CHAPTER 3

3.1  Consider steady, inviscid flow.
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Multiply (1), (2), and (3) by dx, dy, apd dz respectively:
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Add () + (5) + (6):
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For irrotational flow (see Eq. (2.119)): VXV =0
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Subt. Eqgs. (8) into (7):
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dp=-pV dV which integrates to

p+ % p V> = const.

for incompressible flow.
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W= pmg = (1.36x 10 (9.8 )=1.33 x 10° N/m?

sec

A
AB=10cm=0.1m; p= 123 kg/n’, -2 =—
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2(133 x 10°)(01) _ |
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Vy= 147 m/se
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‘p1—p2=w Ab=(1.33 x 10°)(0.1) = 1.33 x 10" N/m’

p2=p1—133%10*=1.01x10° —1.33 x 10* = 8.77 x 10 N/m®

Po=p2+ % p V2=877x10"+ % (1.23)(147)* = [L.01 x 10° N/m’}

Note: It makes sense that the total pressure in the test section would equal one atmosphere,
because the flow in the tunnel is drawn directly from the open ambient surroundings, and for
an inviscid flow, we have no losses between the inlet and the test section.
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It 1s a physically possible incompressible flow.

0 0
=3 (0-0)- 3 (0-2{)‘& (0—%;

Vx V=0 The flow is irrotational.

3.9  Forasource flow,

In polar coordinates:
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Hence, the flow is a physical possible incompressible flow, except at the origin where r = 0.
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What happens at the origin? Visualize a cylinder of
radius ¥ wrapped around the line source per unit depth
perpendicular to the page. The volume flow across this

cylindrical surface is
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Since we are considering a unit depth, then we have the volume flow per unit depth. This is
precisely the definition of source strength, A. Hence, from (1),

A=constant= ff V- dS : @)
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From the divergence theorem:
ﬁ V- &’s=<§ﬁ(v-?}) dV (3)
5 v
Combining Eqgs. (2) and (3)
ff (v-V) av=A = constant | (4j
Shrink the volume to an infinitesimal value, AV, around th¢ origin. Eq. (4) becomes

(V-V) AV= A

Taking the limit as AV — 0
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(V-V)= hm “A%_—'_zoo- Hence V-V = oo at origin
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To show that the flow is irrotational, calculate VXV,

e, T e, & 100 e,
T & o0 & T & a8 &z
V, 1V, v, Ay 0
2ar
0 0 0 0

Vx{;Z—r ge EUO‘BAEZMJ*"‘%igO_a&sz) :@
oz éa




Hence,

V xV =0 everywhere.
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Hence, Laplaces equation:

2 T a2
;? + %? =0+ 0 =0 is identically satisfied.
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Hence, Laplaces equation:
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Hence, Laplaces equation
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is identically satisfied.

3.12 The stagnation point is a distance A/27V., upstream of the source. Hence,

A
27V,

=1, 0or A=21V,

The shape of the body 1s given by

A A
j=Versinf+ — 0= -—
v 2 2
or,
A
Ising+ O=—
27V, 2V,
or,
27V 272V
rsinf+ At f= Gt
27V 2V,
or,
E sinf+0=r| Equation of the semi-infinite body.
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O(rad) I
T 1
3 1.0033
2.8 1.02
2.5 1.072
2.0 1.255
/2 1.57
13 1.91
1.0 2.54
0.75 3.509
0.5 5.51 |

To plot the pressure coefficient:

Vr:VwCOS@“FA =Ve.cos 0+
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Ve=-V,smb
or,
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X =r1cosb Y =1 sinb
-1 0
-0.990 0.1416
-0.961 0.3416
-0.859 0.6416
0.522 1142

0 1.57
0.511 1.84
1.372 2.14
2.57 2.39
4.84 2.64
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Cartesian Coordinates of Body
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At pomt A: Velocity due to freestream = V,

Velocity due to source = _A
27(r+b)

(note that it is In the negative x-direction)

+

Velocity due to sink = OGN
27(r +b)

(Note that it is in the positive x-direction)

Total velocity at Point A:
Vi=V., A 1 + A 1

" 2% (1-b) 27 (r+b)
From point A to be a stagnation point, V5 = 0.

O=V,x,+-A—[ ! + ! 1.
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Substitute (2) into (1)
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Integrating with respect to r
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3.16 From Eq. (3.93): Vr = (1 - R2 ] coso
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At any given point (1,0), V; and Vj are both directly proportional to V. Hence, the direction -

v
From Eq. (3.94): vg—

of the resultant, V, is the same, no matter what the value of V., may be. Thus, the shape of

the streamlines remains the same.

v 2
3.17 From Eq. (3.119): L= (lw R_, J cosd
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\Y R? r
F Eq. (3.94): —‘9=-(1+—~) me -
Torn Eq. ( ) v o s gy

Note that Vg/V., is itself a function of V., via the second term. Hence, as V., changes, the
direction of the resultant velocity at a given point will also change. The shape of the

streamlines changes when V,, changes.

318 L'=poVel

L 6

= 0.163 m*/sec
PV, (123)(30)

40



3.19  Atstandard sea level conditions,

slag

3

Do = 0.002377
He=3.737x 107 -8
(ft)(sec)

Also:

V=120 mph =120 (ﬁ) ft/sec=176 R
60 sec

Qoo = % Poo Voo = % (0.002377) (176)* = 36.8 Ib/ft*

For the struts: D=21in=0.167 ft.

Re% pVD _ (O._002377)(187.7)(0.167)
M 3737 x 107~

= 199,382

From Fig. 3.39, Cp = 1. The total frontal surface area of the struts is (25) (0.167) = 4.175 f%.
Hence,

Drag due to struts:

Ds= 0w S Cp=(36.8)(4.175)(1) =153 Ib
o ] ) 3
For the bracing wires: D = —35111 =0.0078 ft

Re =199382 (0'0078
0.167

Joson

Fgom Fig. 3.39, Cp = 1. The total frontal surface area of the wires 1s (80) (0.0078) = 0.624
ft". Hence,

Drag due to wires:
Dyw =09 S Cp=(36.8)(0.624)(1) =23 1b

Total drag due to struts and wires = Dg+ Dy =

153 +23 =174
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The total zero-lift drag for the airplane is (including struts and wires)

Cp, =qa S Cp, = (36.8)(230)(0.036) =

Note that, for this example, the drag due to the struts and wires is

768 = 0.58 of the total

drag —i.e., 58 percent of the total drag. This clearly points out the drag reduction that was
achieved in the early 1930°s when airplane designers started using internally braced wings
- with one or more central spars, thus eliminating struts and wires completely.

3.20 The flow over the airfoil in Figure 3.37 can be syntheized by a proper distribution of
singularities, i.e., point sources and vortices. The strength of the vortices, added together,
gives the total circulation, I, around the airfoil. This value of T is the same along all closed
curves around the airfoil, even if the closed curve is drawn a very large distance away from
the airfoil. In this case, the airfoil becomes a speck on the page, and the distributed point
vortices appear as one stronger point vortex with strength T". This is exactly equivalent to the
single point vortex in Figure 3.27 for the circulat cylinder, and the lift on the airfoil where
the circulation is taken as the total I is the same as for a circular cylinder, namely Eq.

(3.140),
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