
Navier-Stokes Equations

1 Continuity equation

The continuity equation is based on conservation of mass. Let’s look at a volume ν with surface S,
which is fixed in space. The mass flow out of this volume B is equal to the decrease of mass inside the
volume C.

The mass flow through a certain area dS is ρV ·dS. Since dS points outward, we’re looking at the mass
flowing outward. To find the total mass flowing outward, we just integrate over the surface S, to find
that

B =
∫∫

S

ρV · dS. (1.1)

Now let’s find C. The mass in a small volume dν is ρ dν. The total mass in the volume ν can be found
by a triple integral. But we’re not looking for the total mass, but for the rate of mass decrease. So we
simply take a time derivative of the mass. This gives

C = − ∂

∂t

∫∫∫
ν

ρ dν. (1.2)

Note that the minus is there, because we’re looking for the rate of mass decrease. (Not increase!) Using
B = C we can find the continuity equation

∂

∂t

∫∫∫
ν

ρ dν +
∫∫

S

ρV · dS = 0. (1.3)

Since the control volume is fixed, we can pull ∂
∂t within the integral. And by using Gauss’ divergence

theorem, we can rewrite this to∫∫∫
ν

∂ρ

∂t
dν +

∫∫∫
ν

∇ · (ρV) dν =
∫∫∫

ν

(
∂ρ

∂t
+∇ · (ρV)

)
dν = 0. (1.4)

Now it may be assumed that, for every small volume dν in the volume ν, the integrand is zero:

∂ρ

∂t
+∇ · (ρV) = 0. (1.5)

Note that in the case of a steady flow ∂ρ
∂t = 0, so also ∇· (ρV) = 0. And if the flow is also incompressible,

then ∇ ·V = 0. The value ∇ ·V occurs relatively often in equations and will be discussed later.

2 Momentum equation

The momentum equation is based on the principle ”Sum of forces = Time rate of change of momen-
tum”. Let’s look once more at a fixed volume in space ν with boundary surface S. First we’ll examine
the forces acting on it. Then we’ll examine the change in momentum.

Two types of forces can act on our volume ν. Body forces, such as gravity, and surface forces, such as
pressure and shear stress. First let’s look at the body forces. Suppose f represents the net body force
per unit mass exerted on the fluid inside ν. On a small volume dν, the body force is ρf dν. So the total
body force is ∫∫∫

ν

ρf dν. (2.1)
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Now let’s examine the surface forces. On a small surface dS acts a pressure p, directed inward. But dS
is directed outward, so the actual force vector caused by the pressure is −pdS. The total pressure force
therefore is

−
∫∫

S

pdS. (2.2)

The shear stresses on the volume, caused by viscous forces, may be complicated. So let’s just define
Fviscous as the sum of all the viscous stresses. This makes the total force acting on our volume ν

F =
∫∫∫

ν

ρf dν −
∫∫

S

pdS + Fviscous (2.3)

Now let’s look at the rate of change of momentum in ν. This consists of two parts. First, particles leave
ν, taking momentum with them. From the previous paragraph, we know that the mass flow leaving ν
through dS is ρV · dS. So the flow of momentum that leaves ν through dS is (ρV · dS)V. The total
momentum leaving ν therefore is ∫∫

S

(ρV · dS)V (2.4)

Second, unsteady fluctuations of flow properties inside ν can also cause a change in momentum. The
momentum of a small volume dν is the mass times the velocity, being (ρ dν)V. The total momentum of
ν can be obtained by integrating. But we don’t want the total momentum, but the time rate of change
of momentum. So just like in the last paragraph, we put ∂

∂t in front of it to get

∂

∂t

∫∫∫
ν

ρV dν (2.5)

We now have calculated both the sum of the forces, and the change in momentum. Time to put it all
together in one equation∫∫∫

ν

ρf dν −
∫∫

S

pdS + Fviscous =
∫∫

S

(ρV · dS)V +
∂

∂t

∫∫∫
ν

ρV dν (2.6)

Just like we did in the previous paragraph, we can use the gradient theorem to bring the entire equation
under one integral. Let’s define =viscous as the part of Fviscous acting on a small volume dν. If we
simplify the equation and split it up in components, we find

ρfx −
∂p

∂x
+ =xviscous =

∂(ρu)
∂t

+∇ · (ρuV), (2.7)

