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460 FUNDAMENTALS OF AERODYNAMICS 

7.7 SuMMARY 

As usual, examine the road map for this chapter (Figure 7.1), and make certain that 
you feel comfortable with the material represented by this road map before continuing 
further. 

Some of the highlights of this chapter are summarized below: 

Thennodynamic relations: 

Equation of state: 

For a calorically perfect gas, 

Forms of the first law: 

Definition of entropy: 

Also, 

The second law: 

or, for an adiabatic process, 

p = pRT 

yR 
Cp=--

y-l 

R 
Cv=--

y-l 

8q +8w =de 

T ds =de + pdv 

T ds = dh- vdp 

ds = 8qrev 
T 

8q 
ds = T + dsirrev 

8q 
ds >­- T 

ds 2:. 0 

Entropy changes can be calculated from (for a calorically perfect gas) 

T2 P2 
s2 - s1 = c P ln - - R ln -

Tl PI 

T2 V2 
S2 - s 1 = Cv ln- + R ln -

TI VI 
and 

For an isentropic flow, 

P2 = (P2) y = (T2 ) y/(y~tJ 
PI PI TI 

[7.1 1 

[7 .6a and It] 

[7.9] 

[7.1 0] 

[7.11 1 
[7., 8] 

[7.20] 

[7.13] 

[7., 4] 

[7., 6] 

[7., 7] 

[7.25] 

[7.26] 

[7.32] 



COMPRESSIBLE FLOW: SOME PRELIMINARY ASPECTS 

General definition of compressibility: 

1 dv 
r=---

v dp 

For an isotheimal process, 

'T = -~ (av) 
v ap 7 

For an isentropic process, 

The governing equations for inviscid, compressible flow are 
Continuity: 

Momentum: 

Energy: 

~mpdV+#pV ·dS=O at 
v s 

ap 
- + V • pV = 0 at 

:t #f p V dV + # (p V • dS)V = -# p dS + #f pf dV 
v s s v 

Du ap 
p Dt = - ax + Pfx 

Dv ap 
p- =--+pf. 

Dt ay > 

Dw ap 
p-=--+pfz 

Dt az 

:t #} P (e + ~
2

) dV + # p (e + ~
2

) V · dS 
v s 

=#fqpdV-# pV ·dS+#f p(f · V)dV 
v s v 

D(e + V 2j2) 
p = pq - V' • pV + p(f · V) 

Dt 

If the flow is steady and adiabatic, Equations (7.43) and (7.44) can be replaced by 

v2 
h0 = h + T = canst 

461 

[7.33] 

[7.34] 

[7.35] 

[7.39] 

[7.40] 

[7.41] 

[7.42a] 

[7.4211] 

[7.42c1 

[7.43] 

[7.44] 

(continued) 



462 FUNDAMENTALS OF AERODYNAMICS 

Equation of state (perfect gas): 

p = pRT [7.1] 

Internal energy (calorically perfect gas): 

[7.6cr] 

Total temperature To and total enthalpy h0 are defined as the properties that would exist if (in our imagination) 
we slowed the fluid element at a point in the flow to zero velocity adiabatically. Similarly, total pressure Po and 
total density p0 are defined as the properties that would exist if (in our imagination) we slowed the fluid element at 
a point in the flow to zero velocity isentropically. If a general flow field is adiabatic, h0 is constant throughout the 
flow; in contrast, if the flow field is nonadiabatic, ho varies from one point to another. Similarly, if a general flow 
field is isentropic, p0 and Po are constant throughout the flow; in contrast, if the flow field is nonisentropic, po and 
Po vary from one point to another. 

Shock waves are very thin regions in a supersonic flow across which the pressure, density, temperature, and 
entropy increase; the Mach number, flow velocity, and total pressure decrease; and the total enthalpy stays the 
same. 

PROBLEMS 

Note: In the following problems, you will deal with both the International System of 
Units (SI) (N, kg, m, s, K) and the English Engineering System (lb, slug, ft, s, oR). 
Which system to use will be self-evident in each problem. All problems deal with 
calorically perfect air as the gas, unless otherwise noted. Also, recall that 1 atm = 
2116lb/ft2 = 1.01 x 105 N/m2 . 

