
Two-Dimensional Airfoils

1 Definitions

There are various ways to describe an airfoil. The NACA-terminology is a well-known standard, which
defines the following airfoil properties. The mean camber line is the line formed by the points halfway
between the upper and lower surfaces of the airfoil. The most forward and rearward points of the airfoil
are the leading edge and the trailing edge, respectively. The straight line connecting the leading and
trailing edges is the chord line.

The length of the chord line is defined as the chord c. The maximum distance between the chord line
and the camber line is called the camber. If the camber is 0, then the airfoil is called symmetric. And
finally, the thickness is the distance between the upper and lower surfaces of the airfoil.

In this chapter we will be looking at 2-dimensional airfoils. We’re interested in finding cl, the lift
coefficient per unit length. At low angles of attack α, the value of cl varies linearly with α. The
lift slope a0 is the ratio of them, so a0 = dcl

dα .

If α gets too high, this relation doesn’t hold, since stall will occur. The maximum value of cl is denoted
by cl,max. This value determines the minimum velocity of an aircraft. The value of α when cl = 0 is
called the zero-lift angle of attack and is denoted by αL=0.

2 Vortex sheets

In the last chapter we treated the source panel method. We put a lot of sources on a sheet. We can also
put a lot of vortices on a curve s. Let’s define γ = γ(s) as the strength of the vortex sheet per unit length
along s. The velocity potential at some point P can then be determined, using

dφ = −γ ds

2π
θ ⇒ φ = − 1

2π

∫ b

a

θγ ds. (2.1)

Here θ is the angle between point P and the point on the vortex sheet we’re at that moment looking at.
Also a and b are the begin and the end of the vortex sheet.

The circulation of the vortex sheet can be determined to be

Γ =
∫ b

a

γ ds. (2.2)

If the circulation is known, the resulting lift can be calculated using the Kutta-Joukowski theorem

L′ = ρ∞V∞Γ. (2.3)

3 Kutta condition

We can put a vortex sheet on the camber line of an airfoil. We can then use boundary conditions and
numerical computation to find the vortex strength γ at every point. But it turns out that there are
multiple solutions. To get one solution, we can use the Kutta condition, which states that the flows
leaves the trailing edge smoothly.

What can we derive from this? For now, let’s call ϕ the angle of the trailing edge. Also let’s call V1 the
velocity on top of the airfoil at the trailing edge and V2 the velocity at the bottom of the airfoil at the
same point. If ϕ is finite, then it can be shown that V1 = V2 = 0. However, if ϕ → 0 (the trailing edge
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is cusped), then only V1 = V2. Nevertheless, we can derive the same rule from both situations. Namely,
that the vortex strength at the trailing edge is

γ(TE) = 0. (3.1)

4 Thin airfoil theory

Suppose we want to calculate the flow over a very thin airfoil by using a vortex sheet in a free stream
flow. We can put vortices on the camber. But the camber line doesn’t differ much from the chord line,
so to keep things simple we place vortices on the chord line.

Since the airfoil is thin, it is by itself a streamline of the flow. So the velocity perpendicular to the camber
line is 0. Let’s define z(x) to be the distance between the mean camber line and the chord line, where x
is the distance from the leading edge. The velocity perpendicular to the camber line, caused by the free
stream flow, at position x, can be shown to be

V∞,n = V∞

(
α− dz

dx

)
, (4.1)

where α is in radians. The velocity perpendicular to the mean camber line, due to the vortices, is
approximately equal to the velocity perpendicular to the chord. It can be shown that this velocity
component on a small part dε, with distance x from the airfoil leading edge, is

dw = − γ(ε) dε

2π(x− ε)
. (4.2)

Integrating along the chord gives the total velocity perpendicular to the chord at position x due to the
vortex sheet, being

w(x) = − 1
2π

∫ c

0

γ(ε) dε

x− ε
. (4.3)

We have already derived that the velocity perpendicular to the airfoil is zero. So V∞,n + w = 0, which
results in

1
2π

∫ c

0

γ(ε) dε

x− ε
= V∞

(
α− dz

dx

)
. (4.4)

This is the fundamental equation of thin airfoil theory.

5 Vortex distributions of symmetric airfoils

If we have a symmetric airfoil, then there is no camber, so dz/dx = 0 everywhere on the airfoil. This
simplifies equation 4.4 and we might actually try to solve it now. If we make the change of variable
ε = 1

2c(1− cos θ) and also define x = 1
2c(1− cos θ0), we get

1
2π

∫ π

0

γ(θ) sin θ dθ

cos θ − cos θ0
= V∞α. (5.1)

This is a complicated integral, but it can be solved. The solution will be

γ(θ) = 2αV∞
1 + cos θ

sin θ
. (5.2)

We might want to take a closer look on the change of variable we have made. How can we visualize this
change of variable? Imagine the airfoil being the diameter of a circle. Now imagine we are moving over
the top half of the circle, from the leading edge to the trailing edge. The angle θ we make with respect to
the center of the airfoil corresponds to the point on the airfoil directly below it, as is shown in figure 1.
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Figure 1: Clarification of the change of variable.

6 Lift coefficients of symmetric airfoils

In the last paragraph, we found the vortex strength of a thin symmetric airfoil. Using the vortex strength,
we can find the circulation, which will turn out to be

Γ = παcV∞. (6.1)

Using the Kutta-Joukowski theorem, we can calculate the lift per unit span on the airfoil, which is

L′ = ρ∞V∞Γ = παcρ∞V 2
∞. (6.2)

The lift coefficient now is

cl =
L′

1
2ρ∞V 2

∞c
=

παcρ∞V 2
∞

1
2ρ∞V 2

∞c
= 2πα. (6.3)

So we know have the important conclusion that for thin symmetric airfoils, the lift slope is a0 = 2π.

