
Normal Shock Waves

Where there are supersonic flows, there are usually also shock waves. A fundamental type of shock wave
is the normal shock wave – the shock wave normal to the flow direction. We will examine that type
of shock wave in this chapter.

1 Basic Relations

Let’s consider a rectangular piece of air (the system) around a normal shock wave, as is shown in figure
1. To the left of this shock wave are the initial properties of the flow (denoted by the subscript 1). To
the right are the conditions behind the wave.

Figure 1: A normal shock wave.

We can already note a few things about the flow. It is a steady flow (the properties stay constant in
time). It is also adiabatic, since no heat is added. No viscous effects are present between the system and
its boundaries. Finally, there are no body forces.

Now what can we derive? Using the continuity equation, we can find that the mass flow that enters the
system on the left is ρ1u1A1, with u the velocity of the flow in x-direction. The mass flow that leaves the
system on the right is ρ2u2A2. However, since the system is rectangular, we have A1 = A2. So we find
that

ρ1u1 = ρ2u2. (1.1)

We can also use the momentum equation. The momentum entering the system every second is given by
(ρ1u1A1)u1. The momentum flow leaving the system is identically (ρ2u2A2)u2. The net force acting on
the system is given by p1A1 − p2A2. Combining everything, we can find that

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (1.2)

Finally let’s look at the energy. The energy entering the system every second is (ρ1u1A1)
(
e1 + u2

1/2
)
.

Identically, the energy leaving the system is (ρ2u2A2)
(
e2 + u2

2/2
)
. No heat is added to the system (the

flow is adiabatic). There is work done on the system though. The amount of work done every second is
p1A1u1 − p2A2u2. Once more, we can combine everything to get

h1 +
u2

1

2
= h2 +

u2
2

2
. (1.3)

This equation states that the total enthalpy is the same on both sides of the shock wave. Since the shock
wave was adiabatic, we actually already knew that. So this was no surprising result.

The three equations we have just derived hold for all one-dimensional, steady, adiabatic, inviscid flows.
But let’s take a closer look at them. Let’s suppose that all upstream conditions ρ1, u1, p1, h1 and T1 are
known. We can’t solve for all the downstream conditions just yet. We have only three equations, while
we have four unknowns. We need a few more equations. These equations are

h = cpT, (1.4)
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p = ρRT. (1.5)

That wasn’t much new, was it? We now have 5 unknowns and 5 equations. So we can solve everything.

2 The Speed of Sound

A special kind of normal shock wave is a sound wave. In fact, it is an infinitesimally weak normal shock
wave. Because of this, dissipative phenomena (like viscosity and thermal conduction) can be neglected,
making it an isentropic flow.

At what velocity does this shock wave travel? Let’s call this velocity the speed of sound a. Note that
a = u1. Because the shock wave is very weak, we can also state that p2 = p1 + dp, ρ2 = ρ1 + dρ and
a2 = a1 + da. If we combine these facts with the three equations we derived in the previous paragraph,
we eventually find that

a2 =
dp

dρ
=
(

∂p

∂ρ

)
s

. (2.1)

The last part in the above equation is to indicate that the changes in p and ρ occur isentropically. For
isentropic processes we have

p = cργ ⇒
(

∂p

∂ρ

)
s

=
γp

ρ
. (2.2)

This results in

a =
√

γp

ρ
=
√

γRT , (2.3)

where we used the equation of state in the last part. So apparently, for a given medium, the speed of
sound only depends on the temperature.

Do you still remember the compressibility we introduced in the previous chapter? From the equation
dρ = ρτdp, we can also derive that

a =
√

1
ρτs

. (2.4)

Note that we have used the isentropic compressibility because the process is isentropic. So we see that
the lower the compressibility of a substance, the faster sound travels in it.

3 The Mach Number

The Mach number M is defined as
M =

u

a
. (3.1)

A lot of properties can be derived from the Mach number. Let’s recall the total temperature T0. This
can be found using

cpT0 = cpT +
u2

2
. (3.2)

From this we can derive that
T0

T
= 1 +

γ − 1
2

M2. (3.3)

Using the isentropic flow relations, we can also find that

p0

p
=
(

1 +
γ − 1

2
M2

) γ
γ−1

, (3.4)
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ρ0

ρ
=
(

1 +
γ − 1

2
M2

) 1
γ−1

. (3.5)

From equation (3.2) we can also derive that

a2

γ − 1
+

u2

2
=

a2
0

γ − 1
= constant. (3.6)

4 Sonic Conditions

When you slow an airflow down adiabatically to u = 0 (and thus M = 0) you find the total temperature Tt,
total pressure pt, total density ρt, and so on. Similarly, we can change the velocity of a flow adiabatically
such that M = 1. The corresponding temperature at sonic conditions is denoted by T ∗. The
characteristic speed of sound a∗ can now be found using a∗ =