1. The temperature and pressure at the stagnation point of a high-speed missile are 
934°R and 7.8 atm, respectively. Calculate the density at this point. 

2. Calculate c P• Cv, e, and h for 
(a) The stagnation point conditions given in Problem 7.1 
(b) Air at standard sea level conditions 
(If you do not remember what standard sea level conditions are, find them in an 
appropriate reference, such as Reference 2.) 

3 . Just upstream of a shock wave, the air temperature and pressure are 288 K and 1 
atm, respectively; just downstream of the wave, the air temperature and pressure 
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NORMAL SHOCK WAVES AND RELATED TOPICS 

The speed of sound in a gas is given by 

For a calorically perfect gas , 

a=R 
or a= JyRT 

The speed of sound depends only on the gas temperature. 

For a steady, adiabatic, inviscid fl ow, the energy equation can be expressed as 

u2 uz 
ct>T1 + i = c"T2 +; 
az u2 az u2 

__ I_+_!.= __ 2_ + _l 

y-1 2 y-1 2 

az u2 a 2 
--+-=--0-
y - 1 2 y - 1 

a 2 u2 y +I - - +- = a*z 
y- I 2 2(y- I) 

Total conditions in a flow are related to static conditions via 
u2 

ct> T + 2 = cp To 

T.o y -1 
- = l +--M2 

T 2 

~= l+--M2 P 
( 

Y - I ) Yf<y- IJ 

p 2 

Po = 1 + r...=_Mz 
( 

I )I f<y- IJ 

p 2 

400 

[8.18] 

[8.23] 

[8.25] 

[8.20] 

[8.30] 

[8.32] 

[8.33] 

[8.35] 

[8.38] 

[8.40] 

[8.42] 

[8.43] 

Note that the ratios of total to static properties are a function of local Mach number only. These functions are 
tabulated in Appendix A. 
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The basic normal shock equations are 

Continuity: P1U1 = PzU2 

Momentum: PI+ P1ui = Pz + P2U~ 

Energy: 
u2 u2 

h 1 + _.!. = hz + --2 
2 2 

[8.2] 

[8.6] 

[8.1 0] 

These equations lead to relations for changes across a normal shock as a function of upstream Mach number 
M1 only: 

2 1 + [(y- 1)/2]M~ 
M - ---,"-----'----'-
2- yMt- (y -1)/ 2 

u2 

(y + I)M~ 
= 2 + (y- 1)M; = 

P2 = 1 + ~(M2- 1) 
PI y + 1 I 

Tz hz [ 2y 2 J 2 + (y- 1)Mf 
- =- = 1 + --(M1 - 1) 
T1 h1 y+1 (y+l)Mf 

[ 
2y 2 J - R In 1 + --(M - 1) 

y + 1 I 

Po.2 = e-<s2-s,)JR 

Po. I 

The normal shock properties are tabulated versus M1 in Appendix B. 

For a calorically perfect gas, the total temperature is constant across a normal shock wave: 

To.z = To.1 

However, there is a loss in total pressure across the wave: 

Po.z < Po.1 

[8.59] 

[8.61 1 

[8.65] 

[8.67] 

[8.68] 

[8.73] 
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For subsonic and supersonic compressible flow, the freestream Mach number is determined by the ratio of 
Pi tot pressure to freestream static pressure. However, the equations are different: 

Subsonic flow: M~ = -- _..Q:.!. -I 
2 [(p ) (y -1 )/Y ] 

Y- 1 PI 

Supersonic flow: 
Po.2 = [ (y + 1)2 M~ Jrtrr-l l I - y + 2y M~ 
PI 4yM~-2(y-l) y+l 

PROBLEMS 

1. Consider air at a temperature of 230 K. Calculate the speed of sound. 

2. The temperature in the reservoir of a supersonic wind tunnel is 519°R. In the text 
section, the flow velocity is 1385 ft/s. Calculate the test-section Mach number. 
Assume the tunnel flow is adiabatic. 

3. At a given point in a flow, T = 300 K, p = 1.2 atm, and V = 250 m/s. At this 
point, calculate the corresponding values of p0 , T0 , p* , T * , and M *. 