ρfy −
∂p

∂y
+ =yviscous

=
∂(ρv)

∂t
+∇ · (ρvV), (2.8)

ρfz −
∂p

∂z
+ =zviscous

=
∂(ρw)

∂t
+∇ · (ρwV). (2.9)

If the flow is steady ( ∂
∂t = 0), inviscid (Fviscous = 0) and if there are no body forces (f = 0), these

equations reduce to

−∂p

∂x
= ∇ · (ρuV) (2.10)

−∂p

∂y
= ∇ · (ρvV) (2.11)

−∂p

∂z
= ∇ · (ρwV) (2.12)

If the flow is incompressible (ρ is constant), we have four equations (the momentum equation has three
components) and four unknowns, being p, u, v and w. It can be solved. But if ρ is not constant, we need
an additional equation.

2



3 Energy equation

The energy equation is based on the principle that energy can be neither created nor destroyed. Let’s
once more take a fixed volume ν with boundary surface S. We will be looking at the time rate of change
of energy. But first we make a few definitions. B1 is the rate of heat added to ν. B2 is the rate of work
done on ν. B3 is the rate of change of energy in ν. So all values are rates of changes and therefore have
unit J/s. Putting it all together gives something similar to the first law of thermodynamics. The relation
between B1, B2 and B3 is

B1 + B2 = B3. (3.1)

First let’s look at B1. The heat can increase by volumetric heating (for example due to radiation). Let’s
denote the volumetric rate of heat addition per unit mass be denoted by q̇[J/kg s]. The heating of a
small volume dν is q̇ρ dν.

In addition, if the flow is viscous, heat can be transferred across the surface, for example by thermal
conduction. This is a complicated thing, so let’s just denote the rate of heat addition due to viscous
effects by Q̇viscous. Now we know that B1 is

B1 =
∫∫∫

ν

q̇ρ dν + Q̇viscous. (3.2)

Now let’s look at B2. The rate of work done on a body is F ·V. Just like in the previous paragraph,
three forces are acting on a small volume dν. Body forces (ρF dν), pressure forces (−pdS) and viscous
forces. Let’s denote the contribution of the friction forces to the work done by Ẇviscous. Putting it all
together gives

B2 =
∫∫∫

ν

ρ(f ·V) dν −
∫∫

S

pV · dS + Ẇviscous (3.3)

To find B3, we look at the energy in ν. The internal energy in ν is denoted by e, while the kinetic energy
per unit mass if V 2

2 . The total energy per unit mass is simply E = e + V 2

2 .

The particles leaving ν through the surface S take energy with them. The mass flow leaving through a
surface dS is still ρV ·dS. Multiply this by the energy per unit mass gives ρE(V ·dS), being the rate of
energy leaving ν through dS. To find the total rate of energy leaving, simply integrate over the surface
S.

In addition, if the flow is unsteady, the energy inside ν can also change due toe transient fluctuations.
The energy of a small volume dν is ρE dν. The total energy can be obtained by integrating over the
volume ν. But we don’t want the total energy, we want the time rate of change of energy. So, just like
in the last two paragraphs, we use ∂

∂t . Now we have enough data to find B3, which is

B3 =
∫∫

S

ρ

(
e +

V 2

2

)
V · dS +

∂

∂t

∫∫∫
ν

ρ

(
e +

V 2

2

)
dν. (3.4)

Putting everything together gives us the energy equation∫∫∫
ν

ρq̇ dν+Q̇viscous+
∫∫∫

ν

ρ(f ·V) dν−
∫∫

S

pV·dS+Ẇviscous =
∫∫

S

ρ

(
e +

V 2

2

)
V·dS+

∂

∂t

∫∫∫
ν

ρ

(
e +

V 2

2

)
dν.

