a?=a + 7’—;1 (V3) = 1.345 x 10° = (2)(781.6)"= 1.223 x 10° (fa
- 5€

a=1106 ft/sec .
M= X:%g— = 1077067
a
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From Table A1, for M= 0.6269: L2 = 1.3065, -2 = 1.079

Pe T
P T
For M =0.7067 = =2 = 1.400, ?"w =1.101
P

p=L P o (ﬁ) (1.3065)(1 atm) = [0.933 atn

Py Pw»

T= Tl %— T.= (1—1‘0—1) (1.079)(519) =[508.6°R

11.2  The results of Fig. 4.5 are for low-speed, incompressible flow. Hence, from Fig. 4.5,
at o =5° ato=35°
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CP:

Note the differences: There is a 17% discrepancy between the three compressibility
corrections. Of the three, experience has shown the Karman-Tsien rule to be more accurate.

114 For the pressure coefficient on the airfoil:
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11.5 When M = M, then p at the minimum pressure point is clearly per.

P Pe (?ﬁ)(ﬁ"—) = (0.528)(1.524) =[0.805
pw pﬂ) PO pcr.-

—An A

Evaluated Evaluated

atM=1 atM=038

11.6  From Appendix A:

For M., =05, o =1.186
P

For M =0.86, £ =1.621

(:p———_(mxoj)2 (0.7316 ~ 1)

Check: Using Eq. (11.58)

1
1+4—M2
y Mol 2222w

[\
E———

2 [( 1+ 02(05) )”_1} _

~ Ua)(05) [\ 1+ 02(086)°

It checks!
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11.7  First, caleulate Cp o at point A from the information in Figure 11.5(a). The actual
pressure coefficient is

where

Pa _ Pa Po
P P, Po

From Appendix A (interpolating between entries for more accuracy for this problem),

ForM,=03: 2o =1.064
P

For M, = 0.435: 22 =1.139

Pa
Thus,
Cpa= - 2[1‘064—1) =-1.045
(14)(03)> \ 1139

From the Prandtl-Glauert rule,

Cpo=Cpa y1-M2 = (=1.045)4/1~ (03)* =-0.9969

For the case of part (c) where M = 0.6, again using the Prandtl-Glauert rule,

C,. ~0.9969

= = =-1.258
J1-M2 J1-(061y

To find the local Mach number, M,, which corresponds to this value of Cp 4, note that

2 [,
CTAIQ' (—A—'—l)
oy M\,

or,
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z ) 2 -
Pa - ¥ MaCop o AAO061) (£1.258)

Po 2 2

1=10.6723

However,

Pa — Pa Do where Po for M, = 0.61 is 1.286

peo po pl-'o pl-")
Thus,
Pa _ Pa /P _ 0.6723 0593
Po  Po/P. 1286
Hence,
Po 1012,
Pa

 From Appendix A, for 2= =1.912, M, =[1.01

Pa

This is close enough. Hence, given the numbers in Figure 11.5(a), the pumbers in Figure
11.15(c) are consistent with the laws of physics.

11.8 There is a three-dimensional relieving effect for the flow over a sphere. The flow over
a cylinder is two-dimensional — in order to get out of the way of the eylinder, the flow can
move only upwards or downwards. This means it must greatly accelerate to get out of the
way of the cylinder. In contrast, the flow over a sphere is three-dimensional — it can move
not only upward or downward but also sideways. This extra degree of freedom means that
the flow does not have to speed up so much in flowing over the sphere. Hence, the
freestream Mach number of the sphere is higher in order to achieve sonic flow on the sphere
— 1.e., the critical Mach number is higher.

109



