CHAPTER 2
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If p = constant = p.,

F= -p. 4| pdS (M)

However, the integral of the surface vector over a closed surface is zero, 1.e.,

gfidgzo

Hence, combining Egs. (1) and (2), we have

F=0
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Denote the pressure distributions on the upper and lower walls by pu(x) and p, (%) respectively.
The walls are close enough to the model such that p, and p, are not necessarily equal to p.,.
Assume that faces ai and bh are far enough upstream and downstream of the model such that

P~ P and v=0 and ai and bh.

Take the y-component of Eq. (2.66)

= §f (V& v- [[ Sy
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The first integral = 0 over all surfaces, either because {)/ Es = 0 or because v=0. Hence
L'=- || (0dS)y =-[| pudx; | p, &
abht a i

Minus sign because y-component is in downward
Direction. '

Note: In the above, the integrals over 1a and bh cancel because p = p» on both faces. - Hence

k b
L'= | p,dx- [ pedx
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The sireamlines are straight lines emanating from the origin. (This is the velocity field and
streamline pattern for a source, to be discussed in Chapter 3.)
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y2 = .x* + const

, .
X+ y2 = const.

The streamlines are concentric with their centers at the origin. (This is the velocity field and
streamline pattern for a vortex, to be discussed in Chapter 3.)

2.5 From inspection, since there is no radial component of velocity, the streamlines must be
circular, with centers at the origin. To show this more precisely,

u=-Vegsin=-cr Y =-Cy
T

X
v=VacosO=cr — =¢x
T

& +xX = COIlSt.]

This 1s the equation of a circle with the center at the origim. (This velocity field corresponds fo

solid body rotation.)
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The streamlines are hyperbolas.
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In polar coordinates: V {’f = 12 TV + lﬂi
T a T O
Transformation: X=rcosH
y=rsin®

V,=ucos8+vsmnb

Ve=-usin6+vcosB
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(b) From Eq. (2.23)
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VxV=¢,[0+0-0]=)

The flowfield is irrotational.
28  u= cy _cr smf _ ¢ sinb
) (x* +vy%) r? T
gy "X _ & cosf _ ¢ cosd
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(b) Vx {}’ = e_} {_ﬁ(*(:/l’)_i_lé(_@n}

e c (v
: [_5___0}
o7,

Vx Ve @ except at the origin, where r = 0. The flowfield is singular at the origin.

2.9 V.=0. Ve=cr

VxVe=e [MJFE_M_@}
& r r o6

= e, ctc-0)=2ce,

The vorticity is finite. The flow is not irrotational; it is rotational.

2.10
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Mass flow between streamlines = A y
Ay =pVAn

Ay =(-pVe) Ar+p V; (1)

Let cd approach ab

dy=-pVadr+prv,do 0]
Also, since v = (1,0), from calculus
dt,z_/=—5—l’:y~dr+ 2% do 2)
‘ & éo '
Comparing Eqgs. (1) and (2)
Sy
o Va= 2T
P Vo a
and
.
rv,=—
P 26
or:”
1 Sy
Vr: - -
P r &4
. By
Vo= 22
p Ve Py }
oy
211 u=cx=-—2L jy=cxy+f(x) (1)
%4
v=~cy=-g%:w=cxy+f(y) )
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Comparing Eqs. (1) and (2), f(x) and f(y) = constant

[\y=cxy+const;]

w=ex= Y p=al+1)

V__:_Cy=il//_:¢=-cy2+f(x)

Comparing Egs. (4) and (5), f(v) = - cy” and f(x) = cx”
o =c (v

Differentiating Eq. (3) with respect to x, holding = const.

dy
0=ex — +¢
dx Y
or,
d
) _ -
dX w=const

Differentiating Eq. (6) with respect to x, holding ¢ = const.
d
0=2cx—-2¢y A
dx

o1,

Comparing Egs. (7) and (8), we see that

w=const

dx

g

¢=const

Hence, lines of constant y are perpendicular to lines of constant ¢.

3)

(4)

)

(6)

()

()

26



212, The geometry of the pipe is shown below.
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As the flow goes through the U-shape bend and is turned, it exerts a net force R on the internal
surface of the pipe. From the symumetric geometry, R is in the horizontal direction, as shown,
acting to the right. The equal and opposite force, -R, exerted by the pipe on the flow is the
mechanism that reverses the flow velocity. The cross-sectional area of the pipe inlet is 7d*/4

~where d is the inside pipe diameter. Hence, A = td*/4 = 7(0.5)*/4 = 0.196m”. The mass flow
entering the pipe is

m = p; A Vi = (1.23)(0.196)(100) = 24-11 kg/sec.

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq.
(2:75), namely

R=-4f (pv-as)v 6]

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the
same values. In Eq. (1), the product (p V * dS) is negative at the inlet (V and dS are in opposite
directions), and is positive at the exit (V and dS) are in the same direction). The magnitude of p

V = dS is simply the mass flow, m. Finally, at the inlet V) is to the right, hence it is in the
positive x-direction. At the exit, V; is to the left, hence it is in the negative x-direction. Thus,
V,=-V; With this, Eq. (1) is written as

R=-[-m Vi+m Vo= m (Vi ~V3)

= m [Vi— (-V))]=m (2V7)

R= (24.11)(2)(100) =
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