4. At a given point in a flow, T = 700°R, p = 1.6 atm, and V = 2983 ft/s. At this 
point, calculate the corresponding values of po, To, p*, T * , and M * . 

5. Consider the isentropic flow through a supersonic nozzle. If the test-section 
conditions are given by p = 1 atm, T = 230 K, and M = 2, calculate the 
reservoir pressure and temperature. 

6. Consider the isentropic flow over an airfoil. The freestream conditions corre­
spond to a standard altitude of 10,000 ft and Moo = 0.82. At a given point on the 
airfoil, M = 1.0. Calculate p and Tat this point. (Note: You will have to consult 
a standard atmosphere table for this problem, such as given in Reference 2. If 
you do not have one, you can find such tables in any good technical library.) 

7. The flow just upstream of a normal shock wave is given by PI = 1 atm, T1 
288 K, and M1 = 2.6. Calculate the following properties just downstream of the 
shock: P2. T2 , p2, M2, p0_2, To.2. and the change in entropy across the shock. 

8. The pressure upstream of a normal shock wave is 1 atm. The pressure and 
temperature downstream of the wave are 10.33 atm and 1390°R, respectively. 
Calculate the Mach number and temperature upstream of the wave and the total 
temperature and total pressure downstream of the wave. 

9. The entropy increase across a normal shock wave is 199.51/(kg · K). What is the 
upstream Mach number? 

[8.74] 

[8.80] 
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OBLIQUE SHOCK AND EXPANSION WAVES 551 

An infinitesimal disturbance in a multidimensional supersonic flow creates a Mach wave which makes an 
angle tt with respect to the upstream velocity. This angle is defined as the Mach angle and is given by 

. -r I 
/).=SID M [9. 11 

Changes across an oblique shock wave are determined by the normal component of velocity ahead of the 
wave. For a calorically perfect gas, the normal component of the upstream Mach number is the determining factor. 
Changes across an oblique shock can be determined from the normal shock relations derived in Chapter 8 by using 
M11 .t in these relations, where 

[9. 1 3] 

Changes across an oblique shock depend on two parameters, for example, M 1 and {3, or M 1 and(). The relationship 
between M1, {3, and() is given in Figure 9.7, which should be studied closely. 

Oblique shock waves incident on a solid surface reflect from that surface in such a fashion to maintain flow 
tangency on the surface. Oblique shocks also intersect each other, with the results of the intersection depending on 
the arrangement of the shocks. 

The governing factor in the analysis of a centered expansion wave is the Prandtl-Meyer function v (M). The 
key equation which relates the downstream Mach number M 2 , the upstream Mach number M 1 , and the deflection 
angle(} is 

[9.43] 

The pressure distribution over a supersonic airfoil made up of straight-line segments can usually be calculated 
exactly from a combination of oblique and expansion waves-that is, from exact shock-expansion theory. 

PROBLEMS 

1. A slender missile is flying at Mach 1.5 at low altitude. Assume the wave generated 
by the nose of the missile is a Mach wave. This wave intersects the ground 559 
ft behind the nose. At what altitude is the missile flying? 
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584 

Example 1 0.4 

FUNDAMENTALS OF AERODYNAMICS 

In Section 1.2, we subdivided aerodynamics into external and internal flows. You 
are reminded that the material in this chapter deals exclusively with internal flows. 

For the preliminary design of a Mach 2 supersonic wind tunnel, calculate the ratio ofthe diffuser 
throat area to the nozzle throat area. 

