
Supersonic Flow over Airfoils

In the previous chapter we treated subsonic flow over airfoils. In this final chapter we will take a look at
supersonic flow. How do airfoils behave at M > 1?

1 The Linearized Supersonic Pressure Coefficient Equation

In the previous chapter, we derived the linear perturbation velocity potential equation. If we define
λ =

√
M2
∞ − 1, we can rewrite it to

λ2 ∂2φ̂

∂x2
− ∂2φ̂

∂y2
= 0. (1.1)

Any function φ̂ = f(x− λy) satisfies this equation. So it initially may not seem helpful. However, we do
know that if x− λy = constant, also φ̂ stays constant. Also, x− λy is constant, if

dy

dx
=

1
λ

=
1√

M2
∞ − 1

= tan µ, (1.2)

where µ is the Mach angle, which was introduced in the chapter on oblique shock waves. So we find
that φ̂ is constant along a Mach line.

From the fact that φ̂ = f(x−λy), we can also derive another important relation. From this follows that,
for a certain position on the wing with angle θ, we have

û = −V∞θ

λ
. (1.3)

The pressure coefficient can now be found using

Cp = − 2û

V∞
=

2θ√
M2
∞ − 1

. (1.4)

This important equation is called the linearized supersonic pressure coefficient equation. It is a
rather simple way to find Cp. The sign of θ, and thus also of Cp can, however, be rather tricky. Luckily
you only have to remember one important thing. If the surface of the airfoil is inclined into the free
stream, there is a relatively high pressure, and Cp is thus positive. On the other hand, if the surface is
inclined away from the free stream, the pressure is relatively low, and Cp is thus negative.

2 Lift and Drag Coefficients of a Flat Plate

Let’s give an example of how to use the relation that was just derived. Let’s calculate the lift and drag
coefficient of a flat plate at an angle of attack α in a supersonic flow. The pressure coefficients at the
lower and upper side of the plate, Cp,l and Cp,u, respectively, are given by

Cp,l =
2α√

M2
∞ − 1

and Cp,u = − 2α√
M2
∞ − 1

. (2.1)

The component of the force acting normal to the plate cn can now be found using

cn =
1
c

∫ c

0

(Cp,l − Cp,u) dx =
4α√

M2
∞ − 1

. (2.2)
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Since the plate has no thickness, there is no component of the force acting parallel to the plate. So we
have

cl = cn cos α and cd = cn sinα. (2.3)

Using cos α ≈ 1 and sinα ≈ α we eventually get

cl =
4α√

M2
∞ − 1

and cn =
4α2√

M2
∞ − 1

. (2.4)

These equations are only valid for flat plates at small angles of attack. Supersonic airplanes, however,
usually have relatively flat wings, and also fly at low angles of attack. So the above equations can often
also be applied for the wings of supersonic aircrafts. Isn’t it surprising that such simple equations can
say so much about such complicated aircrafts?
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