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This is Eq. (1.15).
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This1s Eq. (1.16).
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This is Eq. (1.17).
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For a flat plate, 8 = 0 in Eqs. (1.7) — (1.11). Hence,

N = .[: (Pf‘pu)dxz _[: ["2XIO4(X"1)2+1'19XI05]C1X
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N’=-2x1(54[%- 24x]' +119x 10%])} = 1.12x 10°
A= qrydx= [ (731x702 4288 x ") dx

A =[1274x"%! =[1274

L' =N’ cosd - A’ sinoe=1.12 x 10° cos 10° — 1274 sin 10°
=[1105 x 10°N]

D’ =N’ sina + A” cosa. = 1.12 x 10° sin 10° + 1274 cosa

=p07x10N

Mie= [ [pu-pdxdx= [ 2x10°1-119%107) x dx
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+2x10° [%—%+%}},- [0.595x 105" =[5.78 x 10° N

M’ =M g+ L (c/4) =-5.78 x 10° + 1,105 x 10° (0.25)

=:3.02 x 10" N/m|

M, (=578 x 10%)
Rep = - e = —’ — 516
P N’ 112 x 10°




1.5
C = ¢y COSOL - Cp SINQ

=(1.2) cos 12° = (0.3) sina. = [1.18
Cd = Cp SIDKL + €, COSTL

= (1.2) sin 12° + (0.3) cosa. = 10.279

1.6 cy=¢, cosa + cq sina

Also, using the more accurate N’ rather than L' in Eq. (1.22), we have

Hence:
o°) Cn L Xgle
2.0 0.0498 1.09
0 0.25 0.41
2.0 © 044 0.336
4.0 0.639 0.306
6.0 : 0.846 0.293
8.0 1.07 0284
10.0 1.243 0.277
12.0 1.402 o027
14.0 1.52 0.266
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Note that x¢, moves forward as o is Increased, and that it closely approaches the quarter-
chord point in the range of o of 10° to 14°. At higher angles-of-attack, beyond the stall (o >
16°), X, Will reverse its movement and move rearward as o continues to increase. Compare
the above variation with the center-of-pressure measurements of the Wright Brothers on one
of their airfoils, shown in Fig. 1.28.

17 K =3 (mass, length, and time)
f1 (D, pw, Vs 6, ) =0 Hence N=5
We can write this expression in terms of N - K =5 — 3 =2 dimensionless Pi products:
5 (I, k)
where
Ih = 1f3.(p«. Ve, ¢, D)
IL = f4 (Pos Vior €, 8)

Let ThL=p.® V2D



I=(m £ (4 ) £°m £ 5 =0

mass: a+1=0 a=-]
length: -3a+b+c+1=0 b=-2
time: -b-2=0 c=-.2
Hence:
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Let Il =‘pm2 Vo' g

1=(m £3? (£t £° (¢ i'z)d =0

mass: a=>0 a=0
length: -3a+1+b+d=0 d=-1/2
time: -1-2d=0 b=-1/2
Hence:
v
Hz-‘“- =

Thus:

D V.)
fz (H;)Hz)z f (—‘—‘2—,‘—“&—} =0

q.c” Jeg

or:
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1.8 D=1 (Pus Vi, C, au, Cp, )

K =4 (mass, length, time, degrees)




f2 (Dw; Py VVL‘: €, dw, Cps CV) =0

Hence, N = 7. This can be written as a function of N —K =7 — 4 = 3 pi products:
f3= (1,11, IL)=0
where:
I = £4 (P, Veos €, €p, D)
I =15 (Pw, Veo, €, Cpy o)
3 = f5 (Pes Vs, €, Cps C)
The dimensions of ¢, and ¢, are

energy _ (force)(distance) _ (mft X))
mass(®) mass(®) T m(®)

[epl =

[co] = £7 t2(°y! where () degrees.