Solution 
Assuming a nmmal shock wave at the entrance of the diffuser (for starting), from Appendix 
B, Po.21 Po. I = 0.7209 forM= 2.0. Hence, from Equation (10.38), 

10.6 

At.2 = PO,l = _1_ =1}38;1 
A1.1 Po.2 0.7209 ~ 

SUMMARY 

The results of this chapter are highlighted below: 

Quasi-one-dimensional flow is an approximation to the actual three-dimensional flow in a variable-area duct; 
this approximation assumes that p = p(x), u = u(x), T = T(x), etc. , although the area varies as A = A(x). 
Thus, we can visualize the quasi-one-dimensional results as giving the mean properties at a given station, averaged 
over the cross section. The quasi-one-dimensional flow assumption gives reasonable results for many internal flow 
problems; it is a "workhorse" in the everyday application of compressible flow. The governing equations for this 
are 

Continuity: 

Momentum: 

Energy: 

p 1A 1 + p 1 u~A 1 + 1A2 

pdA = p2 A2 + P2u;A2 
A t 

u 2 u2 
h 1 + __!_ = h 2 + _2 

2 2 

The area velocity relation 

tells us that 

dA 2 du 
- = (M - I) -
A u 

I. To accelerate (decelerate) a subsonic flow, the area must decrease (increase). 

2. To accelerate (decelerate) a supersonic flow, the area must increase (decrease). 

3. Sonic flow can only occur at a throat or minimum area of the flow. 

[I 0.1] 

[10.5] 

[I 0.9] 

[10.25] 
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The isentropic flow of a calorically perfect gas through a nozzle is governed by the relation 

(
A )

2 _ I [ 2 ( y- I 2)]<r+1l/rr- IJ 
- -- -- 1+--M 
A* M 2 y + 1 2 

[10.32] 

This tells us that the Mach number in a duct is governed by the ratio of local duct area to the sonic throat area; 
moreover, for a given area ratio, there are two values of Mach number that satisfy Equation (10.32)-a subsonic 
value and a supersonic value. 

For a given convergent-divergent duct, there is only one possible isentropic flow solution for supersonic flow; 
in contrast, there are an infinite number of subsonic isentropic solutions, each one associated with a different 
pressure ratio across the nozzle, Pol Pe = Pol pH. 

In a supersonic wind tunnel, the ratio of second throat area to first throat area should be approximately 

A,_ z 

A,_I 
Po.1 

Po.z 

If A,_2 is reduced much below this value, the diffuser will choke and the tunnel will unstart. 

PROBLEMS 

I. The reservoir pressure and temperature for a congergent-divergent nozzle are 5 
atm and 520°R, respectively. The flow is expanded isentropically to supersonic 
speed at the nozzle exit. If the exit-to-throat area ratio is 2.193, calculate the 

following properties at the exit: Me, Pe• Te, Pe, Ue, Po.e. To.e-

2. A flow is isentropically expanded to supersonic speeds in a convergent-divergent 
nozzle. The reservoir and exit pressures are I and 0.3143 atm, respectively. What 

is the value of Ael A*? 

3. A Pitot tube inserted at the exit of a supersonic nozzle reads 8. 92 x 104 N/m2
. If 

the reservoir pressure is 2.02 x 105 N/m2
, calculate the area ratio Ael A* of the 

nozzle. 

4. For the nozzle flow given in Problem 10.1, the throat area is 4 in2
. Calculate the 

mass flow through the nozzle. 

5 . A closed-form expression for the mass flow through a choked nozzle is 

. PoA* 
m=--

Po 
Derive this expression. 

.r (-2-)(y+l)/(y-1) 

R y +I 

[I 0.38] 
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SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS: LINEAR THEORY 

1 1.13 SUMMARY 

Review the road map in Figure 11.1, and make certain that you have all the concepts 

listed on this map well in mind. Some of the highlights of this chapter are as follows: 

635 

For two-dimensional, irrotational, isentropic, steady flow of a compressible fluid, the exact velocity potential 
equation is 

[11.12] 

where 

2 _ 2 y- I [(fl¢)2 (fl¢)2

] a -a - -- - + -
() 2 ax ily 

[11.13] 

This equation is exact, but it is nonlinear and hence difficult to solve. At present, no general analytical solution to 
this equation exists. 

For the case of small perturbations (slender bodies at low angles of attack), the exact velocity potential equation 
can be approximated by 

z a2¢ a2¢ 
(I - M=x)-2 + -. - 2 = 0 

ax ay 
[11.18] 

This equation is approximate, but linear, and hence more readily solved. This equation holds for subsonic (0 ::; 
MC)Q .::; 0.8) and supersonic (1.2.::; M00 .::; 5) flows; it dos not hold for transonic (0.8 ::; M"" ::; 1.2) or hypersonic 
(M ')0 > 5) flows. 

