CHAPTER 2

$$\vec{F} = - \iint_{S} p d \vec{S}$$

If $p = constant = p_{\infty}$

$$\vec{F} = -p_{\infty} \oiint pd\vec{S} \quad (1)$$

However, the integral of the surface vector over a closed surface is zero, i.e.,

$$\iint_{S} d\vec{S} = 0$$

Hence, combining Eqs. (1) and (2), we have

$$\overrightarrow{F} = 0$$

2.2

Denote the pressure distributions on the upper and lower walls by $p_u(x)$ and $p_{\ell}(x)$ respectively. The walls are close enough to the model such that p_u and p_{ℓ} are not necessarily equal to p_{∞} . Assume that faces \underline{ai} and \underline{bh} are far enough upstream and downstream of the model such that

$$p = p_{\infty}$$
 and $v = 0$ and \underline{ai} and \underline{bh} .

Take the y-component of Eq. (2.66)

$$L = - \iint_{S} (\rho \vec{V} \cdot \vec{dS}) v - \iint_{abbi} (p \vec{dS}) y$$

The first integral = 0 over all surfaces, either because \overrightarrow{V} $\overrightarrow{ds} = 0$ or because $\overrightarrow{v} = 0$. Hence

$$L' = -\iint_{abhi} (p \, dS) y = - \left[\int_{a}^{b} p_{u} \, dx - \int_{i}^{h} p_{\ell} \, dx \right]$$
Minus sign because y-component is in downward Direction.

Note: In the above, the integrals over \underline{ia} and \underline{bh} cancel because $p = p_{\infty}$ on both faces. Hence

$$L' = \int_{i}^{h} p_{\ell} dx - \int_{a}^{b} p_{u} dx$$

2.3
$$\frac{dy}{dx} = \frac{v}{u} = \frac{cy/(x^2 + y^2)}{cx/(x^2 + y^2)} = \frac{y}{x}$$
$$\frac{dy}{y} = \frac{dx}{x}$$
$$\ell n y = \ell n x + c_1 = \ell n (c_2 x)$$
$$y = c_2 x$$

The streamlines are straight lines emanating from the origin. (This is the velocity field and streamline pattern for a source, to be discussed in Chapter 3.)

2.4
$$\frac{dy}{dx} = \frac{v}{u} = -\frac{x}{y}$$
$$y dy = -x dx$$

$$y^2 = -x^2 + const$$

$$x^2 + y^2 = const.$$

The streamlines are concentric with their centers at the origin. (This is the velocity field and streamline pattern for a <u>vortex</u>, to be discussed in Chapter 3.)

2.5 From inspection, since there is no radial component of velocity, the streamlines must be circular, with centers at the origin. To show this more precisely,

$$u = -V_{\theta} \sin = -cr \frac{y}{r} = -cy$$

$$v = V_{\theta} \cos \theta = \operatorname{cr} \frac{x}{r} = \operatorname{cx}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{v}}{\mathrm{u}} = -\frac{\mathrm{x}}{\mathrm{y}}$$

$$y^2 + x^2 = const.$$

This is the equation of a circle with the center at the origin. (This velocity field corresponds to solid body rotation.)

$$2.6 \qquad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{v}}{\mathrm{u}} = -\frac{\mathrm{y}}{\mathrm{x}}$$

$$\frac{\mathrm{d}y}{y} = -\frac{\mathrm{d}x}{x}$$

$$ln y = x ln x + c_1$$

$$y = c_2/x$$

The streamlines are hyperbolas.

2.7 (a)
$$\frac{1}{\delta v} \frac{D(\delta v)}{Dt} = \nabla \vec{V}$$

In polar coordinates:
$$\nabla \cdot \overrightarrow{V} = \frac{1}{r} \frac{\partial}{\partial r} (r V_r) + \frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}$$

Transformation:
$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$V_r = u \cos \theta + v \sin \theta$$

$$V_{\theta} = -u \sin \theta + v \cos \theta$$

$$u = \frac{cx}{(x^2 + y^2)} = \frac{cr \cos \theta}{r^2} = \frac{c \cos \theta}{r}$$

$$v = \frac{cy}{(x^2 + y^2)} = \frac{cr \sin \theta}{r^2} = \frac{c \sin \theta}{r}$$

$$V_r = \frac{c}{r} \cos^2 \theta + \frac{c}{r} \sin^2 \theta = \frac{c}{r}$$

$$V_{\theta} = -\frac{c}{r}\cos\theta\sin\theta + \frac{c}{r}\cos\theta\sin\theta = 0$$

$$\nabla \cdot \overrightarrow{V} = \frac{1}{r} \frac{\partial}{\partial t} (c) + \frac{1}{r} \frac{\partial(0)}{\partial \theta} = 0$$

(b) From Eq. (2.23)

$$\nabla \mathbf{x} \stackrel{\rightarrow}{\mathbf{V}} = \mathbf{e}_{\mathbf{z}} \left[\frac{\partial V_{\theta}}{\partial \mathbf{r}} + \frac{V_{\theta}}{\mathbf{r}} - \frac{1}{\mathbf{r}} \frac{\partial V_{\tau}}{\partial \theta} \right]$$

$$\nabla \times V = e_z [0 + 0 - 0] = 0$$

The flowfield is irrotational.