(3.5)
Just like in the previous paragraphs, we can follow steps to remove the triple integral. Doing this results
in

ρq̇ + ρ(f ·V)−∇ · (pV) + Q̇′
viscous + Ẇ ′

viscous = ∇ ·
(

ρ

(
e +

V 2

2

)
V

)
+

∂

∂t

(
ρ

(
e +

V 2

2

))
, (3.6)

where Q̇′
viscous and Ẇ ′

viscous represent the proper forms of the viscous terms after being put inside the
triple integral.
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If the flow is steady ( ∂
∂t = 0), inviscid (Q̇viscous = 0 and Ẇviscous = 0), adiabatic (no heat addition,

q̇ = 0) and without body forces (f = 0), the energy equation reduces to

∇ ·
(

ρ

(
e +

V 2

2

)
V

)
= −∇ · (pV). (3.7)

4 Equation of state

Now we have five equations, but six unknowns, being p, ρ, u, v, w and e. To solve it, we need more
equations. If the gas is perfect, then

e = cvT, (4.1)

where cv is the specific gas constant for constant volume and T is the temperature. But this gives us
yet another unknown variable, being the temperature. To complete the system, we can make use of the
equation of state

p = ρRT. (4.2)

We now have seven unknowns and seven equations, which means the system can be solved.

5 Substantial derivative

Suppose we look at a very small point in space (from a stationary reference frame). The density changes
according to ∂ρ

∂t . But now let’s look at a very small volume in space (from a co-moving reference frame).
The time rate of change of this volume is defined as the substantial derivative Dρ

Dt . It can be shown
that this derivative is given by

D

Dt
=

∂

∂t
+ (V · ∇) ⇔ Dρ

Dt
=

∂ρ

∂t
+ (V · ∇) ρ. (5.1)

Of course the ρ can be replaced by other variables. The first ∂
∂t is called the local derivative and the

second part (V · ∇) is called the convective derivative.

The substantial derivative can be used to write the Navier-Stokes equations in a simpler form. To do
that, we make use of a vector relation, which is rather similar to the chain rule, being

∇ · (ρV) = ρ(∇ ·V) + (∇ρ) ·V = ρ∇ ·V + V · ∇ρ. (5.2)

Applying this relation and the substantial derivative to the continuity equation (equation 1.5) gives

Dρ

Dt
+ ρ∇ ·V = 0. (5.3)

Using the same tricks, the momentum equation (equation 2.7 to 2.9) can be rewritten as

ρfx −
∂p

∂x
+ =xviscous = ρ

Du

Dt
(5.4)

ρfy −
∂p

∂y
+ =yviscous = ρ

Dv

Dt
(5.5)

ρfz −
∂p

∂z
+ =zviscous

= ρ
Dw

Dt
(5.6)

If the flow is steady ( ∂
∂t = 0) and inviscid (Fviscous = 0), these equations can be simplified even more.
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Now let’s look at the energy equation (equation 3.6). In the same way as the above equations, it can be
rewritten. The outcome is

q̇ρ + ρ(f ·V)−∇ · (pV) + Q̇′
viscous + Ẇ ′

viscous = ρ
D

(
e + V 2

2

)
Dt

. (5.7)

It is conventional to call the earlier forms of the equations (equations 1.5, 2.7 to 2.9 and 3.6) the con-
servation form (or sometimes the divergence form), while the equations of this paragraph are called
the non-conservation form. In most cases, there is no particular reason to choose one form over the
other.

6 Divergence of velocity

The quantity ∇ ·V occurs frequently in equations. Let’s consider an amount of air ν from a co-moving
reference frame. As the air moves, the volume of ν can change. We will take a look at that change now.

Let’s consider a small bit of surface dS of ν. This surface moves. The change in volume that this piece
of surface causes is V · dS. So the total change in volume per unit time can be found, using an integral
over the surface, giving

Dν

Dt
=

∫∫
S

V · dS =
∫∫∫

ν

(∇ ·V)dν. (6.1)

The latter part is known due to the divergence theorem. Note that we have used the substantial derivative
Dν
dt instead of dν

dt since we are considering a moving volume of air, instead of air passing through a fixed
volume in space.

If the volume ν is small enough, such that ∇ ·V is the same everywhere in ν, then we can find that

∇ ·V =
1
ν

Dν

Dt
. (6.2)

This equation states that ∇ ·V is the time rate of change of the volume of a moving fluid element per
unit volume. This sounds complicated, but an example will illustrate this fact. If ∇ ·V = −0.8s−1, then
the volume ν will decrease by 80% every second (the minus sign indicates a decrease). If ∇ ·V = 1s−1,
then the volume ν will double in size every second (that is, as long ∇ ·V remains 1s−1).
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