For I1y:

pm] V.l & ¢, D=1IT)

m £ (@Y (OF PP O m £ ) =1

mass: 1+1=0 i=-1
length: -3i+j+k+2n+1=0 n=0
time: - -2n-2=0 j=-2
degrees: -n =0 k=-2
Hence:
I = Dz,,,orIL———
FaVa 9aC
For1L:




L=(m 43 (46 () (20 (7 (£ £

mass: 1=0 1=0
length: -3i+1+j+2k+n=0 k=0
time: -1-2k-n=0 n=-1
degrees: -k =0 j=0
Hence:
A
e
For Is:

Tl = p Vo c© Cp Cv

1=(m £ (£ £ £« z't-z)n OF (£ ) )

mass: 1=0 1=0

length: -3i+j+k+2n+2=0 n=-1

time:  -j-2n-2=0 7=0

degrees: n—1=90 k=0
Hence:
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or,




Cp=f (Mg, v
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Re, p Voo, \p, p Voe,

My _Via,_V, [T 100 [0
M, V,a V,yT, 200V200

Hence, the Mach numbers of the two flows are the same.

Re, oV (ﬂz) _ e, [T _( 125 )[@)(}_) §,0_9=-_0354
1739/\200/\2 Vzoo '

The Reynold’s numbers are different. Hence, the two flows are not dynamically similar.

M; =M,
and

Re;=Rey
For Mach number:

.Y

a a

1 2

Sincea o v T, we have

vV, Vv, 250

L = = =167
JL JT V223
V. V,c
For Reynolds number: PG P2 T
Hy Hs

Assume, as before, that p o JT . Hence

P V2 VIS

NI

1.10 Denote free flight by subscript 1, and the wind tunnel by subscript 2. For the lift and
drag coefficients to be the same in both cases, the flows must be dynamically similar. Hence

1)
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or,

A A ( c, J _ (0414)(250) (5)

NN 23 \1
" oI,
P2Va _ 3465
JT
Finally, from the equation of state:
101 x 10°
pgT2=%=—2§7—=351.9 (3)

Eqgs. (1) ~ (3) represent three equations for the three unknowns, pa, Vs, and Tp: They are
summarized below: '

v
= =167 1
L (1)
2V,
o =3465 2
3 @
psz =351.9 (3)
From Eq. (3):
P2 =351.9/T> “y -

Subst. (4) into (2):

| 351.9( v,

T \/f)=34.65 (3)

3519

Subst. (1) into (5): (16.7) = 34.65

2

Hence,
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(351.9)(16.7) -
Ty = 222 < [169.6°K]
P (3469)

From Eq. (1): V2=16.7 JT, =167 1696 ={2175 —

seC

3519 _3519 |, o ke
T, 1696 m

From Eq. 3): p2=

1.11 Pb:pa‘pgAh

=1.01 x 10° ~ (1.36 x 10*)(9.8)(0.2)

py={7.43 x 10* N/m?

1.12  Weight = Buoyancy force + lift

W= B + L
) B=(15,000)  (1.1117) (9.8) = 1.634x10°N
\-—Y_J \.._y_l

volume  air density acceleration
() at 1000m  of gravity
(kg/m®)’ (m/sec)

.’
=

Qo= — pw Va2 = — (1.1117) (30)* = 500 N/m*

1 1
2 2
S = nd¥/4 = 1(14)%/4 = 153.9 m’

L= q. S CL=(500)(153.9)(0.05) = 3487 N

Hence:

W=1.634x10°+3847= [L67x 10N~

1.13  Let us use the formalism surrounding Eq. (1.16) in the text. In this case, cq = ¢4, and
from Eq. (1.16), neglecting skin friction
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Cq= % j:: (CP“ — Cpe)dy | (1)

From Eq. (1.13) in the text, Eq. (1) above can be written as

LE

1 (7€
Cq= ~ j' (CP - Cp,) (- sin O ds) )
C u i
Draw a picture:

Following our sign
convention, note
that 0 1s drawn
counterclockwise
1n this sketch, hence
1t 1s a negative
angle, -6,

From the geometry:
- B=n-¢
Herce, sin (-6) = - sin 8 = sin (n-8) = cos ¢

Substitute this into Eq. (2), noting also that ds = rd¢ and the chord ¢ is twice the radius, ¢ =
2r. From Eq. (2),

Cd=‘_1" J‘TE (Cp“ —Cpt) cosprdd

LE

cd——--;— ILE (va —CPC)_COS(f)d(b

1 rmE 1 =
= f. Coocosddd -5 [, c, cosdpdd 3)

Consider the Iimits of integration for the above integrals. The first integral is evaluated from
the leading edge to the trailing edge along the upper surface. Hence, ¢ = 0 at LE and = at TE.




