CHAPTER 7

71 p=pRT
_ p _(78QLie) 0.0103 shug/ft]
RT (1716)(934)
72 (a)
_ R _(40716) | o ftl
y—1 04 slug °R
o= R _1716 |, g, ft 10
y—1 04 shug °R
e =c¢,T = 4290 (934) ={4.007 x 10° ft 1b
slug
h=c,T = 6006 (934) ={5.610 x 10° ft 1o
_ shug

(b) For a calorically perfect gas, ¢, and ¢, are constants, independent of temperature.
Hence, we have again

ft b
slag °R

¢y = 6006

ft Ib

¢y = 4290
slug °R

Also, at standard sea level, R = 519°R. Hence

ft 1o
slug

E=4290 (519) =2.227 x 10°

ft b

h = 6006 (519)=3.117 x 10°
slug
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hy —hy = ¢, (Ty - TY) = (1004.5)(690-288) ={4.038 x

105 jo’ule

kg

&2 — e = ¢y (T2 - T1) = (718.5)(690-288) ={2.884 x 10°

joule

kg

69

S5 =c Z-R mP2 = (10045) En——% - (287) fn 8.656 =

T, P 28

2582

joule
kg °K

p. 435 x 10°

74 po= = =0.6186 kg/m’
RT, (287)(245)
Wy
_p__(LJ
Po \Po
My a 4 1/3/4
P =P [lJ o018 | 28X 10| dosa04 K8
Pa 435 x 10 m
A
-1
75 i%ﬂf
p. T
}-{T 1) 027
T-1, (i] s 1) -7
p 101 x 10° -y
= — =" =359 kg/mv
RT  (287)(259) 1339 kgfmn]
7.6 pv=RIT, hencev= RT

P
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Note: 1 atm=1.01 x 10° N/m?

_ 2
S L hosx107 B
P (02)(101 x 10%) N
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For an isentropic process: b (ﬂj =
P2 P

Le., pivi' =pavy’ or pv’ = constant = ¢;

7
_[ClJ
V— —_—
P

[é‘j _ %(C*)w (p)~(1/7)-1 __ _;: (pV" }L"y (p) iy 4

= L 13536 x 107 2
(14)(02)(101 x 10°)

R _(AAHATI6) _ 0o ftlb

77 cp= 2
T 04 slug °R

2 2 : 2
‘h{,'—'h+—Y—-=cpT+ v =(6006)(480)+m=3.72'8x106
2 2 shig

ft b

7.8 Let (hy)ses = total enthalpy of the reservoir = ¢, (To)res
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2

.
(he)e = total enthalpy at the exit = ¢, Te + 2°

For an adiabatic flow, h, = constant. Hence

(ho)res = (ho)c

2
Cp(To)res = Cp Te+ "_25_

Vo= 2 ¢ [T -T.]= J2(10045)(1000— 600) ={896.4 m/sec

p. _ (0.61)(101 x 10%) .
o_R (0819)287)

(y-1)y {r=0fy 0.2857
T _ (L} S T=Te (_p_j =262.1 (E) =247.6 K
T P P.. 0.61

a

79  Tn= 621 °K

Since the flow is isentropic, it is also adiabatic. Hence, ho = constant

v 2
2 2

V= J2(h, R+ VE =2 o, (T ~ T+ V2 =+/2(10045)(2621 - 247.6) + (300)°

=345 m/se
V2 . Vv?
710 patp—2=ptp-——
P TP 5 pPYe 5
V= 2—(pi--w12+\7w2 :\[2(1'01 x 10°)(061 O'5)+(300)2 =3422 m/sec
Je) 0819

% error = (ﬁ%—gﬁjx 100 = 0.81%
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=Dy 03 0.2857
711 T=T. (—p—) =262.1 (—-) =214 °K
. 0.61

V = 1/2(10045)(262.1- 214) + (300)> =432 m/sec

7.12

I 7)(061-03
V:\/2(101 X 10°)O061-03) | 30012 = 408 misec

0819

‘ 432 - 408.
% error = (%z)x 100 = [5.55%

7.13  From Eq. (7.53)

VI
h+ 7 = constant

From Egs. (7.6b) and (7.9),

h=c,T= b (1)

y—1
From the equation of state,
RT=plp @)

Combining Eqgs. (1) and (2),

b= L (2} )
7—1\p

Hence, Eq. (7.53) can be written as

. 2
. L (3] + yo_ constant 4
y=1\p 2

In the limit of y — oo, Eq. (4) becomes
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p + 2 p V2 = constant

which is Bernoulli’s equation. Hence, the energy equation for compressible flow can be
reduced to Bernoulli’s equation for the case of ¥ — «. Hence, the ratio of specific heats for
incompressible flow is infinite, which of course does not exist in nature. This 1s just another
example of the special inconsistencies associated with the assumption of incompressible
flow, i.e., constant density flow, which of course does not exist in nature. This is why we
have stated earlier in this book that incompressible flow is a myth.

As to the question whether Bernoulli’s equation 1s a staternent of Newton’s second
Jaw or an energy equation, we pow see that it is both. For an incompressible flow, the
application of the fundamental principles of Newton’s second law and the conservation of
energy are redundant, both leading to the same equation, namely Bernoulli’s equation.
However, philosophically this author feels strongly that Bemoulli’s equation is
fundamentally a statement of Newton’s second law — it is a mechanical equation. This 1s
how we derived Bernoulli’s equation in a very straightforward manner in Chapter 3. For the
study of inviscid incompressible flow, we need only to apply the fundamental principles of
mass conservation and Newton’s second law. The principle of conservation of energy is
redundant and 1s not needed. '
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