The Prandtl-Glauert rule is a compressibility correction that allows the modification of existing incompressible 
flow data to take into account compressibility effects: 

c, = Cp.O [11.51] 
J l- M;, 

Also, 
c,.o [11.52] Ct = J l- M;_ 

and 
Cm.O [11.53] Cm = Jl- M 2 

'X: 

The critical Mach number is that freestream Mach number at which sonic flow is first obtained at some point 
on the surface of a body. For thin airfoils, the critical Mach number can be estimated as shown in Figure 11 .6. 
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The drag-divergence Mach number is that freestream Mach number at which a large rise in the drag coefficient 
occurs, as shown in Figure 11.11. 

The area rule for transonic flow states that the cross-sectional area distribution of an airplane, including 
fuselage, wing, and tail, should have a smooth distribution along the axis of the airplane. 

Supercritical airfoils are specially designed profiles to increase the drag-divergence Mach number. 

PROBLEMS 

1. Consider a subsonic compressible flow in cartesian coordinates where the velocity 
potential is given by 

rl.(x y) = V x + 70 e-2:rr~y sin 2nx 
"'' 

00 
I 2 v 1- Moo 

If the free stream properties are given by V 00 = 700 ft/s, p00 = 1 atm, and T 00 = 
5l9°R, calculate the following properties at the location (x, y) = (0.2 ft, 0.2 ft) : 
M, p, and T. 

2. Using the Prandtl-Glauert rule, calculate the lift coefficient for an NACA 2412 
airfoil at 5o angle of attack in a Mach 0.6 freestream. (Refer to Figure 4.5 for the 
original airfoil data.) 

3. Under low-speed incompressible flow conditions , the pressure coefficient at a 
given point on an airfoil is -0.54. Calculate C Pat this point when the freestream 
Mach number is 0.58, using 
(a) The Prandtl-Glauert rule 
(b) The Karman-Tsien rule 
(c) Laitone's rule 

4. In low-speed incompressible flow, the peak pressure coefficient (at the minimum 
pressure point) on an airfoil is -0.41. Estimate the critical Mach number for this 
airfoil, using the Prandtl-Glauert rule. 

5. For a given airfoil, the critical Mach number is 0.8. Calculate the value of p / p 00 

at the minimum pressure point when M00 = 0.8. 
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LINEARIZED SUPERSONIC FLOW 649 

the final configuration was obtained by filling and shaving areas from parts of the airplane (see Figure I2.6a) in 
order to more faithfully obey the supersonic area rule. 

The supersonic area rule was first conceived by the famous NACA and NASA aerodynamicist, R. T. Jones, 
and his work on this subject was first published in "Theory of Wing-Body Drag at Supersonic Speeds," NACA 
TR 1284, July 8, 1953 (printed in the NACA Annual Report for 1956). This report should be consulted for more 
details on the application of the supersonic area rule. 

12.4 SuMMARY 

In linearized supersonic flow, information is propagated along Mach lines where the Mach angle 1-L = 
sin-1 (I/ M 00). Since these Mach lines are all based on Moc, they are straight, parallel lines which propagate away 
from and downstream of a body. For this reason, disturbances cannot propagate upstream in a steady supersonic 
flow. 

The pressure coefficient, based on linearized theory, on a surface inclined at a small angle e to the freestream 
is 

2() 
c = -;:::;:::::;;==:: " JM~- I 

[12.15] 

If the surface is inclined into the freestream, cl' is positive; if the surface is inclined away from the freestream, c p 

is negative. 

Based on linearized supersonic theory, the lift and wave-drag coefficients for a flat plate at an angle of attack 
are 

4a 
c I = -j-;::;M;::::;:;;::;,=-==::1 [12.23] 

4a2 

Cd = ---r::=:=;;===;= JM;,- 1 
and [12.24] 

Equation (12.23) also holds for a thin airfoil of arbitrary shape. However, for such an airfoil, the wave-drag 
coefficient depends on both the shape of the mean camber line and the airfoil thickness. 
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