√
γRT ∗. However, we can also

determine that
a2

γ − 1
+

u2

2
=

a∗2

γ − 1
+

a∗2

2
=

γ + 1
2 (γ − 1)

a∗2 = constant. (4.1)

Just like we can examine the speed of sound at sonic conditions, we can also look at the temperature T ∗,
pressure p∗ and density ρ∗ at such conditions. By inserting M = 1 in equations (3.3) to (3.5) we find
that

T0

T ∗
=

γ + 1
2

,
p0

p∗
=
(

γ + 1
2

) γ
γ−1

and
ρ0

ρ∗
=
(

γ + 1
2

) 1
γ−1

. (4.2)

Finally we can define the characteristic Mach number M∗ as

M∗ =
u

a∗
. (4.3)

We can find that M and M∗ are related, according to

M2 =
2M∗2

(γ + 1)− (γ − 1) M∗2 ⇔ M∗2 =
(γ + 1) M2

2 + (γ − 1) M2
. (4.4)

The parameters M and M∗ are quite similar. If one is bigger than 1, so is the other, and vice verse.

5 Normal Shock Wave Relations

There are several other relations that hold for normal shock waves. We will discuss some of them. We
start with the Prandtl relation, stating that

a∗2 = u1u2 ⇔ 1 = M∗
1 M∗

2 . (5.1)

From this follows that

M2
2 =

2 + (γ − 1) M2
1

2γM2
1 − (γ − 1)

. (5.2)

This is an important relation. If M1 > 1 we have M2 < 1. If M1 = 1, then also M2 = 1. (If this is the
case we are dealing with an infinitely weak shock wave, called a Mach wave.) However, if M1 < 1 it
would seem that M2 > 1. But this seems rather odd. Suddenly a subsonic flow becomes supersonic! A
more detailed look would show that in this case also the entropy s would decrease. But the second law of
thermodynamics states that the entropy can only increase. What can we conclude from this? It means
that in subsonic flows no shock waves can appear. Shock waves are thus only present in supersonic flows.

Now we know how to find M2. But can we also find the other properties behind the shock wave? It turns
out that we can, using
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ρ2

ρ1
=

u1

u2
=

(γ + 1) M2
1

2 + (γ − 1) M2
1

, (5.3)

p2

p1
= 1 +

2γ

γ + 1
(
M2

1 − 1
)
, (5.4)

T2

T1
=

h2

h1
=

p2

p1

ρ1

ρ2
=
(

1 +
2γ

γ + 1
(
M2

1 − 1
))(2 + (γ − 1) M2

1

(γ + 1) M2
1

)
. (5.5)

It would also be interesting to know how the total temperature Tt and the total pressure pt change across
the shock wave. Since a shockwave is an adiabatic process we know that h1 = h2 and thus also Tt,1 = Tt,2.
Finally, using the relation for entropy we can find that

pt,2

pt,1
= e−

s2−s1
R . (5.6)

So what can we derive from all the above equations? When passing through a shock wave, the properties
of the flow change drastically. The pressure, temperature and density increase, while the total pressure
and the Mach number decrease. The total temperature and the enthalpy stay constant.

6 Measuring the Velocity

When an aircraft is flying, it would be nice to know how fast it is going. To find this out, a Pitot tube
is used, measuring the total pressure pt. We also assume that the static pressure p is known.

To find the velocity during a subsonic flight, we can simply use the relation

pt

p
=
(

1 +
γ − 1

2
M2

) γ
γ−1

. (6.1)

Solving for M2 and using u2 = M2a2 we find that

u2 =
2a2

γ − 1

((
pt

p

) γ−1
γ

− 1

)
. (6.2)

So to find the velocity, we also need to know the speed of sound. But if we know that, it’s easy to find
the velocity.

To find the velocity during a supersonic flight is a bit more difficult, since there is a shock wave. This
time the Pitot tube measures the total pressure behind the shock wave pt,2. The static pressure that was
known is now called p1. This time we need to use the relation

pt,2

p1
=

pt,2

p2

p2

p1
=

(
(γ + 1)2 M2

1

4γM2
1 − 2 (γ − 1)

) γ
γ−1 (1− γ) + 2γM2

1

γ + 1
. (6.3)

This equation is called the Rayleigh Pitot tube formula. In its derivation we used the normal shock
wave relations for the ratio p2/p1. We used the relation for total pressure in an isentropic flow for the
ratio pt,2/p2. From this equation the Mach number can be solved. Then only the speed of sound is still
needed to find the flight velocity u.
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