2.8
$$u = \frac{cy}{(x^2 + y^2)} = \frac{cr \sin \theta}{r^2} = \frac{c \sin \theta}{r}$$

$$v = \frac{-cx}{(x^2 + y^2)} = \frac{cr \cos \theta}{r^2} = -\frac{c \cos \theta}{r}$$

$$V_r = \frac{c}{r} \cos\theta \sin\theta - \frac{c}{r} \cos\theta \sin\theta = 0$$

$$V_{\theta} = -\frac{c}{r} \sin^2 \theta - \frac{c}{r} \cos^2 \theta = -\frac{c}{r}$$

(a)
$$\nabla \cdot \overrightarrow{V} = \frac{1}{r} \frac{\partial}{\partial r} (0) + \frac{1}{r} \frac{\partial (-c/r)}{\partial \theta} = 0 + 0 = \boxed{0}$$

(b)
$$\nabla \times \overrightarrow{V} = \overrightarrow{e_z} \left[\frac{\partial (-c/r)}{\partial r} - \frac{c}{r^2} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} \right]$$
$$= \overrightarrow{e_z} \left[\frac{c}{r^2} - \frac{c}{r_2} - 0 \right]$$

 $\nabla \times \overrightarrow{V} = 0$ except at the origin, where r = 0. The flowfield is singular at the origin.

2.9
$$V_r = 0$$
. $V_\theta = c r$

$$\nabla x \overrightarrow{V} = \overrightarrow{e_z} \left[\frac{\partial (c/r)}{\partial r} + \frac{cr}{r} - \frac{1}{r} \frac{\partial (0)}{\partial \theta} \right]$$

$$= \overrightarrow{e_z} (c + c - 0) = 2c \overrightarrow{e_z}$$

The vorticity is finite. The flow is not irrotational; it is rotational.

2.10

Mass flow between streamlines = $\Delta \bar{\psi}$

$$\Delta \tilde{\psi} = \rho V \Delta n$$

$$\Delta \bar{\psi} = (-\rho V_{\theta}) \Delta r + \rho V_{r} (r\theta)$$

Let cd approach ab

$$d\psi = -\rho V_{\theta} dr + \rho r V_{r} d\theta \tag{1}$$

Also, since $\bar{\psi} = \bar{\psi}$ (r,0), from calculus

$$d\bar{\psi} = \frac{\partial\bar{\psi}}{\partial t} dr + \frac{\partial\bar{\psi}}{\partial \theta} d\theta$$
 (2)

Comparing Eqs. (1) and (2)

$$-\rho V_{\theta} = \frac{\partial \tilde{\psi}}{\partial t}$$

and

$$\rho r V_r = \frac{\partial \bar{\psi}}{\partial \theta}$$

or:

$$\rho \, V_r = \frac{1}{r} \, \frac{\partial \bar{\psi}}{\partial \theta}$$

$$\rho \, V_{\theta} = - \frac{\partial \bar{\psi}}{\partial t}$$

2.11
$$u = cx = \frac{\partial \psi}{\partial x} : \psi = cxy + f(x)$$
 (1)

$$v = -cy = -\frac{\partial \psi}{\partial x}$$
: $\psi = cxy + f(y)$ (2)

Comparing Eqs. (1) and (2), f(x) and f(y) = constant

$$\psi = c \times y + const.$$
 (3)

$$u = c_X = \frac{\partial \psi}{\partial x}$$
: $\phi = c_X^2 + f(y)$ (4)

$$v = -cy = \frac{\partial \psi}{\partial y} : \phi = -cy^2 + f(x)$$
 (5)

Comparing Eqs. (4) and (5), $f(y) = -cy^2$ and $f(x) = cx^2$

$$\phi = c \left(x^2 - y^2 \right) \tag{6}$$

Differentiating Eq. (3) with respect to x, holding ψ = const.

$$0 = cx \frac{dy}{dx} + cy$$

or,

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{y=\mathrm{const}} = -y/x \tag{7}$$

Differentiating Eq. (6) with respect to x, holding $\phi = const.$

$$0 = 2 c x - 2 c y \frac{dy}{dx}$$

or,

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\phi = \mathrm{const}} = \chi/y \tag{8}$$

Comparing Eqs. (7) and (8), we see that

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\psi=\mathrm{const}} = -\frac{1}{\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\phi=\mathrm{const}}}$$

Hence, lines of constant ψ are perpendicular to lines of constant ϕ .

2.12. The geometry of the pipe is shown below.

As the flow goes through the U-shape bend and is turned, it exerts a net force R on the internal surface of the pipe. From the symmetric geometry, R is in the horizontal direction, as shown, acting to the right. The equal and opposite force, -R, exerted by the pipe on the flow is the mechanism that reverses the flow velocity. The cross-sectional area of the pipe inlet is $\pi d^2/4$ where d is the inside pipe diameter. Hence, $A = \pi d^2/4 = \pi (0.5)^2/4 = 0.196 m^2$. The mass flow entering the pipe is

$$m = \rho_1 \text{ A V}_1 = (1.23)(0.196)(100) = 24.11 \text{ kg/sec.}$$

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq. (2.75), namely

$$R = - \oiint (\rho V \cdot dS) V \tag{1}$$

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the same values. In Eq. (1), the product $(p \ V \ dS)$ is negative at the inlet $(V \ and \ dS)$ are in opposite directions), and is positive at the exit $(V \ and \ dS)$ are in the same direction). The magnitude of $p \ V \ dS$ is simply the mass flow, m. Finally, at the inlet V_1 is to the right, hence it is in the positive x-direction. At the exit, V_2 is to the left, hence it is in the negative x-direction. Thus,

$$R = -[-m \ V_1 + m \ V_2] = m \ (V_1 - V_2)$$
$$= m \ [V_1 - (-V_1)] = m \ (2V_1)$$
$$R = (24.11)(2)(100) = 4822 \ N$$

 $V_2 = -V_1$. With this, Eq. (1) is written as