The second integral is evaluated from the leading edge to the trailing edge along the bottom
surface. Hence, & =27 at LE and & at the TE. Thus, Eq. (3) becomes

_1 * 1 .4
Cd__2_ JO C,. coszbdc[)‘ 5 Izr C, cospdéd

In Eq. (4),
- 2
C,, =2cos" ¢ forO0< ¢ <n/2
z
C, =0 forzﬁcl)gn
C. =2cos? for 27X <4<2
b, —2c08" ¢ or~é—_¢_ 7
3
C,, =0 fornﬁd)i—?

Thus, Eq. (4) becomes
Cg= J-m’z cos® ¢ d ¢ - jiﬂ cos’ od ¢
Since cos’ ¢ d = (% sing)(cos’ ¢ + 2), Eq. (5) becomes
2
ci=I(L sind)(oos? 6 + 277 - (5 sind)(oos’ +2)°
2

c= (%)(1)(2% (DD

d=4/3.

4)

1.14
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P Ay =

FLUID

Consider the a arbitrary body sketched above. Consider also the vertical cyhnder element
inside the body which intercepts the surface area dA; near the top of the body, and dA; near
the bottom of the body. The pressures on dA; and dA; are p; and p; respectively, and makes
angles O; and 0, respectively with respect to the vertical hine through the mlddle of dA; ahd
dA;. The net pressure force in the y-direction on this cylinder is:

dFy=-p)cos 8; dA; +p; cos 8 dA; (1)
Let dA, be the projection of dA; and dA; on a plane perpendicular to the y axis.

dA,=cos 8; dA; = cos 0, dAy
Thus, Eq. (1) becomes

dFy = (p2 —py) dAy ¥l
From the hydrostatic equation

by

p-p= | opgdy (3)

by

Combining Egs. (2) and (3),

h2
dry= [* pgdyday “)

However, dy dAy = dV = element of volume of the body. Thus, the total force in the y
direction, Fy, 1s given by Eq. (4) integrated over the volume of the body



Fy = gdV
5 #, »

Force onbody  Weight of fluid displaced by body.

1.15 From Eq. (1.45)

o L 2W 2(2950)
L= = =
3.8 P V.S (0.002377)V,7(174)
14265
CL= Nk M

]

Also,
Cp = 0.025 + 0.054 C;* Q)

Tabulate Eqgs. (1) and (2) versus velocity. .

L C;
V. (ft/sec) Co Cp D-C,
70 2.911 0.483 6.03
90 1.761 0.192 - 9.7
110 1.179 0.100 11.79
130 0.844 0.063 13.40
150 0.634 0.047 13.49
170 0.494 0.038 13.0
190 0.395 0.033 11.97
210 0.323 0.031 10.42
230 0.270 0.029 9.31
250 0.228 0.028 8.14

These results are plotted on the next page.
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FLIGHT VELOCITY, VY ( Fr/sec)

Examining this graph, we note, for steady, level flight:

1. The lift coefficient decreases as V., increases.

2. At lower velocity range, the drag coefficient decreases even faster than the lift
coefficient with velocity. (Note that on the graph the scale for Cp 1s one-tenth
that for Cy.)

3. As a result, the lift-to-drag ratio first increases, goes through a maximum, and
then gradually decreases as velocity increases.

Tt can be shown that the maximum velocity for this airplane is about 265 ft/sec at sea level.
As seen in the graph, the maximum value of L/D occurs around V. = 140 ft/sec, which 1s
much lower than the maximum velocity. However, at higher velocity the value of L/D
decreases only gradually as V. increases. This has the practical implication that at higher
speeds, even though. the value of L/D 1s less than its maximum, it is still a reasonably high
value. The range of the aireraft is proportional to L/D (see for example, Anderson, Aircraft
Performance and Design, McGraw-Hill, 1999, or Anderson, Introduction to Flight, 4™ ed.,
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McGraw-Hill, 2000). To obtain maximum range, the airplane should fly at the velocity for
maximum L/D, which for this case is 140 ft/sec. However, one reason to fly in an airplane is
to get from one place to another in a reasonably short time. By flying at the low velocity of
V=140 ft/sec, the flight time may be unacceptably long. By cruising at a higher speed, say
200 ft/sec, the flight time will be cut by 30%, with only an 18% decrease in L/D.
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