7 Moment coefficients of symmetric airfoils

We can use this theory as well to calculate the moment per unit span exerted on the airfoil around, for
example, the leading edge. Let’s call M ′ the moment per unit span around the leading edge. Moment is
force times distance, so dM ′ = −εdL′. The minus sign is there due to sign convention. We know that
the lift per unit span is L′ = ρ∞V∞Γ, so we find that dL′ = ρ∞V∞dΓ. We also know that dΓ = γ(ε)dε.
Combining this all gives

M ′
LE = −

∫ c

0

ε dL′ = −ρ∞V∞

∫ c

0

εγ(ε) dε. (7.1)

Using the familiar change of variable and integrating gives

M ′
LE = −q∞

( c

2

)2

2πα = −clq∞

( c

2

)2

. (7.2)

The moment coefficient about the leading edge now is

cm,le =
M ′

LE

q∞c2
= −

clq∞
(

c
2

)2
q∞c2

= −1
4
cl. (7.3)

The quarter-chord point is the point at distance 1
4c from the leading edge. Taking sum of the moments

about the quarter-chord point gives the moment coefficient about the quarter-chord point

cm,c/4 = cm,le +
1
4
cl = 0. (7.4)
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The center of pressure is the point around which there is no moment. So the center of pressure is
equal to the quarter-chord position. The aerodynamic center is the point around which the moment
coefficient is independent of α. Since cm,c/4 = 0 for every α, the quarter point position is also the
aerodynamic center. So the center of pressure and the aerodynamic center are both located at the
quarter-chord point.

8 Vortex distributions of cambered airfoils

For cambered airfoils, it is a lot more difficult to solve equation 4.4, since dz
dx 6= 0. Mathematicians have

found the solution to be

γ(θ) = 2V∞

(
A0

1 + cos θ

sin θ
+

∞∑
n=1

An sinnθ

)
. (8.1)

We will not show the derivation, since that will be too complicated. You will just have to accept the
equations.

The values An depend on dz
dx and A0 depends on both dz

dx and α. In fact, using even more complicated
mathematics, it can be shown that

A0 = α− 1
π

∫ π

0

dz

dx
dθ0, An =

2
π

∫ π

0

dz

dx
cos nθ0 dθ0. (8.2)

Note that dz
dx is the derivative of z(x), taken at point x. So the value of dz

dx depends on x. And x also
depends on θ0, since x = 1

2c(1− cos θ).

9 Lift coefficients of cambered airfoils

Let’s take a loot at the lift coefficient of the airfoil. The circulation can be found using

Γ = cV∞

(
πA0 +

π

2
A1

)
. (9.1)

The lift per unit span now is

L′ = ρ∞V∞Γ = ρ∞V 2
∞cπ

(
A0 +

1
2
A1

)
. (9.2)

The lift coefficient can be shown to be

cl =
L′

1
2ρ∞V 2

∞c
= π(2A0 + A1) = 2π

(
α +

1
π

∫ π

0

dz

dx
(cos θ0 − 1)dθ0

)
. (9.3)

We now see that the lift slope is once more a0 = dcl

dα = 2π. So camber does not change the lift slope.
However, it does change the zero-lift angle of attack, which will be

αL=0 = 2πα− cl = − 1
π

∫ π

0

dz

dx
(cos θ0 − 1)dθ0. (9.4)

10 Moment coefficients of cambered airfoils

Just like we did for symmetric airfoils, we can calculate the moment coefficient. The result will be

cm,le = −π

2

(
A0 + A1 −

A2

2

)
= −cl

4
+

π

4
(A2 −A1) . (10.1)
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We can once more derive the moment coefficient with respect to the quarter-chord point. It will not be
0 this time, but

cm,c/4 =
π

4
(A2 −A1) . (10.2)

The value of cm,c/4 is independent of α, so the quarter-chord point is the aerodynamic center. However,
the moment coefficient is not zero, so this point is not the center of pressure. The position of the center
of pressure can be calculated to be

xcp = −M ′
LE

L′
= −cm,lec

cl
=

c

4

(
1 +

π

cl
(A1 −A2)

)
(10.3)

11 Designing a camber line

We used the camber line (described by dz
dx ) to find the coefficients A0, A1, . . .. We can also use the

coefficients to find the camber line. We then have several boundary conditions. Of course z(0) = 0 and
z(c) = 0.

First we need to think of suitable coefficients for our design. What these coefficients will be depends on
what properties we want to give our airfoil. For example, if we want to have cm,c/4 = 0, then we should
take A1 = A2. If we have determined our coefficients, we can find our camber line by using

dz

dx
= α−A0 +

∞∑
n=1

An cos nθ0. (11.1)

12 Design lift coefficient

Thin airfoils do have a disadvantage. For most angles of attack, the airflow separates at the leading edge
(and reattaches afterward for low velocities). This reduces lift. For one angle of attack, the flow smoothly
attaches to the leading edge. This is the so-called ideal or optimal angle of attack αopt.

Theoretical calculations can show that this only occurs if the vortex at the leading edge is zero, so
γLE = 0. Combining this fact with equation 8.1 gives A0 = 0. Inserting this in equation 8.2 results in

αopt =
1
π

∫ π

0

dz

dx
θ0. (12.1)

The lift coefficient at the optimal angle of attack is called the design lift coefficient. Thanks to equation
9.3, we can calculate it, using

(cl)design = πA1 = 2
∫ π

0

dz

dx
cos θ0 dθ0. (12.2)
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